-
Notifications
You must be signed in to change notification settings - Fork 61
/
statistics.py
148 lines (108 loc) · 4.85 KB
/
statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import cv2
import numpy as np
from matplotlib import pyplot as plt
if __name__ == '__main__':
img_path = './Patch/014.png'
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
mean = np.zeros(img.shape[1])
var = np.zeros(img.shape[1])
peak_mean = np.zeros(img.shape[1])
peak_var = np.zeros(img.shape[1])
valley_mean = np.zeros(img.shape[1])
valley_var = np.zeros(img.shape[1])
period = np.zeros(img.shape[1])
###########-------Column-------###############
for i in range (img.shape[1]):
column = img[:,i]
# plt.plot(column)
# plt.show()
mean[i] = np.mean(column)
var[i] = np.var(column)
print("Column:",i,"Mean:{:.1f}".format(mean[i]),"Var:{:.1f}".format(var[i]))
print("Mean:{:.1f}".format(mean.mean()),"Var:{:.1f}".format(var.mean()))
##########---------period--------###############
for i in range (img.shape[1]):
column = img[:,i]
peak_list = []
valley_list = []
period_list = []
peak_last = 255
valley_last = 0
for j in range(column.shape[0]):
if j>0 and j<column.shape[0]-1:
# peak
if column[j]>column[j-1] and column[j]>column[j+1]:
if valley_last+ 25 < column[j]:#####################################
peak_list.append(column[j])
peak_last = column[j]
# valley
else:
if column[j]<column[j-1] and column[j]<column[j+1]:
if column[j]+ 25 < peak_last:###################################
valley_list.append(column[j])
valley_last = column[j]
period_list.append(j)
peak_list = np.array(peak_list)
valley_list = np.array(valley_list)
period_list = np.array(period_list)
peak_mean[i] = peak_list.mean()
peak_var[i] = peak_list.var()
valley_mean[i] = valley_list.mean()
valley_var[i] = valley_list.var()
period[i] = (period_list[-1]-period_list[0])/len(period_list-1)
print("\nColumn:{}".format(i))
print(
" Peak number:{:.1f} ".format(len(peak_list)),
" Peak Mean:{:.1f} ".format(peak_mean[i]),
" Peak Var:{:.1f}".format(peak_var[i]),
)
print(
" Valley number:{:.1f}".format(len(valley_list)),
" Valley Mean:{:.1f}".format(valley_mean[i]),
" Valley Var:{:.1f}".format(valley_var[i]),
)
print("Period:{:.1f}".format(period[i]))
print(
"\nPeak Mean:{:.1f}".format(peak_mean.mean()),
"Peak Var:{:.1f}".format(peak_var.mean()),
"Valley Mean:{:.1f}".format(valley_mean.mean()),
"Valley Var:{:.1f}".format(valley_var.mean()),
"Period Mean:{:.1f}".format(period.mean()),
"Period Var:{:.1f}".format(period.var())
)
########################################################
###########----------for all period-------############
########################################################
periods = []
peak_list = []
valley_list = []
radios = int(round(period.mean()/2))
for i in range (img.shape[1]):
column = img[:,i]
peak_last = 255
valley_last = 0
for j in range(column.shape[0]):
if j>0 and j<column.shape[0]-1:
# peak
if column[j]>column[j-1] and column[j]>column[j+1]:
if valley_last+ 25 < column[j]:#####################################
peak_list.append(column[j])
peak_last = column[j]
# valley
else:
if column[j]<column[j-1] and column[j]<column[j+1]:
if column[j]+ 25 < peak_last:###################################
valley_list.append(column[j])
valley_last = column[j]
if j-radios >= 0 and j+radios <= column.shape[0]-1:
t = column[j-radios:j+radios+1]
t = t[np.newaxis,:]
periods.append(t)
period = np.concatenate((periods),axis=0)
period_stastic_mean = np.mean(period,axis=0)
period_stastic_var = np.var(period,axis=0)
plt.plot(period_stastic_mean)
plt.plot(period_stastic_var)
plt.show()
print("period_stastic_mean\n",period_stastic_mean)
print("period_stastic_var\n",period_stastic_var)