圖本身是遞迴型的資料結構,因為頂點的屬性依賴於其鄰居的屬性,這些鄰居的屬性又依賴於其鄰居的屬性。結論是,許多重要的圖形演算法,都需要重複的重新計算每個頂點的屬性,直到滿足某個確定的條件。一系列的Graph-parallel抽象體已經背提出來代表這些迭代型演算法。GraphX公開了一個Pregel-like的運算子,它是廣泛使用Pregel和GraphLab抽象的一個融合。
在GraphX中,更高階層的Pregel運算子是一個限制到圖拓僕的批量同步(bulk-synchronous)。Pregel運算子執行一系列的super-steps,再這些步驟中,頂點從之前的super-steps中接收進入訊息的總和,為頂點的屬性計算一個新值,然後在下一個super-step中發送訊息到相鄰的頂點。不像Pregel而更像GraphLab,訊息被作為一個邊三元組的函數平行的運算,且訊息運算會存取來源和目標頂點的特徵。在super-step中,未收到訊息的頂點會被跳過。當沒有任何訊息遺留時,Pregel運算子會停止迭代且回傳最後的圖。
注意,不像標準的Pregel實作,GraphX中的頂點只能夠發送訊息給相鄰頂點,且利用使用者自訂的通知函數來平行完成訊息的建立。這些限制允許了GraphX進行額外的優化。
以下是Pregel操作的型別簽章(signature)以及實做的草圖(注意,graph.cache呼叫已經移除了)
class GraphOps[VD, ED] {
def pregel[A]
(initialMsg: A,
maxIter: Int = Int.MaxValue,
activeDir: EdgeDirection = EdgeDirection.Out)
(vprog: (VertexId, VD, A) => VD,
sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A)
: Graph[VD, ED] = {
// Receive the initial message at each vertex
var g = mapVertices( (vid, vdata) => vprog(vid, vdata, initialMsg) ).cache()
// compute the messages
var messages = g.mapReduceTriplets(sendMsg, mergeMsg)
var activeMessages = messages.count()
// Loop until no messages remain or maxIterations is achieved
var i = 0
while (activeMessages > 0 && i < maxIterations) {
// Receive the messages: -----------------------------------------------------------------------
// Run the vertex program on all vertices that receive messages
val newVerts = g.vertices.innerJoin(messages)(vprog).cache()
// Merge the new vertex values back into the graph
g = g.outerJoinVertices(newVerts) { (vid, old, newOpt) => newOpt.getOrElse(old) }.cache()
// Send Messages: ------------------------------------------------------------------------------
// Vertices that didn't receive a message above don't appear in newVerts and therefore don't
// get to send messages. More precisely the map phase of mapReduceTriplets is only invoked
// on edges in the activeDir of vertices in newVerts
messages = g.mapReduceTriplets(sendMsg, mergeMsg, Some((newVerts, activeDir))).cache()
activeMessages = messages.count()
i += 1
}
g
}
}
注意,Pregel接受兩個參數列表(graph.pregel(list1)(list2))。第一個參數列表包含了配置參數,如初始訊息、最大的迭代數、訊息發送邊的方向(預設向外)。第二個參數列表包含了用來接收訊息(vprog)、計算訊息(sendMsg)、合併訊息(mergeMsg)。
以下範例是我們可以使用Pregel運算子來表示單源最短路徑(Single source shortest path)的運算。
import org.apache.spark.graphx._
// Import random graph generation library
import org.apache.spark.graphx.util.GraphGenerators
// A graph with edge attributes containing distances
val graph: Graph[Int, Double] =
GraphGenerators.logNormalGraph(sc, numVertices = 100).mapEdges(e => e.attr.toDouble)
val sourceId: VertexId = 42 // The ultimate source
// Initialize the graph such that all vertices except the root have distance infinity.
val initialGraph = graph.mapVertices((id, _) => if (id == sourceId) 0.0 else Double.PositiveInfinity)
val sssp = initialGraph.pregel(Double.PositiveInfinity)(
(id, dist, newDist) => math.min(dist, newDist), // Vertex Program
triplet => { // Send Message
if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {
Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))
} else {
Iterator.empty
}
},
(a,b) => math.min(a,b) // Merge Message
)
println(sssp.vertices.collect.mkString("\n"))