forked from Niranjani29/Sequence_Labelling_HMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadvanced_tagger.py
153 lines (129 loc) · 4.17 KB
/
advanced_tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from collections import namedtuple
import csv
import glob
import os
import sys
def get_utterances_from_file(dialog_csv_file):
reader = csv.DictReader(dialog_csv_file)
return [_dict_to_dialog_utterance(du_dict) for du_dict in reader]
def get_utterances_from_filename(dialog_csv_filename):
with open(dialog_csv_filename, "r") as dialog_csv_file:
return get_utterances_from_file(dialog_csv_file)
def get_data(data_dir):
dialog_filenames = sorted(glob.glob(os.path.join(data_dir, "*.csv")))
for dialog_filename in dialog_filenames:
yield get_utterances_from_filename(dialog_filename)
DialogUtterance = namedtuple(
"DialogUtterance", ("act_tag", "speaker", "pos", "text"))
PosTag = namedtuple("PosTag", ("token", "pos"))
def _dict_to_dialog_utterance(du_dict):
for k, v in du_dict.items():
if len(v.strip()) == 0:
du_dict[k] = None
if du_dict["pos"]:
du_dict["pos"] = [
PosTag(*token_pos_pair.split("/"))
for token_pos_pair in du_dict["pos"].split()]
return DialogUtterance(**du_dict)
# ########## my code ###################
import pycrfsuite
from sklearn.metrics import accuracy_score
import string
def my_training(data):
y_train = []
X_train = []
temp=[]
count=0
prev=None
for file in data:
temp.append("FIRST_UTTERANCE")
for utt in file:
# count+=1
curr_speaker = utt.speaker
y_train.append(utt.act_tag)
if prev!=curr_speaker and prev!=None:
temp.append("SPEAKER_CHANGED")
if utt.pos:
for p in utt.pos:
if p[0]== ",":
continue
if p[0]== "?":
temp.append("QUESTION")
token = "TOKEN_" + p[0]
pos = "POS_" + p[1]
temp.append(token)
temp.append(pos)
else:
temp.append("NO_WORDS")
X_train.append(temp)
prev= curr_speaker
temp=[]
return X_train,y_train
def my_testing(data):
y_train = []
y_pred=[]
X_train = []
temp=[]
count=0
prev=None
i=0
tagger = pycrfsuite.Tagger()
for file in data:
temp.append("FIRST_UTTERANCE")
for utt in file:
# count+=1
curr_speaker = utt.speaker
y_train.append(utt.act_tag)
if prev!=curr_speaker and prev!=None:
temp.append("SPEAKER_CHANGED")
if utt.pos:
for p in utt.pos:
if p[0]== ",":
continue
if p[0]== "?":
temp.append("QUESTION")
token = "TOKEN_" + p[0]
pos = "POS_" + p[1]
temp.append(token)
temp.append(pos)
else:
temp.append("NO_WORDS")
X_train.append(temp)
prev= curr_speaker
temp=[]
tagger.open('abc.crfsuite')
y_pred += tagger.tag(X_train)
y_pred.append("\n")
i+=1
X_train = []
return y_pred, y_train
location = sys.argv[1]
data_train = get_data(location)
X_train,y_train = my_training(data_train)
trainer = pycrfsuite.Trainer(verbose=False)
trainer.append(X_train, y_train)
trainer.set_params({
'c1': 1.0, # coefficient for L1 penalty
'c2': 1e-3, # coefficient for L2 penalty
'max_iterations': 50, # stop earlier
# include transitions that are possible, but not observed
'feature.possible_transitions': True
})
trainer.train('abc.crfsuite')
# Testing data
location = sys.argv[2]
data_test = get_data(location)
y_pred, y_train = my_testing(data_test)
f = open(sys.argv[3], "w" )
y_train_count = 0
correct = 0
for item in y_pred:
if item=="\n":
f.write(item)
continue
f.write(item)
f.write("\n")
if item == y_train[y_train_count]:
correct += 1
y_train_count += 1
print(correct, y_train_count)