forked from ChanakaUOMIT/fast_abs_rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_abstractor.py
220 lines (186 loc) · 8.15 KB
/
train_abstractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
""" train the abstractor"""
import argparse
import json
import os
from os.path import join, exists
import pickle as pkl
from cytoolz import compose
import torch
from torch import optim
from torch.nn import functional as F
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from model.copy_summ import CopySumm
from model.util import sequence_loss
from training import get_basic_grad_fn, basic_validate
from training import BasicPipeline, BasicTrainer
from data.data import CnnDmDataset
from data.batcher import coll_fn, prepro_fn
from data.batcher import convert_batch_copy, batchify_fn_copy
from data.batcher import BucketedGenerater
from utils import PAD, UNK, START, END
from utils import make_vocab, make_embedding
# NOTE: bucket size too large may sacrifice randomness,
# to low may increase # of PAD tokens
BUCKET_SIZE = 6400
try:
DATA_DIR = os.environ['DATA']
except KeyError:
print('please use environment variable to specify data directories')
class MatchDataset(CnnDmDataset):
""" single article sentence -> single abstract sentence
(dataset created by greedily matching ROUGE)
"""
def __init__(self, split):
super().__init__(split, DATA_DIR)
def __getitem__(self, i):
js_data = super().__getitem__(i)
art_sents, abs_sents, extracts = (
js_data['article'], js_data['abstract'], js_data['extracted'])
matched_arts = [art_sents[i] for i in extracts]
return matched_arts, abs_sents[:len(extracts)]
def configure_net(vocab_size, emb_dim,
n_hidden, bidirectional, n_layer):
net_args = {}
net_args['vocab_size'] = vocab_size
net_args['emb_dim'] = emb_dim
net_args['n_hidden'] = n_hidden
net_args['bidirectional'] = bidirectional
net_args['n_layer'] = n_layer
net = CopySumm(**net_args)
return net, net_args
def configure_training(opt, lr, clip_grad, lr_decay, batch_size):
""" supports Adam optimizer only"""
assert opt in ['adam']
opt_kwargs = {}
opt_kwargs['lr'] = lr
train_params = {}
train_params['optimizer'] = (opt, opt_kwargs)
train_params['clip_grad_norm'] = clip_grad
train_params['batch_size'] = batch_size
train_params['lr_decay'] = lr_decay
nll = lambda logit, target: F.nll_loss(logit, target, reduce=False)
def criterion(logits, targets):
return sequence_loss(logits, targets, nll, pad_idx=PAD)
return criterion, train_params
def build_batchers(word2id, cuda, debug):
prepro = prepro_fn(args.max_art, args.max_abs)
def sort_key(sample):
src, target = sample
return (len(target), len(src))
batchify = compose(
batchify_fn_copy(PAD, START, END, cuda=cuda),
convert_batch_copy(UNK, word2id)
)
train_loader = DataLoader(
MatchDataset('train'), batch_size=BUCKET_SIZE,
shuffle=not debug,
num_workers=4 if cuda and not debug else 0,
collate_fn=coll_fn
)
train_batcher = BucketedGenerater(train_loader, prepro, sort_key, batchify,
single_run=False, fork=not debug)
val_loader = DataLoader(
MatchDataset('val'), batch_size=BUCKET_SIZE,
shuffle=False, num_workers=4 if cuda and not debug else 0,
collate_fn=coll_fn
)
val_batcher = BucketedGenerater(val_loader, prepro, sort_key, batchify,
single_run=True, fork=not debug)
return train_batcher, val_batcher
def main(args):
# create data batcher, vocabulary
# batcher
with open(join(DATA_DIR, 'vocab_cnt.pkl'), 'rb') as f:
wc = pkl.load(f)
word2id = make_vocab(wc, args.vsize)
train_batcher, val_batcher = build_batchers(word2id,
args.cuda, args.debug)
# make net
net, net_args = configure_net(len(word2id), args.emb_dim,
args.n_hidden, args.bi, args.n_layer)
if args.w2v:
# NOTE: the pretrained embedding having the same dimension
# as args.emb_dim should already be trained
embedding, _ = make_embedding(
{i: w for w, i in word2id.items()}, args.w2v)
net.set_embedding(embedding)
# configure training setting
criterion, train_params = configure_training(
'adam', args.lr, args.clip, args.decay, args.batch
)
# save experiment setting
if not exists(args.path):
os.makedirs(args.path)
with open(join(args.path, 'vocab.pkl'), 'wb') as f:
pkl.dump(word2id, f, pkl.HIGHEST_PROTOCOL)
meta = {}
meta['net'] = 'base_abstractor'
meta['net_args'] = net_args
meta['traing_params'] = train_params
with open(join(args.path, 'meta.json'), 'w') as f:
json.dump(meta, f, indent=4)
# prepare trainer
val_fn = basic_validate(net, criterion)
grad_fn = get_basic_grad_fn(net, args.clip)
optimizer = optim.Adam(net.parameters(), **train_params['optimizer'][1])
scheduler = ReduceLROnPlateau(optimizer, 'min', verbose=True,
factor=args.decay, min_lr=0,
patience=args.lr_p)
if args.cuda:
net = net.cuda()
pipeline = BasicPipeline(meta['net'], net,
train_batcher, val_batcher, args.batch, val_fn,
criterion, optimizer, grad_fn)
trainer = BasicTrainer(pipeline, args.path,
args.ckpt_freq, args.patience, scheduler)
print('start training with the following hyper-parameters:')
print(meta)
trainer.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='training of the abstractor (ML)'
)
parser.add_argument('--path', required=True, help='root of the model')
parser.add_argument('--vsize', type=int, action='store', default=30000,
help='vocabulary size')
parser.add_argument('--emb_dim', type=int, action='store', default=128,
help='the dimension of word embedding')
parser.add_argument('--w2v', action='store',
help='use pretrained word2vec embedding')
parser.add_argument('--n_hidden', type=int, action='store', default=256,
help='the number of hidden units of LSTM')
parser.add_argument('--n_layer', type=int, action='store', default=1,
help='the number of layers of LSTM')
parser.add_argument('--no-bi', action='store_true',
help='disable bidirectional LSTM encoder')
# length limit
parser.add_argument('--max_art', type=int, action='store', default=100,
help='maximun words in a single article sentence')
parser.add_argument('--max_abs', type=int, action='store', default=30,
help='maximun words in a single abstract sentence')
# training options
parser.add_argument('--lr', type=float, action='store', default=1e-3,
help='learning rate')
parser.add_argument('--decay', type=float, action='store', default=0.5,
help='learning rate decay ratio')
parser.add_argument('--lr_p', type=int, action='store', default=0,
help='patience for learning rate decay')
parser.add_argument('--clip', type=float, action='store', default=2.0,
help='gradient clipping')
parser.add_argument('--batch', type=int, action='store', default=32,
help='the training batch size')
parser.add_argument(
'--ckpt_freq', type=int, action='store', default=3000,
help='number of update steps for checkpoint and validation'
)
parser.add_argument('--patience', type=int, action='store', default=5,
help='patience for early stopping')
parser.add_argument('--debug', action='store_true',
help='run in debugging mode')
parser.add_argument('--no-cuda', action='store_true',
help='disable GPU training')
args = parser.parse_args()
args.bi = not args.no_bi
args.cuda = torch.cuda.is_available() and not args.no_cuda
main(args)