-
Notifications
You must be signed in to change notification settings - Fork 60
/
Drive.java
executable file
·865 lines (754 loc) · 34.7 KB
/
Drive.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
package com.team254.frc2017.subsystems;
import edu.wpi.first.wpilibj.DriverStation;
import edu.wpi.first.wpilibj.SPI;
import edu.wpi.first.wpilibj.Solenoid;
import edu.wpi.first.wpilibj.Timer;
import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
import com.ctre.CANTalon;
import com.ctre.CANTalon.StatusFrameRate;
import com.ctre.CANTalon.VelocityMeasurementPeriod;
import com.team254.frc2017.Constants;
import com.team254.frc2017.Kinematics;
import com.team254.frc2017.RobotState;
import com.team254.frc2017.ShooterAimingParameters;
import com.team254.frc2017.loops.Loop;
import com.team254.frc2017.loops.Looper;
import com.team254.lib.util.DriveSignal;
import com.team254.lib.util.ReflectingCSVWriter;
import com.team254.lib.util.Util;
import com.team254.lib.util.control.Lookahead;
import com.team254.lib.util.control.Path;
import com.team254.lib.util.control.PathFollower;
import com.team254.lib.util.drivers.CANTalonFactory;
import com.team254.lib.util.drivers.NavX;
import com.team254.lib.util.math.RigidTransform2d;
import com.team254.lib.util.math.Rotation2d;
import com.team254.lib.util.math.Twist2d;
import java.util.Arrays;
import java.util.Optional;
/**
* This subsystem consists of the robot's drivetrain: 4 CIM motors, 4 talons, one solenoid and 2 pistons to shift gears,
* and a navX board. The Drive subsystem has several control methods including open loop, velocity control, and position
* control. The Drive subsystem also has several methods that handle automatic aiming, autonomous path driving, and
* manual control.
*
* @see Subsystem.java
*/
public class Drive extends Subsystem {
private static Drive mInstance = new Drive();
private static final int kLowGearPositionControlSlot = 0;
private static final int kHighGearVelocityControlSlot = 1;
public static Drive getInstance() {
return mInstance;
}
// The robot drivetrain's various states.
public enum DriveControlState {
OPEN_LOOP, // open loop voltage control
VELOCITY_SETPOINT, // velocity PID control
PATH_FOLLOWING, // used for autonomous driving
AIM_TO_GOAL, // turn to face the boiler
TURN_TO_HEADING, // turn in place
DRIVE_TOWARDS_GOAL_COARSE_ALIGN, // turn to face the boiler, then DRIVE_TOWARDS_GOAL_COARSE_ALIGN
DRIVE_TOWARDS_GOAL_APPROACH // drive forwards until we are at optimal shooting distance
}
/**
* Check if the drive talons are configured for velocity control
*/
protected static boolean usesTalonVelocityControl(DriveControlState state) {
if (state == DriveControlState.VELOCITY_SETPOINT || state == DriveControlState.PATH_FOLLOWING) {
return true;
}
return false;
}
/**
* Check if the drive talons are configured for position control
*/
protected static boolean usesTalonPositionControl(DriveControlState state) {
if (state == DriveControlState.AIM_TO_GOAL ||
state == DriveControlState.TURN_TO_HEADING ||
state == DriveControlState.DRIVE_TOWARDS_GOAL_COARSE_ALIGN ||
state == DriveControlState.DRIVE_TOWARDS_GOAL_APPROACH) {
return true;
}
return false;
}
// Control states
private DriveControlState mDriveControlState;
// Hardware
private final CANTalon mLeftMaster, mRightMaster, mLeftSlave, mRightSlave;
private final Solenoid mShifter;
private final NavX mNavXBoard;
// Controllers
private RobotState mRobotState = RobotState.getInstance();
private PathFollower mPathFollower;
// These gains get reset below!!
private Rotation2d mTargetHeading = new Rotation2d();
private Path mCurrentPath = null;
// Hardware states
private boolean mIsHighGear;
private boolean mIsBrakeMode;
private boolean mIsOnTarget = false;
private boolean mIsApproaching = false;
// Logging
private final ReflectingCSVWriter<PathFollower.DebugOutput> mCSVWriter;
private final Loop mLoop = new Loop() {
@Override
public void onStart(double timestamp) {
synchronized (Drive.this) {
setOpenLoop(DriveSignal.NEUTRAL);
setBrakeMode(false);
setVelocitySetpoint(0, 0);
mNavXBoard.reset();
}
}
@Override
public void onLoop(double timestamp) {
synchronized (Drive.this) {
switch (mDriveControlState) {
case OPEN_LOOP:
return;
case VELOCITY_SETPOINT:
return;
case PATH_FOLLOWING:
if (mPathFollower != null) {
updatePathFollower(timestamp);
mCSVWriter.add(mPathFollower.getDebug());
}
return;
case AIM_TO_GOAL:
if (!Superstructure.getInstance().isShooting()) {
updateGoalHeading(timestamp);
}
// fallthrough intended
case TURN_TO_HEADING:
updateTurnToHeading(timestamp);
return;
case DRIVE_TOWARDS_GOAL_COARSE_ALIGN:
updateDriveTowardsGoalCoarseAlign(timestamp);
return;
case DRIVE_TOWARDS_GOAL_APPROACH:
updateDriveTowardsGoalApproach(timestamp);
return;
default:
System.out.println("Unexpected drive control state: " + mDriveControlState);
break;
}
}
}
@Override
public void onStop(double timestamp) {
stop();
mCSVWriter.flush();
}
};
private Drive() {
// Start all Talons in open loop mode.
mLeftMaster = CANTalonFactory.createDefaultTalon(Constants.kLeftDriveMasterId);
mLeftMaster.changeControlMode(CANTalon.TalonControlMode.PercentVbus);
mLeftMaster.setFeedbackDevice(CANTalon.FeedbackDevice.CtreMagEncoder_Relative);
mLeftMaster.reverseSensor(true);
mLeftMaster.reverseOutput(false);
CANTalon.FeedbackDeviceStatus leftSensorPresent = mLeftMaster
.isSensorPresent(CANTalon.FeedbackDevice.CtreMagEncoder_Relative);
if (leftSensorPresent != CANTalon.FeedbackDeviceStatus.FeedbackStatusPresent) {
DriverStation.reportError("Could not detect left encoder: " + leftSensorPresent, false);
}
mLeftSlave = CANTalonFactory.createPermanentSlaveTalon(Constants.kLeftDriveSlaveId,
Constants.kLeftDriveMasterId);
mLeftSlave.reverseOutput(false);
mLeftMaster.setStatusFrameRateMs(StatusFrameRate.Feedback, 5);
mRightMaster = CANTalonFactory.createDefaultTalon(Constants.kRightDriveMasterId);
mRightMaster.changeControlMode(CANTalon.TalonControlMode.PercentVbus);
mRightMaster.reverseSensor(false);
mRightMaster.reverseOutput(true);
mRightMaster.setFeedbackDevice(CANTalon.FeedbackDevice.CtreMagEncoder_Relative);
CANTalon.FeedbackDeviceStatus rightSensorPresent = mRightMaster
.isSensorPresent(CANTalon.FeedbackDevice.CtreMagEncoder_Relative);
if (rightSensorPresent != CANTalon.FeedbackDeviceStatus.FeedbackStatusPresent) {
DriverStation.reportError("Could not detect right encoder: " + rightSensorPresent, false);
}
mRightSlave = CANTalonFactory.createPermanentSlaveTalon(Constants.kRightDriverSlaveId,
Constants.kRightDriveMasterId);
mRightSlave.reverseOutput(false);
mRightMaster.setStatusFrameRateMs(StatusFrameRate.Feedback, 5);
mLeftMaster.SetVelocityMeasurementPeriod(VelocityMeasurementPeriod.Period_10Ms);
mLeftMaster.SetVelocityMeasurementWindow(32);
mRightMaster.SetVelocityMeasurementPeriod(VelocityMeasurementPeriod.Period_10Ms);
mRightMaster.SetVelocityMeasurementWindow(32);
mShifter = Constants.makeSolenoidForId(Constants.kShifterSolenoidId);
reloadGains();
mIsHighGear = false;
setHighGear(true);
setOpenLoop(DriveSignal.NEUTRAL);
// Path Following stuff
mNavXBoard = new NavX(SPI.Port.kMXP);
// Force a CAN message across.
mIsBrakeMode = true;
setBrakeMode(false);
mCSVWriter = new ReflectingCSVWriter<PathFollower.DebugOutput>("/home/lvuser/PATH-FOLLOWER-LOGS.csv",
PathFollower.DebugOutput.class);
}
@Override
public void registerEnabledLoops(Looper in) {
in.register(mLoop);
}
/**
* Configure talons for open loop control
*/
public synchronized void setOpenLoop(DriveSignal signal) {
if (mDriveControlState != DriveControlState.OPEN_LOOP) {
mLeftMaster.changeControlMode(CANTalon.TalonControlMode.PercentVbus);
mRightMaster.changeControlMode(CANTalon.TalonControlMode.PercentVbus);
mLeftMaster.configNominalOutputVoltage(0.0, 0.0);
mRightMaster.configNominalOutputVoltage(0.0, 0.0);
mDriveControlState = DriveControlState.OPEN_LOOP;
setBrakeMode(false);
}
// Right side is reversed, but reverseOutput doesn't invert PercentVBus.
// So set negative on the right master.
mRightMaster.set(-signal.getRight());
mLeftMaster.set(signal.getLeft());
}
public boolean isHighGear() {
return mIsHighGear;
}
public synchronized void setHighGear(boolean wantsHighGear) {
if (wantsHighGear != mIsHighGear) {
mIsHighGear = wantsHighGear;
mShifter.set(!wantsHighGear);
}
}
public boolean isBrakeMode() {
return mIsBrakeMode;
}
public synchronized void setBrakeMode(boolean on) {
if (mIsBrakeMode != on) {
mIsBrakeMode = on;
mRightMaster.enableBrakeMode(on);
mRightSlave.enableBrakeMode(on);
mLeftMaster.enableBrakeMode(on);
mLeftSlave.enableBrakeMode(on);
}
}
@Override
public synchronized void stop() {
setOpenLoop(DriveSignal.NEUTRAL);
}
@Override
public void outputToSmartDashboard() {
final double left_speed = getLeftVelocityInchesPerSec();
final double right_speed = getRightVelocityInchesPerSec();
SmartDashboard.putNumber("left voltage (V)", mLeftMaster.getOutputVoltage());
SmartDashboard.putNumber("right voltage (V)", mRightMaster.getOutputVoltage());
SmartDashboard.putNumber("left speed (ips)", left_speed);
SmartDashboard.putNumber("right speed (ips)", right_speed);
if (usesTalonVelocityControl(mDriveControlState)) {
SmartDashboard.putNumber("left speed error (ips)",
rpmToInchesPerSecond(mLeftMaster.getSetpoint()) - left_speed);
SmartDashboard.putNumber("right speed error (ips)",
rpmToInchesPerSecond(mRightMaster.getSetpoint()) - right_speed);
} else {
SmartDashboard.putNumber("left speed error (ips)", 0.0);
SmartDashboard.putNumber("right speed error (ips)", 0.0);
}
synchronized (this) {
if (mDriveControlState == DriveControlState.PATH_FOLLOWING && mPathFollower != null) {
SmartDashboard.putNumber("drive CTE", mPathFollower.getCrossTrackError());
SmartDashboard.putNumber("drive ATE", mPathFollower.getAlongTrackError());
} else {
SmartDashboard.putNumber("drive CTE", 0.0);
SmartDashboard.putNumber("drive ATE", 0.0);
}
}
SmartDashboard.putNumber("left position (rotations)", mLeftMaster.getPosition());
SmartDashboard.putNumber("right position (rotations)", mRightMaster.getPosition());
SmartDashboard.putNumber("gyro vel", getGyroVelocityDegreesPerSec());
SmartDashboard.putNumber("gyro pos", getGyroAngle().getDegrees());
SmartDashboard.putBoolean("drive on target", isOnTarget());
}
public synchronized void resetEncoders() {
mLeftMaster.setEncPosition(0);
mLeftMaster.setPosition(0);
mRightMaster.setPosition(0);
mRightMaster.setEncPosition(0);
mLeftSlave.setPosition(0);
mRightSlave.setPosition(0);
}
@Override
public void zeroSensors() {
resetEncoders();
mNavXBoard.zeroYaw();
}
/**
* Start up velocity mode. This sets the drive train in high gear as well.
*
* @param left_inches_per_sec
* @param right_inches_per_sec
*/
public synchronized void setVelocitySetpoint(double left_inches_per_sec, double right_inches_per_sec) {
configureTalonsForSpeedControl();
mDriveControlState = DriveControlState.VELOCITY_SETPOINT;
updateVelocitySetpoint(left_inches_per_sec, right_inches_per_sec);
}
/**
* Configures talons for velocity control
*/
private void configureTalonsForSpeedControl() {
if (!usesTalonVelocityControl(mDriveControlState)) {
// We entered a velocity control state.
mLeftMaster.changeControlMode(CANTalon.TalonControlMode.Speed);
mLeftMaster.setNominalClosedLoopVoltage(12.0);
mLeftMaster.setProfile(kHighGearVelocityControlSlot);
mLeftMaster.configNominalOutputVoltage(Constants.kDriveHighGearNominalOutput,
-Constants.kDriveHighGearNominalOutput);
mRightMaster.changeControlMode(CANTalon.TalonControlMode.Speed);
mRightMaster.setNominalClosedLoopVoltage(12.0);
mRightMaster.setProfile(kHighGearVelocityControlSlot);
mRightMaster.configNominalOutputVoltage(Constants.kDriveHighGearNominalOutput,
-Constants.kDriveHighGearNominalOutput);
setBrakeMode(true);
}
}
/**
* Configures talons for position control
*/
private void configureTalonsForPositionControl() {
if (!usesTalonPositionControl(mDriveControlState)) {
// We entered a position control state.
mLeftMaster.changeControlMode(CANTalon.TalonControlMode.MotionMagic);
mLeftMaster.setNominalClosedLoopVoltage(12.0);
mLeftMaster.setProfile(kLowGearPositionControlSlot);
mLeftMaster.configNominalOutputVoltage(Constants.kDriveLowGearNominalOutput,
-Constants.kDriveLowGearNominalOutput);
mRightMaster.changeControlMode(CANTalon.TalonControlMode.MotionMagic);
mRightMaster.setNominalClosedLoopVoltage(12.0);
mRightMaster.setProfile(kLowGearPositionControlSlot);
mRightMaster.configNominalOutputVoltage(Constants.kDriveLowGearNominalOutput,
-Constants.kDriveLowGearNominalOutput);
setBrakeMode(true);
}
}
/**
* Adjust Velocity setpoint (if already in velocity mode)
*
* @param left_inches_per_sec
* @param right_inches_per_sec
*/
private synchronized void updateVelocitySetpoint(double left_inches_per_sec, double right_inches_per_sec) {
if (usesTalonVelocityControl(mDriveControlState)) {
final double max_desired = Math.max(Math.abs(left_inches_per_sec), Math.abs(right_inches_per_sec));
final double scale = max_desired > Constants.kDriveHighGearMaxSetpoint
? Constants.kDriveHighGearMaxSetpoint / max_desired : 1.0;
mLeftMaster.set(inchesPerSecondToRpm(left_inches_per_sec * scale));
mRightMaster.set(inchesPerSecondToRpm(right_inches_per_sec * scale));
} else {
System.out.println("Hit a bad velocity control state");
mLeftMaster.set(0);
mRightMaster.set(0);
}
}
/**
* Adjust position setpoint (if already in position mode)
*
* @param left_inches_per_sec
* @param right_inches_per_sec
*/
private synchronized void updatePositionSetpoint(double left_position_inches, double right_position_inches) {
if (usesTalonPositionControl(mDriveControlState)) {
mLeftMaster.set(inchesToRotations(left_position_inches));
mRightMaster.set(inchesToRotations(right_position_inches));
} else {
System.out.println("Hit a bad position control state");
mLeftMaster.set(0);
mRightMaster.set(0);
}
}
private static double rotationsToInches(double rotations) {
return rotations * (Constants.kDriveWheelDiameterInches * Math.PI);
}
private static double rpmToInchesPerSecond(double rpm) {
return rotationsToInches(rpm) / 60;
}
private static double inchesToRotations(double inches) {
return inches / (Constants.kDriveWheelDiameterInches * Math.PI);
}
private static double inchesPerSecondToRpm(double inches_per_second) {
return inchesToRotations(inches_per_second) * 60;
}
public double getLeftDistanceInches() {
return rotationsToInches(mLeftMaster.getPosition());
}
public double getRightDistanceInches() {
return rotationsToInches(mRightMaster.getPosition());
}
public double getLeftVelocityInchesPerSec() {
return rpmToInchesPerSecond(mLeftMaster.getSpeed());
}
public double getRightVelocityInchesPerSec() {
return rpmToInchesPerSecond(mRightMaster.getSpeed());
}
public synchronized Rotation2d getGyroAngle() {
return mNavXBoard.getYaw();
}
public synchronized NavX getNavXBoard() {
return mNavXBoard;
}
public synchronized void setGyroAngle(Rotation2d angle) {
mNavXBoard.reset();
mNavXBoard.setAngleAdjustment(angle);
}
public synchronized double getGyroVelocityDegreesPerSec() {
return mNavXBoard.getYawRateDegreesPerSec();
}
/**
* Update the heading at which the robot thinks the boiler is.
*
* Is called periodically when the robot is auto-aiming towards the boiler.
*/
private void updateGoalHeading(double timestamp) {
Optional<ShooterAimingParameters> aim = mRobotState.getAimingParameters();
if (aim.isPresent()) {
mTargetHeading = aim.get().getRobotToGoal();
}
}
/**
* Turn the robot to a target heading.
*
* Is called periodically when the robot is auto-aiming towards the boiler.
*/
private void updateTurnToHeading(double timestamp) {
if (Superstructure.getInstance().isShooting()) {
// Do not update heading while shooting - just base lock. By not updating the setpoint, we will fight to
// keep position.
return;
}
final Rotation2d field_to_robot = mRobotState.getLatestFieldToVehicle().getValue().getRotation();
// Figure out the rotation necessary to turn to face the goal.
final Rotation2d robot_to_target = field_to_robot.inverse().rotateBy(mTargetHeading);
// Check if we are on target
final double kGoalPosTolerance = 0.75; // degrees
final double kGoalVelTolerance = 5.0; // inches per second
if (Math.abs(robot_to_target.getDegrees()) < kGoalPosTolerance
&& Math.abs(getLeftVelocityInchesPerSec()) < kGoalVelTolerance
&& Math.abs(getRightVelocityInchesPerSec()) < kGoalVelTolerance) {
// Use the current setpoint and base lock.
mIsOnTarget = true;
updatePositionSetpoint(getLeftDistanceInches(), getRightDistanceInches());
return;
}
Kinematics.DriveVelocity wheel_delta = Kinematics
.inverseKinematics(new Twist2d(0, 0, robot_to_target.getRadians()));
updatePositionSetpoint(wheel_delta.left + getLeftDistanceInches(),
wheel_delta.right + getRightDistanceInches());
}
/**
* Essentially does the same thing as updateTurnToHeading but sends the robot into the DRIVE_TOWARDS_GOAL_APPROACH
* state if it detects we are not at an optimal shooting range
*/
private void updateDriveTowardsGoalCoarseAlign(double timestamp) {
updateGoalHeading(timestamp);
updateTurnToHeading(timestamp);
mIsApproaching = true;
if (mIsOnTarget) {
// Done coarse alignment.
Optional<ShooterAimingParameters> aim = mRobotState.getAimingParameters();
if (aim.isPresent()) {
final double distance = aim.get().getRange();
if (distance < Constants.kShooterOptimalRangeCeiling &&
distance > Constants.kShooterOptimalRangeFloor) {
// Don't drive, just shoot.
mDriveControlState = DriveControlState.AIM_TO_GOAL;
mIsApproaching = false;
mIsOnTarget = false;
updatePositionSetpoint(getLeftDistanceInches(), getRightDistanceInches());
return;
}
}
mDriveControlState = DriveControlState.DRIVE_TOWARDS_GOAL_APPROACH;
mIsOnTarget = false;
}
}
/**
* Drives the robot straight forwards until it is at an optimal shooting distance. Then sends the robot into the
* AIM_TO_GOAL state for one final alignment
*/
private void updateDriveTowardsGoalApproach(double timestamp) {
Optional<ShooterAimingParameters> aim = mRobotState.getAimingParameters();
mIsApproaching = true;
if (aim.isPresent()) {
final double distance = aim.get().getRange();
double error = 0.0;
if (distance < Constants.kShooterOptimalRangeFloor) {
error = distance - Constants.kShooterOptimalRangeFloor;
} else if (distance > Constants.kShooterOptimalRangeCeiling) {
error = distance - Constants.kShooterOptimalRangeCeiling;
}
final double kGoalPosTolerance = 1.0; // inches
if (Util.epsilonEquals(error, 0.0, kGoalPosTolerance)) {
// We are on target. Switch back to auto-aim.
mDriveControlState = DriveControlState.AIM_TO_GOAL;
RobotState.getInstance().resetVision();
mIsApproaching = false;
updatePositionSetpoint(getLeftDistanceInches(), getRightDistanceInches());
return;
}
updatePositionSetpoint(getLeftDistanceInches() + error, getRightDistanceInches() + error);
} else {
updatePositionSetpoint(getLeftDistanceInches(), getRightDistanceInches());
}
}
/**
* Called periodically when the robot is in path following mode. Updates the path follower with the robots latest
* pose, distance driven, and velocity, the updates the wheel velocity setpoints.
*/
private void updatePathFollower(double timestamp) {
RigidTransform2d robot_pose = mRobotState.getLatestFieldToVehicle().getValue();
Twist2d command = mPathFollower.update(timestamp, robot_pose,
RobotState.getInstance().getDistanceDriven(), RobotState.getInstance().getPredictedVelocity().dx);
if (!mPathFollower.isFinished()) {
Kinematics.DriveVelocity setpoint = Kinematics.inverseKinematics(command);
updateVelocitySetpoint(setpoint.left, setpoint.right);
} else {
updateVelocitySetpoint(0, 0);
}
}
public synchronized boolean isOnTarget() {
// return true;
return mIsOnTarget;
}
public synchronized boolean isAutoAiming() {
return mDriveControlState == DriveControlState.AIM_TO_GOAL;
}
/**
* Configures the drivebase for auto aiming
*/
public synchronized void setWantAimToGoal() {
if (mDriveControlState != DriveControlState.AIM_TO_GOAL) {
mIsOnTarget = false;
configureTalonsForPositionControl();
mDriveControlState = DriveControlState.AIM_TO_GOAL;
updatePositionSetpoint(getLeftDistanceInches(), getRightDistanceInches());
mTargetHeading = getGyroAngle();
}
setHighGear(false);
}
/**
* Configures the drivebase for auto driving
*/
public synchronized void setWantDriveTowardsGoal() {
if (mDriveControlState != DriveControlState.DRIVE_TOWARDS_GOAL_COARSE_ALIGN &&
mDriveControlState != DriveControlState.DRIVE_TOWARDS_GOAL_APPROACH &&
mDriveControlState != DriveControlState.AIM_TO_GOAL) {
mIsOnTarget = false;
configureTalonsForPositionControl();
mDriveControlState = DriveControlState.DRIVE_TOWARDS_GOAL_COARSE_ALIGN;
updatePositionSetpoint(getLeftDistanceInches(), getRightDistanceInches());
mTargetHeading = getGyroAngle();
}
setHighGear(false);
}
/**
* Configures the drivebase to turn to a desired heading
*/
public synchronized void setWantTurnToHeading(Rotation2d heading) {
if (mDriveControlState != DriveControlState.TURN_TO_HEADING) {
configureTalonsForPositionControl();
mDriveControlState = DriveControlState.TURN_TO_HEADING;
updatePositionSetpoint(getLeftDistanceInches(), getRightDistanceInches());
}
if (Math.abs(heading.inverse().rotateBy(mTargetHeading).getDegrees()) > 1E-3) {
mTargetHeading = heading;
mIsOnTarget = false;
}
setHighGear(false);
}
/**
* Configures the drivebase to drive a path. Used for autonomous driving
*
* @see Path
*/
public synchronized void setWantDrivePath(Path path, boolean reversed) {
if (mCurrentPath != path || mDriveControlState != DriveControlState.PATH_FOLLOWING) {
configureTalonsForSpeedControl();
RobotState.getInstance().resetDistanceDriven();
mPathFollower = new PathFollower(path, reversed,
new PathFollower.Parameters(
new Lookahead(Constants.kMinLookAhead, Constants.kMaxLookAhead,
Constants.kMinLookAheadSpeed, Constants.kMaxLookAheadSpeed),
Constants.kInertiaSteeringGain, Constants.kPathFollowingProfileKp,
Constants.kPathFollowingProfileKi, Constants.kPathFollowingProfileKv,
Constants.kPathFollowingProfileKffv, Constants.kPathFollowingProfileKffa,
Constants.kPathFollowingMaxVel, Constants.kPathFollowingMaxAccel,
Constants.kPathFollowingGoalPosTolerance, Constants.kPathFollowingGoalVelTolerance,
Constants.kPathStopSteeringDistance));
mDriveControlState = DriveControlState.PATH_FOLLOWING;
mCurrentPath = path;
} else {
setVelocitySetpoint(0, 0);
}
}
public synchronized boolean isDoneWithPath() {
if (mDriveControlState == DriveControlState.PATH_FOLLOWING && mPathFollower != null) {
return mPathFollower.isFinished();
} else {
System.out.println("Robot is not in path following mode");
return true;
}
}
public synchronized void forceDoneWithPath() {
if (mDriveControlState == DriveControlState.PATH_FOLLOWING && mPathFollower != null) {
mPathFollower.forceFinish();
} else {
System.out.println("Robot is not in path following mode");
}
}
public boolean isApproaching() {
return mIsApproaching;
}
public synchronized boolean isDoneWithTurn() {
if (mDriveControlState == DriveControlState.TURN_TO_HEADING) {
return mIsOnTarget;
} else {
System.out.println("Robot is not in turn to heading mode");
return false;
}
}
public synchronized boolean hasPassedMarker(String marker) {
if (mDriveControlState == DriveControlState.PATH_FOLLOWING && mPathFollower != null) {
return mPathFollower.hasPassedMarker(marker);
} else {
System.out.println("Robot is not in path following mode");
return false;
}
}
public synchronized void reloadGains() {
mLeftMaster.setPID(Constants.kDriveLowGearPositionKp, Constants.kDriveLowGearPositionKi,
Constants.kDriveLowGearPositionKd, Constants.kDriveLowGearPositionKf,
Constants.kDriveLowGearPositionIZone, Constants.kDriveLowGearPositionRampRate,
kLowGearPositionControlSlot);
mLeftMaster.setMotionMagicCruiseVelocity(Constants.kDriveLowGearMaxVelocity);
mLeftMaster.setMotionMagicAcceleration(Constants.kDriveLowGearMaxAccel);
mRightMaster.setPID(Constants.kDriveLowGearPositionKp, Constants.kDriveLowGearPositionKi,
Constants.kDriveLowGearPositionKd, Constants.kDriveLowGearPositionKf,
Constants.kDriveLowGearPositionIZone, Constants.kDriveLowGearPositionRampRate,
kLowGearPositionControlSlot);
mRightMaster.setMotionMagicCruiseVelocity(Constants.kDriveLowGearMaxVelocity);
mRightMaster.setMotionMagicAcceleration(Constants.kDriveLowGearMaxAccel);
mLeftMaster.setVoltageCompensationRampRate(Constants.kDriveVoltageCompensationRampRate);
mRightMaster.setVoltageCompensationRampRate(Constants.kDriveVoltageCompensationRampRate);
mLeftMaster.setPID(Constants.kDriveHighGearVelocityKp, Constants.kDriveHighGearVelocityKi,
Constants.kDriveHighGearVelocityKd, Constants.kDriveHighGearVelocityKf,
Constants.kDriveHighGearVelocityIZone, Constants.kDriveHighGearVelocityRampRate,
kHighGearVelocityControlSlot);
mRightMaster.setPID(Constants.kDriveHighGearVelocityKp, Constants.kDriveHighGearVelocityKi,
Constants.kDriveHighGearVelocityKd, Constants.kDriveHighGearVelocityKf,
Constants.kDriveHighGearVelocityIZone, Constants.kDriveHighGearVelocityRampRate,
kHighGearVelocityControlSlot);
mLeftMaster.setVoltageCompensationRampRate(Constants.kDriveVoltageCompensationRampRate);
mRightMaster.setVoltageCompensationRampRate(Constants.kDriveVoltageCompensationRampRate);
}
public synchronized double getAccelX() {
return mNavXBoard.getRawAccelX();
}
@Override
public void writeToLog() {
mCSVWriter.write();
}
public boolean checkSystem() {
System.out.println("Testing DRIVE.---------------------------------");
final double kCurrentThres = 0.5;
final double kRpmThres = 300;
mRightMaster.changeControlMode(CANTalon.TalonControlMode.Voltage);
mRightSlave.changeControlMode(CANTalon.TalonControlMode.Voltage);
mLeftMaster.changeControlMode(CANTalon.TalonControlMode.Voltage);
mLeftSlave.changeControlMode(CANTalon.TalonControlMode.Voltage);
mRightMaster.set(0.0);
mRightSlave.set(0.0);
mLeftMaster.set(0.0);
mLeftSlave.set(0.0);
mRightMaster.set(-6.0f);
Timer.delay(4.0);
final double currentRightMaster = mRightMaster.getOutputCurrent();
final double rpmRightMaster = mRightMaster.getSpeed();
mRightMaster.set(0.0f);
Timer.delay(2.0);
mRightSlave.set(-6.0f);
Timer.delay(4.0);
final double currentRightSlave = mRightSlave.getOutputCurrent();
final double rpmRightSlave = mRightMaster.getSpeed();
mRightSlave.set(0.0f);
Timer.delay(2.0);
mLeftMaster.set(6.0f);
Timer.delay(4.0);
final double currentLeftMaster = mLeftMaster.getOutputCurrent();
final double rpmLeftMaster = mLeftMaster.getSpeed();
mLeftMaster.set(0.0f);
Timer.delay(2.0);
mLeftSlave.set(6.0f);
Timer.delay(4.0);
final double currentLeftSlave = mLeftSlave.getOutputCurrent();
final double rpmLeftSlave = mLeftMaster.getSpeed();
mLeftSlave.set(0.0);
mRightMaster.changeControlMode(CANTalon.TalonControlMode.PercentVbus);
mLeftMaster.changeControlMode(CANTalon.TalonControlMode.PercentVbus);
mRightSlave.changeControlMode(CANTalon.TalonControlMode.Follower);
mRightSlave.set(Constants.kRightDriveMasterId);
mLeftSlave.changeControlMode(CANTalon.TalonControlMode.Follower);
mLeftSlave.set(Constants.kLeftDriveMasterId);
System.out.println("Drive Right Master Current: " + currentRightMaster + " Drive Right Slave Current: "
+ currentRightSlave);
System.out.println(
"Drive Left Master Current: " + currentLeftMaster + " Drive Left Slave Current: " + currentLeftSlave);
System.out.println("Drive RPM RMaster: " + rpmRightMaster + " RSlave: " + rpmRightSlave + " LMaster: "
+ rpmLeftMaster + " LSlave: " + rpmLeftSlave);
boolean failure = false;
if (currentRightMaster < kCurrentThres) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!! Drive Right Master Current Low !!!!!!!!!!");
}
if (currentRightSlave < kCurrentThres) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!! Drive Right Slave Current Low !!!!!!!!!!");
}
if (currentLeftMaster < kCurrentThres) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!! Drive Left Master Current Low !!!!!!!!!!");
}
if (currentLeftSlave < kCurrentThres) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!! Drive Left Slave Current Low !!!!!!!!!!");
}
if (!Util.allCloseTo(Arrays.asList(currentRightMaster, currentRightSlave), currentRightMaster,
5.0)) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!! Drive Right Currents Different !!!!!!!!!!");
}
if (!Util.allCloseTo(Arrays.asList(currentLeftMaster, currentLeftSlave), currentLeftSlave,
5.0)) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!! Drive Left Currents Different !!!!!!!!!!!!!");
}
if (rpmRightMaster < kRpmThres) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!! Drive Right Master RPM Low !!!!!!!!!!!!!!!!!!!");
}
if (rpmRightSlave < kRpmThres) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!! Drive Right Slave RPM Low !!!!!!!!!!!!!!!!!!!");
}
if (rpmLeftMaster < kRpmThres) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!! Drive Left Master RPM Low !!!!!!!!!!!!!!!!!!!");
}
if (rpmLeftSlave < kRpmThres) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!! Drive Left Slave RPM Low !!!!!!!!!!!!!!!!!!!");
}
if (!Util.allCloseTo(Arrays.asList(rpmRightMaster, rpmRightSlave, rpmLeftMaster, rpmLeftSlave),
rpmRightMaster, 250)) {
failure = true;
System.out.println("!!!!!!!!!!!!!!!!!!! Drive RPMs different !!!!!!!!!!!!!!!!!!!");
}
return !failure;
}
}