-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathreconstruct_video.py
220 lines (191 loc) · 8.46 KB
/
reconstruct_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
Video Reconstruction code
Refer to
https://github.com/NVIDIA/Cosmos-Tokenizer
"""
import argparse
import os
import sys
sys.path.append(os.getcwd())
import torch
from omegaconf import OmegaConf
import importlib
import yaml
import numpy as np
from PIL import Image
from tqdm import tqdm
import mediapy as media
import cv2
import imageio
import random
from src.Open_MAGVIT2.models.video_lfqgan import VQModel
import src.Open_MAGVIT2.data.video_transforms as video_transforms
import src.Open_MAGVIT2.data.volume_transforms as volume_transforms
from decord import VideoReader, cpu
try:
import torch_npu
except:
pass
if hasattr(torch, "npu"):
DEVICE = torch.device("npu:0" if torch_npu.npu.is_available() else "cpu")
else:
DEVICE = torch.device("cuda:0"if torch.cuda.is_available() else "cpu")
TARGET_RESOLUTION = (224, 224)
_UINT8_MAX_F = float(torch.iinfo(torch.uint8).max)
def load_vqgan_new(config, ckpt_path=None):
model = VQModel(**config.model.init_args)
if ckpt_path is not None:
sd = torch.load(ckpt_path, map_location="cpu")["state_dict"]
missing, unexpected = model.load_state_dict(sd, strict=False)
return model.eval()
def load_config(config_path, display=False):
config = OmegaConf.load(config_path)
if display:
print(yaml.dump(OmegaConf.to_container(config)))
return config
def get_obj_from_str(string, reload=False):
print(string)
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if not "class_path" in config:
raise KeyError("Expected key `class_path` to instantiate.")
return get_obj_from_str(config["class_path"])(**config.get("init_args", dict()))
def custom_to_pil(x):
x = x.detach().cpu()
x = torch.clamp(x, -1., 1.)
x = (x + 1.)/2.
x = x.permute(1,2,0).numpy()
x = (255*x).astype(np.uint8)
x = Image.fromarray(x)
if not x.mode == "RGB":
x = x.convert("RGB")
return x
def write_video(filepath: str, video: np.ndarray, fps: int = 24) -> None:
"""Writes a video to a filepath."""
return media.write_video(filepath, video, fps=fps)
def save_image_frame(video_path, save_dir):
cap = cv2.VideoCapture(video_path)
# save frame interval
interval = 0.5
fps = cap.get(cv2.CAP_PROP_FPS) # get FPS
frame_interval = int(fps * interval)
frame_count = 0
saved_count = 0
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_image_path = os.path.join(save_dir, f"frame_{saved_count * interval}.png") # save PNG
imageio.imsave(frame_image_path, frame_rgb)
saved_count += 1
frame_count += 1
cap.release()
def tensor2numpy(input_tensor: torch.Tensor, range_min: int = -1) -> np.ndarray:
"""
Inputs: [C T H W]
"""
"""Converts tensor in [-1,1] to image(dtype=np.uint8) in range [0..255].
Args:
input_tensor: Input image tensor of Bx3xHxW layout, range [-1..1].
Returns:
A numpy image of layout BxHxWx3, range [0..255], uint8 dtype.
"""
if range_min == -1:
input_tensor = (input_tensor.float() + 1.0) / 2.0
ndim = input_tensor.ndim
output_image = input_tensor.clamp(0, 1).cpu().numpy()
output_image = output_image.transpose((1,) + tuple(range(2, ndim)) + (0,))
return (output_image * _UINT8_MAX_F + 0.5).astype(np.uint8)
def get_args():
parser = argparse.ArgumentParser(description="inference parameters")
parser.add_argument("--config_file", required=True, type=str)
parser.add_argument("--ckpt_path", required=True, type=str)
parser.add_argument("--batch_size", default=4, type=int)
parser.add_argument("--visualize", action="store_true")
parser.add_argument("--visualize_dir", type=str, default="./videos")
parser.add_argument("--version", type=str)
parser.add_argument("--video_num_count", type=int, default=20)
parser.add_argument("--video_dir", type=str, default="../../data/UCF-101/test")
return parser.parse_args()
def main():
args = get_args()
config_data = OmegaConf.load(args.config_file)
config_data.data.init_args.batch_size = 4
config_model = load_config(args.config_file, display=False)
model = load_vqgan_new(config_model, ckpt_path=args.ckpt_path).to(DEVICE)
model.eval()
model = model.to(DEVICE)
resolution = 128
transforms = video_transforms.Compose([
video_transforms.Resize(resolution, interpolation="bilinear"),
video_transforms.RandomCrop(size=(resolution, resolution)),
volume_transforms.ClipToTensor(),
video_transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ##adopted [0.5 rules]
])
iteration = 0
count = 0
### prepare video data
video_path_dirs = [dirs for dirs in os.listdir(args.video_dir)]
video_paths = []
each_dir_sample = 10
for video_path_dir in video_path_dirs:
paths = [os.path.join(args.video_dir, video_path_dir, path) for path in os.listdir(os.path.join(args.video_dir, video_path_dir))]
sample = random.sample(paths, each_dir_sample)
video_paths.extend(sample)
with torch.no_grad():
for video_path in video_paths:
vr = VideoReader(rf"{video_path}")
sampled_frms = vr.get_batch(np.arange(0, len(vr), 1, dtype=int)).asnumpy().astype(np.uint8)
vlen = sampled_frms.shape[0]
videos = transforms(sampled_frms)
videos = videos.unsqueeze(0).to(DEVICE)
iteration += 1
b, c, t, h, w = videos.shape
temporal_window = 17
output_video_list = []
for idx in tqdm(range(0, (t - 1) // temporal_window + 1)):
start, end = idx * temporal_window, (idx + 1) * temporal_window
input_video = videos[:, :, start:end, ...]
if model.use_ema:
with model.ema_scope():
quant, diff, indices, _ = model.encode(input_video)
reconstructed_video = model.decode(quant)
else:
quant, diff, indices, _ = model.encode(input_video)
reconstructed_video = model.decode(quant)
reconstructed_video = reconstructed_video.clamp(-1, 1)
output_video_list.append(reconstructed_video)
reconstructed_videos = torch.concat(output_video_list, dim=2)
### visualize the videos
visualize_dir = os.path.join(args.visualize_dir, args.version)
if not os.path.exists(visualize_dir):
os.makedirs(visualize_dir, exist_ok=True)
b = videos.shape[0]
for i in range(b):
video = videos[i]
reconstruct_video = reconstructed_videos[i]
np_original_video = tensor2numpy(video)
np_reconstruct_video = tensor2numpy(reconstruct_video)
save_original_dir = os.path.join(visualize_dir, str(count))
save_reconstruct_dir = os.path.join(visualize_dir, str(count))
if not os.path.exists(save_original_dir):
os.makedirs(save_original_dir, exist_ok=True)
if not os.path.exists(save_reconstruct_dir):
os.makedirs(save_reconstruct_dir, exist_ok=True)
save_original_file_path = os.path.join(save_original_dir, f"original_{count}.mp4")
save_reconstruct_file_path = os.path.join(save_reconstruct_dir, f"reconstructed_{count}.mp4")
write_video(save_original_file_path, np_original_video)
write_video(save_reconstruct_file_path, np_reconstruct_video)
### save the frame
save_image_frame(save_original_file_path, os.path.join(visualize_dir, str(count), "original_frame"))
save_image_frame(save_reconstruct_file_path, os.path.join(visualize_dir, str(count), "reconstruct_frame"))
if __name__ == "__main__":
main()