-
Notifications
You must be signed in to change notification settings - Fork 1
/
colors.py
407 lines (323 loc) · 12.4 KB
/
colors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from warnings import warn
import numpy as np
import torch
from scipy import linalg
xyz_from_rgb = torch.Tensor([[0.412453, 0.357580, 0.180423],
[0.212671, 0.715160, 0.072169],
[0.019334, 0.119193, 0.950227]])
rgb_from_xyz = torch.Tensor(linalg.inv(xyz_from_rgb))
illuminants = \
{"A": {'2': torch.Tensor([(1.098466069456375, 1, 0.3558228003436005)]),
'10': torch.Tensor([(1.111420406956693, 1, 0.3519978321919493)])},
"D50": {'2': torch.Tensor([(0.9642119944211994, 1, 0.8251882845188288)]),
'10': torch.Tensor([(0.9672062750333777, 1, 0.8142801513128616)])},
"D55": {'2': torch.Tensor([(0.956797052643698, 1, 0.9214805860173273)]),
'10': torch.Tensor([(0.9579665682254781, 1, 0.9092525159847462)])},
"D65": {'2': torch.Tensor([(0.95047, 1., 1.08883)]), # This was: `lab_ref_white`
'10': torch.Tensor([(0.94809667673716, 1, 1.0730513595166162)])},
"D75": {'2': torch.Tensor([(0.9497220898840717, 1, 1.226393520724154)]),
'10': torch.Tensor([(0.9441713925645873, 1, 1.2064272211720228)])},
"E": {'2': torch.Tensor([(1.0, 1.0, 1.0)]),
'10': torch.Tensor([(1.0, 1.0, 1.0)])}}
# -------------------------------------------------------------
# The conversion functions that make use of the matrices above
# -------------------------------------------------------------
##### RGB - YCbCr
# Helper for the creation of module-global constant tensors
def _t(data):
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # TODO inherit this
device = torch.device("cpu") # TODO inherit this
return torch.tensor(data, requires_grad=False, dtype=torch.float32, device=device)
# Helper for color matrix multiplication
def _mul(coeffs, image):
# This is implementation is clearly suboptimal. The function will
# be implemented with 'einsum' when a bug in pytorch 0.4.0 will be
# fixed (Einsum modifies variables in-place #7763).
coeffs = coeffs.to(image.device)
r0 = image[:, 0:1, :, :].repeat(1, 3, 1, 1) * coeffs[:, 0].view(1, 3, 1, 1)
r1 = image[:, 1:2, :, :].repeat(1, 3, 1, 1) * coeffs[:, 1].view(1, 3, 1, 1)
r2 = image[:, 2:3, :, :].repeat(1, 3, 1, 1) * coeffs[:, 2].view(1, 3, 1, 1)
return r0 + r1 + r2
# return torch.einsum("dc,bcij->bdij", (coeffs.to(image.device), image))
_RGB_TO_YCBCR = _t([[0.257, 0.504, 0.098], [-0.148, -0.291, 0.439], [0.439 , -0.368, -0.071]])
_YCBCR_OFF = _t([0.063, 0.502, 0.502]).view(1, 3, 1, 1)
def rgb2ycbcr(rgb):
"""sRGB to YCbCr conversion."""
clip_rgb=False
if clip_rgb:
rgb = torch.clamp(rgb, 0, 1)
return _mul(_RGB_TO_YCBCR, rgb) + _YCBCR_OFF.to(rgb.device)
def ycbcr2rgb(rgb):
"""YCbCr to sRGB conversion."""
clip_rgb=False
rgb = _mul(torch.inverse(_RGB_TO_YCBCR), rgb - _YCBCR_OFF.to(rgb.device))
if clip_rgb:
rgb = torch.clamp(rgb, 0, 1)
return rgb
##### HSV - RGB
def rgb2hsv(rgb):
"""
R, G and B input range = 0 ÷ 1.0
H, S and V output range = 0 ÷ 1.0
"""
eps = 1e-7
var_R = rgb[:,0,:,:]
var_G = rgb[:,1,:,:]
var_B = rgb[:,2,:,:]
var_Min = rgb.min(1)[0] #Min. value of RGB
var_Max = rgb.max(1)[0] #Max. value of RGB
del_Max = var_Max - var_Min ##Delta RGB value
H = torch.zeros([rgb.shape[0], rgb.shape[2], rgb.shape[3]]).to(rgb.device)
S = torch.zeros([rgb.shape[0], rgb.shape[2], rgb.shape[3]]).to(rgb.device)
V = torch.zeros([rgb.shape[0], rgb.shape[2], rgb.shape[3]]).to(rgb.device)
V = var_Max
#This is a gray, no chroma...
mask = del_Max == 0
H[mask] = 0
S[mask] = 0
#Chromatic data...
S = del_Max / (var_Max + eps)
del_R = ( ( ( var_Max - var_R ) / 6 ) + ( del_Max / 2 ) ) / (del_Max + eps)
del_G = ( ( ( var_Max - var_G ) / 6 ) + ( del_Max / 2 ) ) / (del_Max + eps)
del_B = ( ( ( var_Max - var_B ) / 6 ) + ( del_Max / 2 ) ) / (del_Max + eps)
H = torch.where( var_R == var_Max , del_B - del_G, H)
H = torch.where( var_G == var_Max , ( 1 / 3 ) + del_R - del_B, H)
H = torch.where( var_B == var_Max ,( 2 / 3 ) + del_G - del_R, H)
# if ( H < 0 ) H += 1
# if ( H > 1 ) H -= 1
return torch.stack([H, S, V], 1)
def hsv2rgb(hsv):
"""
H, S and V input range = 0 ÷ 1.0
R, G and B output range = 0 ÷ 1.0
"""
eps = 1e-7
bb,cc,hh,ww = hsv.shape
H = hsv[:,0,:,:]
S = hsv[:,1,:,:]
V = hsv[:,2,:,:]
# var_h = torch.zeros(bb,hh,ww)
# var_s = torch.zeros(bb,hh,ww)
# var_v = torch.zeros(bb,hh,ww)
# var_r = torch.zeros(bb,hh,ww)
# var_g = torch.zeros(bb,hh,ww)
# var_b = torch.zeros(bb,hh,ww)
# Grayscale
if (S == 0).all():
R = V
G = V
B = V
# Chromatic data
else:
var_h = H * 6
var_h[var_h == 6] = 0 #H must be < 1
var_i = var_h.floor() #Or ... var_i = floor( var_h )
var_1 = V * ( 1 - S )
var_2 = V * ( 1 - S * ( var_h - var_i ) )
var_3 = V * ( 1 - S * ( 1 - ( var_h - var_i ) ) )
# else { var_r = V ; var_g = var_1 ; var_b = var_2 }
var_r = V
var_g = var_1
var_b = var_2
# var_i == 0 { var_r = V ; var_g = var_3 ; var_b = var_1 }
var_r = torch.where(var_i == 0, V, var_r)
var_g = torch.where(var_i == 0, var_3, var_g)
var_b = torch.where(var_i == 0, var_1, var_b)
# else if ( var_i == 1 ) { var_r = var_2 ; var_g = V ; var_b = var_1 }
var_r = torch.where(var_i == 1, var_2, var_r)
var_g = torch.where(var_i == 1, V, var_g)
var_b = torch.where(var_i == 1, var_1, var_b)
# else if ( var_i == 2 ) { var_r = var_1 ; var_g = V ; var_b = var_3 }
var_r = torch.where(var_i == 2, var_1, var_r)
var_g = torch.where(var_i == 2, V, var_g)
var_b = torch.where(var_i == 2, var_3, var_b)
# else if ( var_i == 3 ) { var_r = var_1 ; var_g = var_2 ; var_b = V }
var_r = torch.where(var_i == 3, var_1, var_r)
var_g = torch.where(var_i == 3, var_2, var_g)
var_b = torch.where(var_i == 3, V, var_b)
# else if ( var_i == 4 ) { var_r = var_3 ; var_g = var_1 ; var_b = V }
var_r = torch.where(var_i == 4, var_3, var_r)
var_g = torch.where(var_i == 4, var_1, var_g)
var_b = torch.where(var_i == 4, V, var_b)
R = var_r #* 255
G = var_g #* 255
B = var_b #* 255
return torch.stack([R, G, B], 1)
##### LAB - RGB
def _convert(matrix, arr):
"""Do the color space conversion.
Parameters
----------
matrix : array_like
The 3x3 matrix to use.
arr : array_like
The input array.
Returns
-------
out : ndarray, dtype=float
The converted array.
"""
if arr.is_cuda:
matrix = matrix.cuda()
bs, ch, h, w = arr.shape
arr = arr.permute((0,2,3,1))
arr = arr.contiguous().view(-1,1,3)
matrix = matrix.transpose(0,1).unsqueeze(0)
matrix = matrix.repeat(arr.shape[0],1,1)
res = torch.bmm(arr,matrix)
res = res.view(bs,h,w,ch)
res = res.transpose(3,2).transpose(2,1)
return res
def get_xyz_coords(illuminant, observer):
"""Get the XYZ coordinates of the given illuminant and observer [1]_.
Parameters
----------
illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional
The name of the illuminant (the function is NOT case sensitive).
observer : {"2", "10"}, optional
The aperture angle of the observer.
Returns
-------
(x, y, z) : tuple
A tuple with 3 elements containing the XYZ coordinates of the given
illuminant.
Raises
------
ValueError
If either the illuminant or the observer angle are not supported or
unknown.
References
----------
.. [1] https://en.wikipedia.org/wiki/Standard_illuminant
"""
illuminant = illuminant.upper()
try:
return illuminants[illuminant][observer]
except KeyError:
raise ValueError("Unknown illuminant/observer combination\
(\'{0}\', \'{1}\')".format(illuminant, observer))
def rgb2xyz(rgb):
mask = rgb > 0.04045
rgbm = rgb.clone()
tmp = torch.pow((rgb + 0.055) / 1.055, 2.4)
rgb = torch.where(mask, tmp, rgb)
rgbm = rgb.clone()
rgb[~mask] = rgbm[~mask]/12.92
return _convert(xyz_from_rgb, rgb)
def xyz2lab(xyz, illuminant="D65", observer="2"):
# arr = _prepare_colorarray(xyz)
xyz_ref_white = get_xyz_coords(illuminant, observer)
#cuda
if xyz.is_cuda:
xyz_ref_white = xyz_ref_white.cuda()
# scale by CIE XYZ tristimulus values of the reference white point
xyz = xyz / xyz_ref_white.view(1,3,1,1)
# Nonlinear distortion and linear transformation
mask = xyz > 0.008856
xyzm = xyz.clone()
xyz[mask] = torch.pow(xyzm[mask], 1/3)
xyzm = xyz.clone()
xyz[~mask] = 7.787 * xyzm[~mask] + 16. / 116.
x, y, z = xyz[:, 0, :, :], xyz[:, 1, :, :], xyz[:, 2, :, :]
# Vector scaling
L = (116. * y) - 16.
a = 500.0 * (x - y)
b = 200.0 * (y - z)
return torch.stack((L,a,b), 1)
def rgb2lab(rgb, illuminant="D65", observer="2"):
"""RGB to lab color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3- or 4-D array of shape
``(.., ..,[ ..,] 3)``.
illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional
The name of the illuminant (the function is NOT case sensitive).
observer : {"2", "10"}, optional
The aperture angle of the observer.
Returns
-------
out : ndarray
The image in Lab format, in a 3- or 4-D array of shape
``(.., ..,[ ..,] 3)``.
Raises
------
ValueError
If `rgb` is not a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``.
References
----------
.. [1] https://en.wikipedia.org/wiki/Standard_illuminant
Notes
-----
This function uses rgb2xyz and xyz2lab.
By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values
x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for
a list of supported illuminants.
"""
return xyz2lab(rgb2xyz(rgb), illuminant, observer)
def lab2xyz(lab, illuminant="D65", observer="2"):
arr = lab.clone()
L, a, b = arr[:, 0, :, :], arr[:, 1, :, :], arr[:, 2, :, :]
y = (L + 16.) / 116.
x = (a / 500.) + y
z = y - (b / 200.)
# if (z < 0).sum() > 0:
# warn('Color data out of range: Z < 0 in %s pixels' % (z < 0).sum().item())
# z[z < 0] = 0 # NO GRADIENT!!!!
out = torch.stack((x, y, z),1)
mask = out > 0.2068966
outm = out.clone()
out[mask] = torch.pow(outm[mask], 3.)
outm = out.clone()
out[~mask] = (outm[~mask] - 16.0 / 116.) / 7.787
# rescale to the reference white (illuminant)
xyz_ref_white = get_xyz_coords(illuminant, observer)
# cuda
if lab.is_cuda:
xyz_ref_white = xyz_ref_white.cuda()
xyz_ref_white = xyz_ref_white.unsqueeze(2).unsqueeze(2).repeat(1,1,out.shape[2],out.shape[3])
out = out * xyz_ref_white
return out
def xyz2rgb(xyz):
arr = _convert(rgb_from_xyz, xyz)
mask = arr > 0.0031308
arrm = arr.clone()
arr[mask] = 1.055 * torch.pow(arrm[mask], 1 / 2.4) - 0.055
arrm = arr.clone()
arr[~mask] = arrm[~mask] * 12.92
# CLAMP KILLS GRADIENTS
# mask_z = arr < 0
# arr[mask_z] = 0
# mask_o = arr > 1
# arr[mask_o] = 1
# torch.clamp(arr, 0, 1, out=arr)
return arr
def lab2rgb(lab, illuminant="D65", observer="2"):
"""Lab to RGB color space conversion.
Parameters
----------
lab : array_like
The image in Lab format, in a 3-D array of shape ``(.., .., 3)``.
illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional
The name of the illuminant (the function is NOT case sensitive).
observer : {"2", "10"}, optional
The aperture angle of the observer.
Returns
-------
out : ndarray
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `lab` is not a 3-D array of shape ``(.., .., 3)``.
References
----------
.. [1] https://en.wikipedia.org/wiki/Standard_illuminant
Notes
-----
This function uses lab2xyz and xyz2rgb.
By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values
x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for
a list of supported illuminants.
"""
return xyz2rgb(lab2xyz(lab, illuminant, observer))