-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpl_model.py
104 lines (79 loc) · 3.32 KB
/
pl_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import pytorch_lightning as pl
import torch.optim as optim
import torch
from torchvision.models import resnet18
import torch.nn as nn
class cfg:
img_size=256
max_epochs=100
model_name = "resnet18"
patience = [5,2]
factor= .1
folds=5
min_lr=1e-8
class MTL_Loss(nn.Module):
def __init__(self,task_num):
super(MTL_Loss,self).__init__()
self.task_num = task_num
self.log_vars = nn.Parameter(torch.zeros((self.task_num)))
def forward(self,pred_age,pred_gend,tar_gend,tar_age):
loss0 = nn.functional.binary_cross_entropy_with_logits(pred_gend,tar_gend)
loss1 = nn.functional.mse_loss(pred_age,tar_age)
precision0 = torch.exp(-self.log_vars[0])
loss0 = precision0*loss0 + self.log_vars[0]
precision1 = torch.exp(-self.log_vars[1])
loss1 = precision1*loss1 + self.log_vars[1]
return loss0+loss1
class AgeGendModel(nn.Module):
def __init__(self):
super(AgeGendModel,self).__init__()
if 'resnet18' in cfg.model_name:
self.model = eval(cfg.model_name)(pretrained=False)
for params in self.model.parameters():
params.require_grad = True
self.model = nn.Sequential(*list(self.model.children())[:-2])
self.avg_pool = nn.AdaptiveAvgPool2d(output_size=(1,1))
self.clf = nn.Linear(512,1)
self.reg = nn.Linear(512,1)
def forward(self,x):
x = self.model(x)
x = self.avg_pool(x)
x = x.view(x.size(0),-1)
#print(x.shape)
#x = self.lin1(x)
#x = self.lin2(x)
gend = self.clf(x)
age = torch.sigmoid(self.reg(x))
return gend,age
class AgeGendNet(pl.LightningModule):
def __init__(self):
super(AgeGendNet,self).__init__()
self.model = AgeGendModel()
def forward(self,x):
return self.model(x)
def configure_optimizers(self):
op = optim.Adam(self.model.parameters(),lr=0.01)
scheduler = {
'scheduler':optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer=op,T_0=10),
'monitor':'val_loss',
'interval':'epoch',
'frequency':1,
'strict':True
}
self.op = op
self.scheduler = scheduler
return [op],[scheduler]
def training_step(self,batch,batch_idx):
y_hat_gend,y_hat_age = self.model(batch['image'])
loss_tr = mtl(pred_gend=y_hat_gend,pred_age=y_hat_age,tar_gend=batch['gender'],tar_age=batch['age'])
#f1_tr = torchmetrics.functional.accuracy(y_hat_gend.sigmoid(),batch['gender'])
#mae_tr = torchmetrics.functional.mean_absolute_error(y_hat_age.relu(),batch['age'])
self.log("TrainLoss",loss_tr,prog_bar=True,on_step=False,on_epoch=True)
return loss_tr
def validation_step(self,batch,batch_idx):
y_hat_gend,y_hat_age = self.model(batch['image'])
loss_val = mtl(pred_gend=y_hat_gend,pred_age=y_hat_age,tar_gend=batch['gender'],tar_age=batch['age'])
#f1_val = torchmetrics.functional.accuracy(y_hat_gend.sigmoid(),batch['gender'])
#mae_val = torchmetrics.functional.mean_absolute_error(y_hat_age.relu(),batch['age'])
self.log("val_loss",loss_val,prog_bar=True,on_step=False,on_epoch=True)
return loss_val