-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
64 lines (45 loc) · 1.54 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from torch.utils.data import Dataset,DataLoader
import pandas as pd
from iterstrat.ml_stratifiers import MultilabelStratifiedKFold
import numpy as np
import h5py
import librosa
import cv2
import torch
from tqdm import tqdm
import os
from albumentations import Compose
from albumentations.pytorch import ToTensorV2
label_cols = ["species_"+str(m) for m in range(24)]
def h5read(path):
hfile = h5py.File(path,'r')
return np.array(hfile.get('pixels'))
def label_gen():
label_dict = {}
files = data.recording_id.unique().tolist()
for f in files:
labels = np.zeros(24)
sets = group.get_group(f)
tmp = sets.species_id.unique()
for i in tmp:
labels[i] = 1.
label_dict[f] = labels
return label_dict
class AudioData(Dataset):
def __init__(self,records,targets,root_dir,transforms=None):
self.root_dir = root_dir
self.targets = targets
self.records = records
self.transforms = transforms
#print(self.records)
def __len__(self):
return len(self.records)
def __getitem__(self,idx):
img_arr = h5read(os.path.join(self.root_dir,self.records[idx]+'.h5'))
label = self.targets[idx]
assert img_arr.shape[2] == 3
if self.transforms is not None:
image = self.transforms(image=img_arr)['image']
return image,torch.Tensor(label)
img = h5read("/home/lustbeast/AudioClass/Dataset/rfcx-species-audio-detection/h5/0a350d11c.h5")
print(img.shape)