-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_biggan_based.py
416 lines (344 loc) · 13.9 KB
/
main_biggan_based.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import os
import math
import numpy as np
import torch.nn as nn
import torch.functional as F
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
import torch
# torch.autograd.set_detect_anomaly(True)
from torch import optim
import logger
import argparse
import datetime
import gin
import itertools
from torchvision import datasets, transforms
from imageio import imwrite
from torchvision.utils import make_grid
from models.visual_concept_tokenizor import VCT_Decoder, VCT_Encoder
import random
from models.auto_encoder import *
from einops import repeat
from timm.models import create_model
from timm.data.constants import \
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
from stylegan2.VAE_deep import GANbaseline2 as GANbaseline
from LD.latent_deformator import LatentDeformator
from LD.latent_deformator import DeformatorType
from stylegan2.models import Generator, get_generator
import math
from pytorch_pretrained_biggan import (BigGAN, one_hot_from_names, truncated_noise_sample,
save_as_images, display_in_terminal)
def return_shape(tensor,shape):
return tensor.permute(0,2,1).view(-1,*shape[1:])
def gen_image(latents, energy_model, im_neg, flags, selected_idx = False):
num_steps = flags.num_steps
create_graph = flags.create_graph
step_lr = flags.step_lr
# latents list of Tensors shape (B, 1, D)
im_negs = []
im_neg.requires_grad_(requires_grad=True)
for i in range(num_steps):
energy = 0
if selected_idx:
energy = energy_model[selected_idx](im_neg, latents[0])
else:
for j in range(len(latents)):
energy = energy_model[j % flags.components](im_neg, latents[j]) + energy
im_grad, = torch.autograd.grad([energy.sum()],[im_neg],create_graph = create_graph)
im_neg = im_neg - step_lr * im_grad
im_negs.append(im_neg)
im_neg = im_neg.detach()
im_neg.requires_grad_()
return im_neg, im_negs, im_grad
def decode_image(model,im_code, old_shape):
pred = im_code
_, cls_pred = pred.max(dim=-1)
z_q = model.emb.weight[:,cls_pred].permute(1,2,0)
z_q = return_shape(z_q,old_shape)
img = model.decode(z_q)
return img
class Flags():
def __init__(self):
pass
class ImageNormalizer(nn.Module):
def __init__(self, mean, std):
super(ImageNormalizer, self).__init__()
self.mean = torch.as_tensor(mean).view(1, 3, 1, 1)
self.std = torch.as_tensor(std).view(1, 3, 1, 1)
def forward(self, input):
device = input.device
return (input - self.mean.to(device)) / self.std.to(device)
def normlize_beit(beit_model, x):
x = F.interpolate(x, mode = 'bicubic', size = 224)
if not hasattr(beit_model,"norm_preprocess"):
mu = IMAGENET_INCEPTION_MEAN
sigma = IMAGENET_INCEPTION_STD
beit_model.norm_preprocess = ImageNormalizer(mu, sigma)
return beit_model.norm_preprocess(x)
@gin.configurable
def get_train_flags(
resume_iter,
num_epochs,
num_steps,
step_lr,
log_interval,
save_interval,
create_graph=True,
without_ml = False,
emb_loss = False,
dis_detach = False,
clip_loss = False,
**kwargs):
train_flags = Flags()
train_flags.resume_iter = resume_iter
train_flags.num_epochs = num_epochs
train_flags.num_steps = num_steps
train_flags.step_lr = step_lr
train_flags.without_ml = without_ml
train_flags.dis_detach = dis_detach
train_flags.clip_loss = clip_loss
train_flags.create_graph = create_graph
train_flags.log_interval = log_interval
train_flags.save_interval = save_interval
train_flags.emb_loss = emb_loss
for k,v in kwargs.items():
train_flags.__setattr__(k,v)
return train_flags
@gin.configurable
def get_test_flags(
num_visuals,
num_steps,
step_lr,
num_additional,
create_graph=False,
**kwargs
):
test_flags = Flags()
test_flags.num_visuals = num_visuals
test_flags.num_steps = num_steps
test_flags.step_lr = step_lr
test_flags.num_additional = num_additional
test_flags.create_graph = create_graph
for k,v in kwargs.items():
test_flags.__setattr__(k,v)
return test_flags
@gin.configurable
def get_args(
dataset_dir_name = "",
image_energy = False,
joint_train = False,
load_path = False,
**kwargs
):
args = Flags()
for k,v in kwargs.items():
args.__setattr__(k,v)
args.dataset_dir_name = dataset_dir_name
args.image_energy = image_energy
args.joint_train = joint_train
args.load_path = load_path
return args
@gin.configurable
def get_model_args(
model,
hidden,
k,
num_channels,
lr,
lr_sche,
**kwargs
):
model_args = Flags()
model_args.model = model
model_args.hidden = hidden
model_args.k = k
model_args.num_channels = num_channels
model_args.lr = lr
model_args.lr_sche = lr_sche
for k,v in kwargs.items():
model_args.__setattr__(k,v)
return model_args
def generate(generator,rep):
imgs, _ = generator(styles = [rep],input_is_latent=True)
return imgs
def train(encoder, mlp, generator, latent_encoder, optimizer, batch_size, **kwargs):
train_flags = get_train_flags()
it = train_flags.resume_iter
ce_loss = nn.CrossEntropyLoss()
logdir = os.path.join(logger.get_dir(),"checkpoints")
os.makedirs(os.path.expanduser(logdir), exist_ok=True)
for epoch in range(train_flags.num_epochs):
for ids in range(500):
encoder.train()
mlp.train()
latent_encoder.train()
generator.zero_grad()
optimizer.zero_grad()
# Prepare a input
class_vector = one_hot_from_names(['dog']*batch_size, batch_size=batch_size)
noise_vector = truncated_noise_sample(truncation=0.4, batch_size=batch_size)
# All in tensors
noise_vector = torch.from_numpy(noise_vector).cuda()
class_vector = torch.from_numpy(class_vector).cuda()
imgs = generator(noise_vector, class_vector, 0.4)
conv_feature_org = encoder(imgs)
conv_feature_org = conv_feature_org.reshape(conv_feature_org.shape[0],conv_feature_org.shape[1],-1)
my_latents_clip_org = latent_encoder(conv_feature_org.permute(0,2,1))
target_indice = torch.randint(0,latent_encoder.num_latents, [batch_size], device='cuda')
shifts_1 = make_specific_shift(target_indice, batch_size, 128)
shifts_1 = mlp(shifts_1)
imgs_shifted_1 = generator(noise_vector + shifts_1, class_vector, 0.4)
conv_feature_swap = encoder(imgs_shifted_1)
conv_feature_swap = conv_feature_swap.reshape(conv_feature_swap.shape[0],conv_feature_swap.shape[1],-1)
my_latents_clip_swap = latent_encoder(conv_feature_swap.permute(0,2,1))
norm_diff = F.normalize(torch.norm(my_latents_clip_org - my_latents_clip_swap, dim=-1), dim=-1)
dis_loss = ce_loss(norm_diff, target_indice.cuda())
loss = dis_loss
loss.backward()
optimizer.step()
if it % train_flags.log_interval == 0:
loss = loss.item()
kvs = {}
kvs['loss'] = loss
string = "Iteration {} ".format(it)
for k, v in kvs.items():
string += "%s: %.6f " % (k,v)
# logger string
logger.log(string)
if it % train_flags.save_interval == 0:
model_path = os.path.join(logdir, "model_{}.pth".format(it))
ckpt = {}
ckpt['encoder_state_dict'] = encoder.state_dict()
ckpt['mlp_state_dict'] = mlp.state_dict()
ckpt['encoder_model_clip_state_dict'] = latent_encoder.state_dict()
ckpt['optimizer_state_dict'] = optimizer.state_dict()
torch.save(ckpt, model_path)
logger.log("Saving model in directory....")
with torch.no_grad():
image_folder = os.path.join(logger.get_dir(),"images")
os.makedirs(os.path.expanduser(image_folder), exist_ok=True)
mlp.eval()
generator.eval()
with torch.no_grad():
noise_vector = truncated_noise_sample(truncation=0.4, batch_size=1)
# All in tensors
noise_vector = torch.from_numpy(noise_vector).cuda()
# first do W
samples = []
for k in range(latent_encoder.num_latents):
interpolation = torch.arange(-2, 2, 0.4)
for val in interpolation:
z = torch.zeros(128).cuda()
# print("z", z.shape)
z[k] = val
shift = mlp(z)
sample = generator(noise_vector + shift, class_vector[0][None,:], 0.4)
sample = ((sample+1) / 2).clamp(0,1).cpu()
samples.append(sample)
samples = torch.cat(samples, dim = 0)
output = make_grid(samples, nrow= 10, padding = 0)
imgs_record = output.permute(1, 2, 0).cpu().numpy()*255
imwrite("%s/s%08d_split.png" % (image_folder,it), imgs_record)
it += 1
def random_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def make_specific_shift(target_indices, batch_size, latent_dim):
shifts = torch.randn(target_indices.shape, device='cuda')
shifts = shift_scale * shifts
shifts[(shifts < min_shift) & (shifts > 0)] = min_shift
shifts[(shifts > min_shift) & (shifts < 0)] = -min_shift
try:
latent_dim[0]
latent_dim = list(latent_dim)
except Exception:
latent_dim = [latent_dim]
z_shift = torch.zeros([batch_size] + latent_dim, device='cuda')
for i, (index, val) in enumerate(zip(target_indices, shifts)):
z_shift[i][index] += val
return z_shift
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="training codes")
parser.add_argument("--debug", type=bool, default=False,
help="debug mode or not")
parser.add_argument("--schdle", type=bool, default=False,
help="debug mode or not")
parser.add_argument("--batch_size", type=int, default=32,
help="batch size for training")
parser.add_argument("--rand_seed", type=int, default=-1,
help="load file path")
parser.add_argument("--config", type=str, default="configs/cifar10.gin",
help="config file path")
parser.add_argument("--load_path", type=str, default="None",
help="load file path")
meta_args = parser.parse_args()
if meta_args.rand_seed == -1:
seed = np.random.randint(1e6) #913213
else:
seed = meta_args.rand_seed
random_seed(seed)
time = datetime.datetime.now().strftime(f"biggan_base" + "-%Y-%m-%d-%H-%M-%S-%f")
gin.parse_config_file(meta_args.config)
args = get_args()
gin.constant('num_steps', args.num_steps)
gin.constant('step_lr', args.step_lr)
gin.constant('image_energy', args.image_energy)
gin.parse_config_file(f"configs/{args.name}_shared.gin")
gin.bind_parameter("get_train_flags.dis_detach", True)
gin.bind_parameter("get_train_flags.clip_loss", True)
# import nltk
# nltk.download()
logger.configure(out_dir="%s_bert_exp"%args.name,debug=meta_args.debug,time=time)
logger.log(meta_args.config)
logger.log(f"seed:{seed}")
model_args = get_model_args()
used_dim = 30
vct_enc = VCT_Encoder(z_index_dim = used_dim, ce_loss=True, dim = 256, latent_dim = 256, depth = 4)
vct_enc.cuda()
GAN_W_dim = 128
VAE_dim = 128
batch_size = 32
N = batch_size
shift_scale = 6.0
min_shift = 0.5
DEFORMATOR_TYPE_DICT = {
'fc': DeformatorType.FC,
'linear': DeformatorType.LINEAR,
'id': DeformatorType.ID,
'ortho': DeformatorType.ORTHO,
'proj': DeformatorType.PROJECTIVE,
'random': DeformatorType.RANDOM,
'deeper': DeformatorType.DEEPER_FC
}
# now create model and init a name
# get generators
# Load pre-trained model tokenizer (vocabulary)
generator = BigGAN.from_pretrained('biggan-deep-256')
generator.eval().cuda()
for p in generator.parameters():
p.requires_grad_(False)
mlp = LatentDeformator( shift_dim= VAE_dim,
input_dim= VAE_dim,
out_dim= GAN_W_dim,
type=DEFORMATOR_TYPE_DICT["ortho"],
random_init= True).cuda()
encoder = Encoder4GAN(model_args.hidden, num_channels=model_args.num_channels)
encoder.cuda()
if meta_args.schdle:
import sched
optimizer = sched.ScheduledOptim(optim.Adam(itertools.chain(mlp.parameters(), vct_enc.parameters(), encoder.parameters()),betas=(0.9, 0.98), eps=1e-09),lr_mul=2.0,d_model=256, n_warmup_steps=5000)
else:
optimizer = optim.Adam(itertools.chain(mlp.parameters(), vct_enc.parameters(),encoder.parameters()), lr=model_args.lr)
if meta_args.load_path != "None":
ckpt = torch.load(meta_args.load_path)
encoder.load_state_dict(ckpt['encoder_state_dict'])
mlp.load_state_dict(ckpt['mlp_state_dict'])
vct_enc.load_state_dict(ckpt['encoder_model_clip_state_dict'])
train(encoder, mlp, generator, vct_enc, optimizer, batch_size)