-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBilateralFilters.py
79 lines (65 loc) · 2.55 KB
/
BilateralFilters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import cv2
import numpy as numpy, math
def jointBilateral():
noFlash = cv2.imread('test3a.jpg');
flash = cv2.imread('test3b.jpg');
nFChannels = cv2.split(noFlash);
fChannels = cv2.split(flash);
s = 8;
maskSize = 11;
mask = getMask(maskSize, s);
result = [];
for i in range(0, 3):
newChannel = applyBilateral(mask, nFChannels[i], fChannels[i], s);
newArray = numpy.array(newChannel, dtype = numpy.uint8 );
result.append(newArray);
newImg = cv2.merge(result)
cv2.imshow('result',newImg)
def applyBilateral(mask, noFlash, flash, s):
xlength = noFlash.shape[0];
print(xlength)
ylength = noFlash.shape[1];
print(ylength)
result = numpy.zeros([xlength, ylength], dtype = int);
for i in range(0, xlength):
for j in range(0, ylength):
centre =[i,j];
total = applyMask(mask, noFlash, flash, centre, xlength, ylength, s)
result[i][j] = int(total);
return result
def applyMask(mask, noFlash, flash, centre, xlength, ylength, s):
total = 0;
coeff = 0;
denom = 0;
high = int(len(mask)/2)
low = int(len(mask)/2) - 1
for i in range(-low, high):
for j in range(-low, high):
tryi = centre[0] + i;
tryj = centre[1] + j;
if (0 <= tryi <= (xlength -1)) and (0 <= tryj <= (ylength -1)):
intensityDiff = int(abs(int(flash[tryi][tryj]) - int(flash[centre[0]][centre[1]])))
coeff = mask[i+high][j+high]*getGauss(0.01,intensityDiff )
total += coeff*noFlash[tryi][tryj];
denom += coeff
else:
intensityDiff = int(abs(int(flash[centre[0]][centre[1]]) - int(flash[centre[0]][centre[1]])))
coeff = mask[0+high][0+high]*getGauss(0.01,intensityDiff)
total += coeff*noFlash[centre[0]][centre[1]];
denom += coeff
return (total/denom);
def getMask(size, s):
mask = numpy.zeros([size + 1, size +1], dtype = float)
centre = int(size / 2) + 1
for i in range(1, size +1):
for j in range(1, size +1):
mask[i][j] = getGauss(s, getDist(i,j, centre));
return (mask);
def getDist(i,j, centre):
iDist = abs(centre-i);
jDist = abs(centre-j);
dist = math.sqrt(jDist**2 + iDist**2);
return dist;
def getGauss(s, x):
gauss = 1/(math.sqrt(2*math.pi)*s)*math.e**(-(x**2/(2*s**2)))
return(gauss);