-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuralNetTF.py
46 lines (37 loc) · 1.52 KB
/
neuralNetTF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
from random import random
import tensorflow as tf
from sklearn.model_selection import train_test_split
def generate_dataset(num_samples, test_size):
# build inputs/targets for sum operation: y[0][0] = x[0][0] + x[0][1]
x = np.array([[random()/2 for _ in range(2)] for _ in range(num_samples)])
y = np.array([[i[0] + i[1]] for i in x])
# split dataset into test and training sets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_size)
return x_train, x_test, y_train, y_test
if __name__ == "__main__":
x_train, x_test, y_train, y_test = generate_dataset(5000, 0.3)
#print("x_test \n".format(x_test))
#print("y_test \n".format(y_test))
#build model:
model = tf.keras.Sequential([
#input layers. 2 neurons, 5 hidden layers,
tf.keras.layers.Dense(5, input_dim = 2, activation="sigmoid"),
#output layers. 1 output layers
tf.keras.layers.Dense(1, activation = "sigmoid")
])
#compile model
optimizer = tf.keras.optimizers.SGD(learning_rate = 0.1)
#mse = Min Squared Error
model.compile(optimizer = optimizer, loss = "MSE")
#fit model
model.fit(x_train, y_train, epochs = 100)
#evaluate model
print("\nModel Evaluation:")
model.evaluate(x_test, y_test)
#make predictions
data = np.array([[0.1, 0.2],[0.2, 0.2]])
predictions = model.predict(data)
print("\nSome predictions:")
for d, p in zip(data, predictions):
print("{} + {} = {}".format(d[0], d[1], p[0]))