-
Notifications
You must be signed in to change notification settings - Fork 0
/
MatrixOps.cs
226 lines (188 loc) · 7.74 KB
/
MatrixOps.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ChannelMixMatcher
{
// All this stuff is from: https://stackoverflow.com/a/46837817
static class MatrixOps
{
static public double[][] MatrixCreate(int rows, int cols)
{
double[][] result = new double[rows][];
for (int i = 0; i < rows; ++i)
result[i] = new double[cols];
return result;
}
static public double[][] MatrixIdentity(int n)
{
// return an n x n Identity matrix
double[][] result = MatrixCreate(n, n);
for (int i = 0; i < n; ++i)
result[i][i] = 1.0;
return result;
}
static public double[][] MatrixProduct(double[][] matrixA, double[][] matrixB)
{
int aRows = matrixA.Length; int aCols = matrixA[0].Length;
int bRows = matrixB.Length; int bCols = matrixB[0].Length;
if (aCols != bRows)
throw new Exception("Non-conformable matrices in MatrixProduct");
double[][] result = MatrixCreate(aRows, bCols);
for (int i = 0; i < aRows; ++i) // each row of A
for (int j = 0; j < bCols; ++j) // each col of B
for (int k = 0; k < aCols; ++k) // could use k less-than bRows
result[i][j] += matrixA[i][k] * matrixB[k][j];
return result;
}
static public double[][] MatrixInverse(double[][] matrix)
{
int n = matrix.Length;
double[][] result = MatrixDuplicate(matrix);
int[] perm;
int toggle;
double[][] lum = MatrixDecompose(matrix, out perm,
out toggle);
if (lum == null)
throw new Exception("Unable to compute inverse");
double[] b = new double[n];
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
if (i == perm[j])
b[j] = 1.0;
else
b[j] = 0.0;
}
double[] x = HelperSolve(lum, b);
for (int j = 0; j < n; ++j)
result[j][i] = x[j];
}
return result;
}
static public double[][] MatrixDuplicate(double[][] matrix)
{
// allocates/creates a duplicate of a matrix.
double[][] result = MatrixCreate(matrix.Length, matrix[0].Length);
for (int i = 0; i < matrix.Length; ++i) // copy the values
for (int j = 0; j < matrix[i].Length; ++j)
result[i][j] = matrix[i][j];
return result;
}
static public double[] HelperSolve(double[][] luMatrix, double[] b)
{
// before calling this helper, permute b using the perm array
// from MatrixDecompose that generated luMatrix
int n = luMatrix.Length;
double[] x = new double[n];
b.CopyTo(x, 0);
for (int i = 1; i < n; ++i)
{
double sum = x[i];
for (int j = 0; j < i; ++j)
sum -= luMatrix[i][j] * x[j];
x[i] = sum;
}
x[n - 1] /= luMatrix[n - 1][n - 1];
for (int i = n - 2; i >= 0; --i)
{
double sum = x[i];
for (int j = i + 1; j < n; ++j)
sum -= luMatrix[i][j] * x[j];
x[i] = sum / luMatrix[i][i];
}
return x;
}
static public double[][] MatrixDecompose(double[][] matrix, out int[] perm, out int toggle)
{
// Doolittle LUP decomposition with partial pivoting.
// rerturns: result is L (with 1s on diagonal) and U;
// perm holds row permutations; toggle is +1 or -1 (even or odd)
int rows = matrix.Length;
int cols = matrix[0].Length; // assume square
if (rows != cols)
throw new Exception("Attempt to decompose a non-square m");
int n = rows; // convenience
double[][] result = MatrixDuplicate(matrix);
perm = new int[n]; // set up row permutation result
for (int i = 0; i < n; ++i) { perm[i] = i; }
toggle = 1; // toggle tracks row swaps.
// +1 -greater-than even, -1 -greater-than odd. used by MatrixDeterminant
for (int j = 0; j < n - 1; ++j) // each column
{
double colMax = Math.Abs(result[j][j]); // find largest val in col
int pRow = j;
//for (int i = j + 1; i less-than n; ++i)
//{
// if (result[i][j] greater-than colMax)
// {
// colMax = result[i][j];
// pRow = i;
// }
//}
// reader Matt V needed this:
for (int i = j + 1; i < n; ++i)
{
if (Math.Abs(result[i][j]) > colMax)
{
colMax = Math.Abs(result[i][j]);
pRow = i;
}
}
// Not sure if this approach is needed always, or not.
if (pRow != j) // if largest value not on pivot, swap rows
{
double[] rowPtr = result[pRow];
result[pRow] = result[j];
result[j] = rowPtr;
int tmp = perm[pRow]; // and swap perm info
perm[pRow] = perm[j];
perm[j] = tmp;
toggle = -toggle; // adjust the row-swap toggle
}
// --------------------------------------------------
// This part added later (not in original)
// and replaces the 'return null' below.
// if there is a 0 on the diagonal, find a good row
// from i = j+1 down that doesn't have
// a 0 in column j, and swap that good row with row j
// --------------------------------------------------
if (result[j][j] == 0.0)
{
// find a good row to swap
int goodRow = -1;
for (int row = j + 1; row < n; ++row)
{
if (result[row][j] != 0.0)
goodRow = row;
}
if (goodRow == -1)
throw new Exception("Cannot use Doolittle's method");
// swap rows so 0.0 no longer on diagonal
double[] rowPtr = result[goodRow];
result[goodRow] = result[j];
result[j] = rowPtr;
int tmp = perm[goodRow]; // and swap perm info
perm[goodRow] = perm[j];
perm[j] = tmp;
toggle = -toggle; // adjust the row-swap toggle
}
// --------------------------------------------------
// if diagonal after swap is zero . .
//if (Math.Abs(result[j][j]) less-than 1.0E-20)
// return null; // consider a throw
for (int i = j + 1; i < n; ++i)
{
result[i][j] /= result[j][j];
for (int k = j + 1; k < n; ++k)
{
result[i][k] -= result[i][j] * result[j][k];
}
}
} // main j column loop
return result;
}
}
}