-
Notifications
You must be signed in to change notification settings - Fork 384
/
prep.py
40 lines (32 loc) · 1.14 KB
/
prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os
from functools import wraps
import pandas as pd
from sklearn.externals import joblib
def _repr_html_(self):
self = self.copy()
if self.index.nlevels > 1:
return None
else:
name = self.index.name or 'index'
if self.columns.name is None:
self.columns.name = name
max_rows = pd.get_option("display.max_rows")
max_cols = pd.get_option("display.max_columns")
show_dimensions = pd.get_option("display.show_dimensions")
return self.to_html(max_rows=max_rows, max_cols=max_cols,
show_dimensions=show_dimensions, notebook=True)
if int(os.environ.get("MODERN_PANDAS_EPUB", 0)):
pd.DataFrame._repr_html_ = _repr_html_
def cached(name):
def deco(func):
@wraps(func)
def wrapper(*args, **kwargs):
os.makedirs('models', exist_ok=True)
cache = os.path.join('models', name + '.pkl')
if os.path.exists(cache):
return joblib.load(cache)
result = func(*args, **kwargs)
joblib.dump(result, cache)
return result
return wrapper
return deco