-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevent.py
69 lines (62 loc) · 2.31 KB
/
event.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy
import matplotlib.pyplot as plt
rng = numpy.random # random number generator
### DETECTOR SETTINGS ###
dim = [100,50] # dimension [width, height]
N = dim[0] * dim[1] # number of blocks in the detector
### EVENT SETTINGS ###
nTracks = 5 # maximum no. of tracks
class Event:
# initialize with random vertex and generate tracks
def __init__ (self):
# vertex = [x,y]
self.vertex = dim * rng.sample(2)
# each event has random number of tracks
self.tracks = [self.genTrack() for i in range(rng.randint(2,nTracks))]
# data represents as array of 0 (no track) and 1 (track) points in the detector
self.data = [0] * N
# fill data with tracks
for t in self.tracks: self.genData(t[0], t[1])
self.data2d = numpy.array(self.data, dtype='float32').reshape(dim[1], dim[0])
# generate track (random line coming from vertex)
def genTrack (self):
# y = ax + b
a = 2.0 * rng.sample() - 1.0
b = self.vertex[1] - a * self.vertex[0]
return [a,b]
# generate data from tracks
def genData (self, a, b):
# track starts in the vertex
start = int(self.vertex[0])
# track length is random (but not smaller than 5)
end = start + int((dim[0] - start) * rng.sample())
# "convert" track to detector points
for x in range(start, end):
y = int(a * x + b) # round y
if y < 0 or y >= dim[1]: break
self.data[x + y * dim[0]] = 1
class EventDisplay:
def __init__(self, e):
# axis ranges
plt.xlim([0,dim[0]])
plt.ylim([0,dim[1]])
# ticks
plt.grid(b=True, which='major', color='k', linestyle='-')
plt.grid(b=True, which='minor', color='k', linestyle='-', alpha=0.2)
plt.minorticks_on()
# data
X = []
Y = []
for i in range(dim[0]):
for j in range(dim[1]):
if e.data[i + dim[0] * j]:
X.append(i)
Y.append(j)
plt.scatter(X, Y, color = 'k', marker = 's')
# true tracks
x = numpy.arange(e.vertex[0], dim[0], 1)
for t in e.tracks:
plt.plot(x, t[0] * x + t[1], 'b')
# vetex
plt.scatter(e.vertex[0], e.vertex[1], color = 'r', marker = 's')
plt.show()