-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
81 lines (62 loc) · 2.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
##© 2024 Tushar Aggarwal. All rights reserved.(https://tushar-aggarwal.com)
##Butternut [Towards-GenAI] (https://github.com/Towards-GenAI)
##################################################################################################
#Importing dependencies
import streamlit as st
import os
from langchain_groq import ChatGroq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from dotenv import load_dotenv
import os
load_dotenv()
##################################################################################################
# loading the GROQ And OpenAI API KEY
groq_api_key=os.getenv('GROQ_API_KEY')
os.environ["GOOGLE_API_KEY"]=os.getenv("GOOGLE_API_KEY")
##################################################################################################
st.title("Butternut")
llm=ChatGroq(groq_api_key=groq_api_key,
model_name="Llama3-8b-8192")
prompt=ChatPromptTemplate.from_template(
"""
Answer the questions based on the provided context only.
Please provide the most accurate response based on the question
<context>
{context}
<context>
Questions:{input}
"""
)
def vector_embedding():
if "vectors" not in st.session_state:
st.session_state.embeddings=GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
st.session_state.loader=PyPDFDirectoryLoader("./research") ## Data Ingestion
st.session_state.docs=st.session_state.loader.load() ## Document Loading
st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200) ## Chunk Creation
st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) #splitting
st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings
prompt1=st.text_input("Enter Your Question From Doduments")
if st.button("Documents Embedding"):
vector_embedding()
st.write("Vector Store DB Is Ready")
import time
if prompt1:
document_chain=create_stuff_documents_chain(llm,prompt)
retriever=st.session_state.vectors.as_retriever()
retrieval_chain=create_retrieval_chain(retriever,document_chain)
start=time.process_time()
response=retrieval_chain.invoke({'input':prompt1})
print("Response time :",time.process_time()-start)
st.write(response['answer'])
# With a streamlit expander
with st.expander("Document Similarity Search"):
# Find the relevant chunks
for i, doc in enumerate(response["context"]):
st.write(doc.page_content)
st.write("--------------------------------")