-
Notifications
You must be signed in to change notification settings - Fork 4
/
generate_4d_polar_doppler.py
83 lines (69 loc) · 3.27 KB
/
generate_4d_polar_doppler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import scipy.io
import numpy as np
from concurrent.futures import ThreadPoolExecutor, as_completed
def process_file(clip, file, input_dir, output_dir):
file_path = os.path.join(input_dir, file)
data = np.load(file_path) # We have already convert .mat to .npy
# data = data.astype(np.float16)
d_dim, r_dim, a_dim, e_dim = data.shape
idx = file.split("_")[-1].split(".")[0]
# assert np.isinf(data).sum() == 0
# assert np.isnan(data).sum() == 0
# output_file_path_cube = os.path.join(output_dir, f"DREA_{idx}.npy")
# np.save(output_file_path_cube, data.astype(np.float16))
cube = np.mean(data,axis=0)
cube_flat = cube.reshape(cube.shape[0], -1)
k = 250
top_k_idx = np.argpartition(cube_flat, -k, axis=1)[:, -k:]
mask_flat = np.zeros_like(cube_flat, dtype=bool)
mask_flat[np.arange(cube_flat.shape[0])[:, None], top_k_idx] = True
mask = mask_flat.reshape(cube.shape)
range_inds = np.arange(cube.shape[0])[:, None]
elevation_inds = top_k_idx // cube.shape[2]
azimuth_inds = top_k_idx % cube.shape[2]
range_inds_flat = np.repeat(range_inds, k).flatten()
elevation_inds_flat = elevation_inds.flatten()
azimuth_inds_flat = azimuth_inds.flatten()
power_val = data[:,range_inds_flat, elevation_inds_flat, azimuth_inds_flat]
top_indices = np.argpartition(power_val, -3, axis=0)[-3:]
N_dim = power_val.shape[1]
top_values = power_val[top_indices, np.arange(N_dim)]
# Step 3: Calculate the mean and variance
means = np.mean(power_val, axis=0)
variances = np.var(power_val, axis=0)
# Step 4: Combine into new array
new_data = np.vstack((top_values, top_indices, means, variances))
# Transpose and reshape to get desired format: 8 x N_dim
new_data = np.vstack((new_data[:3], new_data[3:6], new_data[6], new_data[7])).reshape(8, N_dim)
output_file_path = os.path.join(output_dir, f"EAsparse_{idx}.npz")
np.savez(output_file_path, range_ind=range_inds_flat, elevation_ind=elevation_inds_flat, azimuth_ind=azimuth_inds_flat, power_val=new_data)
return f"{clip} {file} processed successfully"
import gc
def process_clip(clip):
output_dir = os.path.join(output_base_dir, clip, "radar_tensor_8doppler")
input_dir = os.path.join(input_base_dir, clip, "radar_polar_cube")
os.makedirs(output_dir, exist_ok=True)
file_names = sorted(os.listdir(input_dir))
with ThreadPoolExecutor(max_workers=8) as executor:
future_to_file = {executor.submit(process_file, clip, file, input_dir, output_dir): file for file in file_names}
count = 0
for future in as_completed(future_to_file):
count += 1
file = future_to_file[future]
try:
result = future.result()
except Exception as exc:
print(f'File {file} in clip {clip} generated an exception: {exc}')
else:
print(result)
if count % 64 == 0:
gc.collect() # Collect garbage after every 100 files
input_base_dir = "/mnt/18T-Data/kradar/"
output_base_dir = "/mnt/18T-Data/kradar/"
clips = os.listdir(input_base_dir),
print(clips)
clips = [clip for clip in clips[0] if clip.isdigit()]
clips = sorted(clips, key=lambda x: int(x))
for clip in clips:
process_clip(clip)