forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eleuther_eval.py
270 lines (218 loc) · 9.03 KB
/
eleuther_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import sys
import time
from typing import Any, Dict, List, Tuple, Union
import torch
from omegaconf import DictConfig
from torch import nn
from torch.nn.utils.rnn import pad_sequence
from torchtune import config, utils
from torchtune.modules import TransformerDecoder
from torchtune.modules.tokenizers import Tokenizer
from torchtune.recipe_interfaces import EvalRecipeInterface
logger = utils.get_logger("DEBUG")
try:
import lm_eval
from lm_eval.evaluator import evaluate
from lm_eval.models.huggingface import HFLM
from lm_eval.tasks import get_task_dict, TaskManager
from lm_eval.utils import make_table
except ImportError:
logger.error(
"Recipe requires EleutherAI Eval Harness v0.4. Please install with `pip install lm_eval==0.4.*`"
)
sys.exit(1)
class _EvalWrapper(HFLM):
"""An EvalWrapper for EleutherAI's eval harness based on gpt-fast's
EvalWrapper: https://github.com/pytorch-labs/gpt-fast/blob/main/eval.py.
Args:
model (TransformerDecoder): The model to evaluate.
tokenizer (Tokenizer): The tokenizer to use.
device (torch.device): The device to use.
max_seq_length (int): The maximum sequence length to use.
batch_size (int): The batch size per GPU to use.
"""
def __init__(
self,
model: TransformerDecoder,
tokenizer: Tokenizer,
*,
device: torch.device,
max_seq_length: int = 4096,
batch_size: int = 8,
dtype: torch.dtype = torch.float32,
):
super().__init__(pretrained="gpt2", device=str(device))
self._model = model
self._tokenizer = tokenizer
self._max_seq_length = max_seq_length
self._batch_size = batch_size
self._dtype = dtype
@property
def model(self):
return self._model
@property
def eot_token_id(self):
return self._tokenizer.eos_id
@property
def max_length(self):
return self._max_seq_length
@property
def max_gen_toks(self):
return 256
@property
def batch_size(self):
return self._batch_size
@property
def device(self):
return self._device
def tok_encode(self, text: str, **kwargs) -> List[int]:
# Note on add_bos flag: setting to False as this gives better results, for example
# +1% on truthfulqa_mc2 with a LoRA finetune. lit-gpt also sets this to False,
# see https://github.com/Lightning-AI/lit-gpt/blob/main/eval/lm_eval_harness.py#L66,
# though notably fast-gpt does the opposite
# https://github.com/pytorch-labs/gpt-fast/blob/main/eval.py#L123.
return self._tokenizer.encode(text=text, add_bos=False, add_eos=False)
def tok_batch_encode(
self, text: List[str], **kwargs
) -> Tuple[torch.Tensor, torch.Tensor]:
tokenized_text = [self.tok_encode(x) for x in text]
# pad left
x = pad_sequence(
[
torch.tensor(x[::-1]) for x in tokenized_text
], # first flip each sequence and pad
batch_first=True,
padding_value=self._tokenizer.pad_id,
).flip(
dims=[1]
) # flip back to correct order
return x, torch.ones_like(x) # return 'mask' b/c it's expected by the harness
def tok_decode(self, tokens: Union[List[int], int], **kwargs) -> str:
if isinstance(tokens, int):
tokens = [tokens]
return self._tokenizer.decode(tokens)
def _model_call(self, inps: torch.Tensor, **kwargs) -> torch.Tensor:
return self._model(inps)
def _model_generate(
self, context: torch.Tensor, **generation_kwargs
) -> torch.Tensor:
curr_batch_size = context.size(0)
# Setup caches for a given batch size
# Technically this is not necessary, but it's a good way to ensure that
# the caches won't error on a different batch size. In addition, caches
# are not needed for a regular model call, so we just setup here
with context.device:
self._model.setup_caches(batch_size=curr_batch_size, dtype=self._dtype)
temperature = generation_kwargs.get("temperature", 0.0)
do_sample = generation_kwargs.get("do_sample", False)
if do_sample:
# do_sample signifies more complicated sampling logic, like top_k or
# top_p. We don't support this yet, so if it's requested, we raise an error.
raise RuntimeError(
"``do_sample`` for generation tasks is not supported yet in torchtune."
)
toks = utils.generate(
self._model,
context,
max_generated_tokens=self.max_gen_toks,
pad_id=self._tokenizer.pad_id,
temperature=temperature,
top_k=None, # do_sample is not supported currently
stop_tokens=self._tokenizer.stop_tokens,
)
return torch.tensor(toks, dtype=torch.int32)
class EleutherEvalRecipe(EvalRecipeInterface):
"""
This recipe runs evaluation on a trained model using EleutherAI's eval harness.
This assumes the user has the EleutherAI eval harness installed. See
https://github.com/EleutherAI/lm-evaluation-harness for more details.
Features:
- Single GPU evaluation. Multi-GPU evaluation is currently not supported.
- Loading model in fp32 or bf16. Fp16 is currently not supported.
- Any task from the EleutherAI eval harness that is *not* free generation
We recommend launching evaluation using the tune CLI:
tune run eleuther_eval --config llama2_eleuther_eval \
tasks=["truthfulqa_mc2","hellaswag"]
Args:
cfg (DictConfig): OmegaConf object parsed from YAML file
"""
def __init__(self, cfg: DictConfig) -> None:
self._cfg = cfg
def setup(self) -> None:
self._device = utils.get_device(device=self._cfg.device)
self._dtype = utils.get_dtype(dtype=self._cfg.dtype)
self._limit = self._cfg.limit
self._tasks = list(self._cfg.tasks)
self._quantizer = config.instantiate(self._cfg.quantizer)
self._quantization_mode = utils.get_quantizer_mode(self._quantizer)
utils.set_seed(seed=self._cfg.seed)
checkpointer = config.instantiate(self._cfg.checkpointer)
if self._quantization_mode is None:
ckpt_dict = checkpointer.load_checkpoint()
else:
# weights_only needs to be False when loading a quantized model
# currently loading a quantized model is only supported with the
# FullModelTorchTuneCheckpointer
ckpt_dict = checkpointer.load_checkpoint(weights_only=False)
self._model = self._setup_model(
model_cfg=self._cfg.model,
model_state_dict=ckpt_dict[utils.MODEL_KEY],
)
self._tokenizer = config.instantiate(self._cfg.tokenizer)
logger.info("Tokenizer is initialized from file.")
def _setup_model(
self,
model_cfg: DictConfig,
model_state_dict: Dict[str, Any],
) -> nn.Module:
with utils.set_default_dtype(self._dtype), self._device:
model = config.instantiate(model_cfg)
if self._quantization_mode is not None:
model = self._quantizer.quantize(model)
model = model.to(device=self._device, dtype=self._dtype)
model.load_state_dict(model_state_dict)
# Validate model was loaded in with the expected dtype.
utils.validate_expected_param_dtype(model.named_parameters(), dtype=self._dtype)
logger.info(f"Model is initialized with precision {self._dtype}.")
return model
@torch.no_grad()
def evaluate(self) -> None:
t1 = time.time()
model_eval_wrapper = _EvalWrapper(
self._model,
self._tokenizer,
device=self._device,
max_seq_length=self._cfg.max_seq_length,
batch_size=self._cfg.batch_size,
dtype=self._dtype,
)
# Task initialization API changed between v0.4.1 and 0.4.2
try:
lm_eval.tasks.initialize_tasks()
except Exception:
pass
task_manager = TaskManager(include_path=self._cfg.get("include_path", None))
task_dict = get_task_dict(self._tasks, task_manager)
logger.info(f"Running evaluation on {self._tasks} tasks.")
output = evaluate(
model_eval_wrapper,
task_dict,
limit=self._limit,
)
logger.info(f"Eval completed in {time.time() - t1:.02f} seconds.")
formatted_output = make_table(output)
print(formatted_output)
@config.parse
def recipe_main(cfg: DictConfig) -> None:
"""Entry point for the recipe."""
config.log_config(recipe_name="EleutherEvalRecipe", cfg=cfg)
recipe = EleutherEvalRecipe(cfg=cfg)
recipe.setup()
recipe.evaluate()
if __name__ == "__main__":
sys.exit(recipe_main())