-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
80 lines (65 loc) · 2.79 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import random
import pickle
from numpy import array
from nltk import word_tokenize
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import SGD
from global_function import training_ignore_letters
import os
import json
def run_code(source_path, training_epochs, training_batch_size, layer1_units, layer2_units):
lemmatizer = WordNetLemmatizer()
direction = json.loads(open(os.path.join(source_path, 'direction.json')).read())
words = []
classes = []
documents = []
for intent in direction['intents']:
for pattern in intent['patterns']:
for letter in training_ignore_letters:
pattern = pattern.replace(letter, '')
word_list = word_tokenize(pattern.lower())
words.extend(word_list)
documents.append((word_list, intent['tag']))
if intent['tag'] not in classes:
classes.append(intent['tag'])
words = [lemmatizer.lemmatize(word.lower()) for word in words]
words = sorted(set(words))
classes = sorted(set(classes))
pickle.dump(words, open(os.path.join(source_path, 'words.pck'), 'wb'))
pickle.dump(classes, open(os.path.join(source_path, 'classes.pck'), 'wb'))
training = []
output_empty = [0] * len(classes)
for document in documents:
bag = []
word_patterns = document[0]
word_patterns = [lemmatizer.lemmatize(word.lower()) for word in word_patterns]
word_count = {}
for word in word_patterns:
try:
word_count[word] += 1
except:
word_count[word] = 1
for word in words:
try:
bag.append(word_count[word])
except:
bag.append(0)
output_row = list(output_empty)
output_row[classes.index(document[1])] = 1
training.append([bag, output_row])
random.shuffle(training)
training = array(training, dtype=object)
train_x = list(training[:, 0])
train_y = list(training[:, 1])
model = Sequential()
model.add(Dense(layer1_units, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(layer2_units, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
sgd = SGD(learning_rate=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
hist = model.fit(array(train_x), array(train_y), epochs=training_epochs, batch_size=training_batch_size, verbose=1)
model.save(os.path.join(source_path, 'model.h5'), hist)