-
Notifications
You must be signed in to change notification settings - Fork 81
/
BBTFaceRecognition.vue
241 lines (226 loc) · 6.57 KB
/
BBTFaceRecognition.vue
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
<script setup>
import * as faceapi from "@vladmandic/face-api";
import { onMounted, reactive, watch } from "vue";
/**属性状态 */
const state = reactive({
/**初始化模型加载 */
netsLoadModel: true,
/**算法模型 */
netsType: "ssdMobilenetv1",
/**模型参数 */
netsOptions: {
ssdMobilenetv1: undefined,
tinyFaceDetector: undefined,
},
/**目标图片数据匹配对象 */
faceMatcher: {},
/**目标图片元素 */
targetImgEl: null,
/**目标画布图层元素 */
targetCanvasEl: null,
// 预设样本图,支持本地,网络,beas64
sampleArr: [
{
name: "张伟",
imgs: [
`/images/zw/face/zw01.png`,
`/images/zw/face/zw02.png`,
`/images/zw/face/zw03.png`,
`/images/zw/face/zw04.png`,
],
},
{
name: "曾小贤",
imgs: [
`/images/zxx/face/zxx01.png`,
`/images/zxx/face/zxx02.png`,
`/images/zxx/face/zxx03.png`,
`/images/zxx/face/zxx04.png`,
],
},
],
});
/**初始化模型加载 */
async function fnLoadModel() {
// 模型文件访问路径
const modelsPath = `/models`;
// 面部轮廓模型
await faceapi.nets.faceLandmark68Net.load(modelsPath);
// 面部识别模型
await faceapi.nets.faceRecognitionNet.load(modelsPath);
// 模型参数-ssdMobilenetv1
await faceapi.nets.ssdMobilenetv1.load(modelsPath);
state.netsOptions.ssdMobilenetv1 = new faceapi.SsdMobilenetv1Options({
minConfidence: 0.5, // 0 ~ 1
maxResults: 50, // 0 ~ 100
});
// 模型参数-tinyFaceDetector
await faceapi.nets.tinyFaceDetector.load(modelsPath);
state.netsOptions.tinyFaceDetector = new faceapi.TinyFaceDetectorOptions({
inputSize: 416, // 160 224 320 416 512 608
scoreThreshold: 0.5, // 0 ~ 1
});
// 输出库版本
console.log(
`FaceAPI Version: ${
faceapi?.version || "(not loaded)"
} \nTensorFlow/JS Version: ${
faceapi.tf?.version_core || "(not loaded)"
} \nBackend: ${
faceapi.tf?.getBackend() || "(not loaded)"
} \nModels loaded: ${faceapi.tf.engine().state.numTensors} tensors`
);
// 节点元素
state.targetImgEl = document.getElementById("page_draw-img-target");
state.targetCanvasEl = document.getElementById("page_draw-canvas-target");
// 关闭模型加载
state.netsLoadModel = false;
}
// 样本图片数据矩阵,生成人脸匹配对象
async function fnFaceMatcherDesc() {
const labeledFaceDescriptors = await Promise.all(
state.sampleArr.map(async (item) => {
// 临时图片转码数据,将图片对象转数据矩阵对象
const descriptors = [];
for (const image of item.imgs) {
const imageEl = await faceapi.fetchImage(image);
descriptors.push(await faceapi.computeFaceDescriptor(imageEl));
}
// 返回图片用户和图片转码数组
return new faceapi.LabeledFaceDescriptors(item.name, descriptors);
})
);
// 人脸匹配矩阵数组对象转码结果
state.faceMatcher = new faceapi.FaceMatcher(labeledFaceDescriptors);
}
/**根据模型参数识别绘制 */
async function fnRedraw() {
const detect = await faceapi
.detectAllFaces(state.targetImgEl, state.netsOptions[state.netsType])
// 需引入面部轮廓模型
.withFaceLandmarks()
// 需引入面部识别模型
.withFaceDescriptors();
if (!detect.length) {
state.faceMatcher = null;
fnFaceMatcherDesc();
return;
}
// 识别图像绘制
const dims = faceapi.matchDimensions(state.targetCanvasEl, state.targetImgEl);
const resizedResults = faceapi.resizeResults(detect, dims);
resizedResults.forEach(({ detection, descriptor }) => {
// 最佳匹配 distance越小越匹配
const best = state.faceMatcher.findBestMatch(descriptor);
// 识别图绘制框
const label = best.toString();
// 绘制框
new faceapi.draw.DrawBox(detection.box, {
label,
boxColor: "#55b881",
}).draw(state.targetCanvasEl);
});
}
/**更换目标图片 */
async function fnChangeTarget(e) {
if (!e.target || !e.target.files.length) return;
// 将文件显示为图像并识别
const img = await faceapi.bufferToImage(e.target.files[0]);
state.targetImgEl.src = img.src;
await fnRedraw();
}
/**新增样本图 */
async function fnChangeSample(e) {
if (!e.target || !e.target.files.length) return;
// 将文件显示为图像并识别
let sampleItme = {
name: `${Date.now()}`,
imgs: [],
};
for (const file of e.target.files) {
const inputEl = await faceapi.bufferToImage(file);
sampleItme.imgs.push(inputEl.src);
}
state.sampleArr.push(sampleItme);
state.faceMatcher = null;
fnFaceMatcherDesc();
}
// 模型变更
watch(
() => state.netsType,
() => {
fnRedraw();
}
);
onMounted(() => {
fnLoadModel()
.then(() => fnFaceMatcherDesc())
.then(() => fnRedraw());
});
</script>
<template>
<div class="page">
<div class="page_option">
<div>
<label>新增样本图多选择:</label>
<input
type="file"
accept="image/png, image/jpeg"
multiple="multiple"
@change="fnChangeSample($event)"
/>
</div>
<div>
<label>更换匹配图单选择:</label>
<input
type="file"
accept="image/png, image/jpeg"
@change="fnChangeTarget($event)"
/>
</div>
<div>
<label>算法模型:</label>
<select v-model="state.netsType">
<option value="ssdMobilenetv1">SSD Mobilenet V1</option>
<option value="tinyFaceDetector">Tiny Face Detector</option>
</select>
</div>
<div style="color: #f44336">
<label>注意:</label>
<span>请使用人脸提取得到的图像作为样本进行识别</span>
</div>
</div>
<div class="page_load" v-show="state.netsLoadModel">Load Model...</div>
<div class="page_draw" v-show="!state.netsLoadModel">
<h3>匹配图:</h3>
<div class="page_draw-target">
<img id="page_draw-img-target" src="/images/cp/cp03.jpg" />
<canvas id="page_draw-canvas-target"></canvas>
</div>
<h3>样本库:</h3>
<div v-for="(item, i) in state.sampleArr" :key="i">
<span style="color: #55b881" v-text="item.name"></span>
<div class="draw">
<img
v-for="img in item.imgs"
:key="img"
:src="img"
:alt="item.name"
/>
</div>
</div>
</div>
</div>
</template>
<style scoped>
.draw {
display: flex;
flex-direction: row;
flex-wrap: wrap;
}
.draw img {
max-width: 90px;
max-height: 90px;
margin: 10px;
}
</style>