-
Notifications
You must be signed in to change notification settings - Fork 81
/
WebRTCFaceRecognition.vue
308 lines (283 loc) · 8.28 KB
/
WebRTCFaceRecognition.vue
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
<script setup>
import * as faceapi from "@vladmandic/face-api";
import { onMounted, onUnmounted, reactive, watch } from "vue";
/**属性状态 */
const state = reactive({
/**初始化模型加载 */
netsLoadModel: true,
/**算法模型 */
netsType: "ssdMobilenetv1",
/**模型参数 */
netsOptions: {
ssdMobilenetv1: undefined,
tinyFaceDetector: undefined,
},
/**目标图片数据匹配对象 */
faceMatcher: {},
/**目标图片元素 */
targetImgEl: null,
/**目标画布图层元素 */
targetCanvasEl: null,
/**识别视频元素 */
discernVideoEl: null,
/**识别画布图层元素 */
discernCanvasEl: null,
/**绘制定时器 */
timer: 0,
/**视频媒体参数配置 */
constraints: {
audio: false,
video: {
/**ideal(应用最理想的) */
width: {
min: 320,
ideal: 720,
max: 1280,
},
height: {
min: 200,
ideal: 480,
max: 720,
},
/**frameRate 受限带宽传输时,低帧率可能更适宜 */
frameRate: {
min: 7,
ideal: 15,
max: 30,
},
/**facingMode 摄像头前后切换 */
facingMode: "environment",
},
},
/**视频流 */
stream: null,
});
/**初始化模型加载 */
async function fnLoadModel() {
// 模型文件访问路径
const modelsPath = `/models`;
// 面部轮廓模型
await faceapi.nets.faceLandmark68Net.load(modelsPath);
// 面部识别模型
await faceapi.nets.faceRecognitionNet.load(modelsPath);
// 模型参数-ssdMobilenetv1
await faceapi.nets.ssdMobilenetv1.load(modelsPath);
state.netsOptions.ssdMobilenetv1 = new faceapi.SsdMobilenetv1Options({
minConfidence: 0.5, // 0 ~ 1
maxResults: 50, // 0 ~ 100
});
// 模型参数-tinyFaceDetector
await faceapi.nets.tinyFaceDetector.load(modelsPath);
state.netsOptions.tinyFaceDetector = new faceapi.TinyFaceDetectorOptions({
inputSize: 416, // 160 224 320 416 512 608
scoreThreshold: 0.5, // 0 ~ 1
});
// 输出库版本
console.log(
`FaceAPI Version: ${
faceapi?.version || "(not loaded)"
} \nTensorFlow/JS Version: ${
faceapi.tf?.version_core || "(not loaded)"
} \nBackend: ${
faceapi.tf?.getBackend() || "(not loaded)"
} \nModels loaded: ${faceapi.tf.engine().state.numTensors} tensors`
);
// 节点元素
state.targetImgEl = document.getElementById("page_draw-img-target");
state.targetCanvasEl = document.getElementById("page_draw-canvas-target");
state.discernVideoEl = document.getElementById("page_draw-video");
state.discernCanvasEl = document.getElementById("page_draw-video-canvas");
// 关闭模型加载
state.netsLoadModel = false;
}
/**根据模型参数识别绘制--目标图 */
async function fnRedrawTarget() {
console.log("Run Redraw Target");
const detect = await faceapi
.detectAllFaces(state.targetImgEl, state.netsOptions[state.netsType])
// 需引入面部轮廓模型
.withFaceLandmarks()
// 需引入面部识别模型
.withFaceDescriptors();
if (!detect.length) {
state.faceMatcher = null;
return;
}
// 原图人脸矩阵结果
state.faceMatcher = new faceapi.FaceMatcher(detect);
// 识别图像绘制
const dims = faceapi.matchDimensions(state.targetCanvasEl, state.targetImgEl);
const resizedResults = faceapi.resizeResults(detect, dims);
resizedResults.forEach(({ detection, descriptor }) => {
const best = state.faceMatcher.findBestMatch(descriptor);
// 目标原图绘制框
new faceapi.draw.DrawBox(detection.box, {
label: best.label,
boxColor: "#55b881",
}).draw(state.targetCanvasEl);
});
}
/**根据模型参数识别绘制 */
async function fnRedrawDiscern() {
if (!state.faceMatcher) return;
console.log("Run Redraw Discern");
// 暂停视频时清除定时
if (state.discernVideoEl.paused) {
clearTimeout(state.timer);
state.timer = 0;
return;
}
// 识别绘制人脸信息
const detect = await faceapi
.detectAllFaces(state.discernVideoEl, state.netsOptions[state.netsType])
// 需引入面部轮廓模型
.withFaceLandmarks()
// 需引入面部识别模型
.withFaceDescriptors();
// 无识别数据时,清除定时重新再次识别
if (!detect) {
clearTimeout(state.timer);
state.timer = 0;
fnRedrawDiscern();
return;
}
// 匹配元素大小
const dims = faceapi.matchDimensions(
state.discernCanvasEl,
state.discernVideoEl,
true
);
const result = faceapi.resizeResults(detect, dims);
result.forEach(({ detection, descriptor }) => {
// 最佳匹配 distance越小越匹配
const best = state.faceMatcher.findBestMatch(descriptor);
// 识别图绘制框
const label = best.toString();
new faceapi.draw.DrawBox(detection.box, { label }).draw(
state.discernCanvasEl
);
});
// 定时器句柄
state.timer = setTimeout(() => fnRedrawDiscern(), 0);
}
/**启动摄像头视频媒体 */
async function fnOpen() {
if (state.stream !== null) return;
try {
state.stream = {}; // 置为空对象,避免重复点击
const stream = await navigator.mediaDevices.getUserMedia(state.constraints);
state.stream = stream;
state.discernVideoEl.srcObject = stream;
state.discernVideoEl.play();
setTimeout(() => fnRedrawDiscern(), 300);
} catch (error) {
state.stream = null; // 置为空,可点击
console.error(error);
alert("视频媒体流获取错误: " + error);
}
}
/**结束摄像头视频媒体 */
function fnClose() {
if (state.stream === null) return;
state.discernVideoEl.pause();
state.discernVideoEl.srcObject = null;
state.stream.getTracks().forEach((track) => track.stop());
state.stream = null;
clearTimeout(state.timer);
state.timer = 0;
setTimeout(() => {
// 清空画布
state.discernCanvasEl
.getContext("2d")
.clearRect(
0,
0,
state.discernCanvasEl.width,
state.discernCanvasEl.height
);
}, 500);
}
/**更换图片 */
async function fnChangeTarget(e) {
if (!state.targetImgEl || !state.targetCanvasEl) return;
if (!e.target || !e.target.files.length) return;
// 将文件显示为图像并识别
const img = await faceapi.bufferToImage(e.target.files[0]);
state.targetImgEl.src = img.src;
fnRedrawTarget();
}
// 摄像头前后切换 启用时,关闭后重开
watch(
() => state.constraints.video.facingMode,
() => {
if (state.stream !== null) {
fnClose();
fnOpen();
} else {
fnClose();
}
}
);
onMounted(() => {
fnLoadModel().then(() => fnRedrawTarget());
});
onUnmounted(() => {
fnClose();
});
</script>
<template>
<div class="page">
<div class="page_option">
<div>
<label>更换目标图片:</label>
<input
type="file"
accept="image/png, image/jpeg"
@change="fnChangeTarget($event)"
/>
</div>
<div>
<label>摄像头视频媒体:</label>
<button @click="fnOpen()" :disabled="state.stream !== null">
启动
</button>
<button @click="fnClose()">结束</button>
</div>
<div>
<label>前置or后置切换:</label>
<select v-model="state.constraints.video.facingMode">
<option value="user">前置</option>
<option value="environment">后置</option>
</select>
</div>
<div>
<label>算法模型:</label>
<select v-model="state.netsType">
<option value="ssdMobilenetv1">SSD Mobilenet V1</option>
<option value="tinyFaceDetector">Tiny Face Detector</option>
</select>
</div>
</div>
<div class="page_load" v-show="state.netsLoadModel">Load Model...</div>
<div class="page_draw" v-show="!state.netsLoadModel">
<h3>识别目标图像:</h3>
<div class="page_draw-target">
<img id="page_draw-img-target" src="/images/cp/cp01.jpg" />
<canvas id="page_draw-canvas-target"></canvas>
</div>
<h3>识别匹配视频:</h3>
<div class="page_draw-discern">
<video
id="page_draw-video"
poster="/images/720x480.png"
src="/videos/test.mp4"
muted
playsinline
></video>
<canvas id="page_draw-video-canvas"></canvas>
</div>
</div>
</div>
</template>
<style scoped></style>