-
Notifications
You must be signed in to change notification settings - Fork 4
/
Fold_CN.ipynb.txt
478 lines (478 loc) · 20.6 KB
/
Fold_CN.ipynb.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "AlphaFold2_CN.ipynb",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "G4yBrceuFbf3"
},
"source": [
"<img src=\"https://raw.githubusercontent.com/sokrypton/ColabFold/main/.github/ColabFold_Marv_Logo_Small.png\" height=\"200\" align=\"right\" style=\"height:240px\">\n",
"\n",
"##ColabFold: AlphaFold2 using MMseqs2\n",
"\n",
"简单的中文版蛋白质结构预测操作指南(中文版),基于[AlphaFold2](https://www.nature.com/articles/s41586-021-03819-2)和[Alphafold2-multimer](https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1). 序列比对方式基于[MMseqs2](mmseqs.com)和[HHsearch](https://github.com/soedinglab/hh-suite)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "kOblAo-xetgx",
"cellView": "form"
},
"source": [
"#输入蛋白质序列(默认为视频中的测试序列)然后点击上边框的 `Runtime` -> `Run all`\n",
"from google.colab import files\n",
"import os.path\n",
"import re\n",
"import hashlib\n",
"import random\n",
"\n",
"def add_hash(x,y):\n",
" return x+\"_\"+hashlib.sha1(y.encode()).hexdigest()[:5]\n",
"\n",
"query_sequence = 'MAAHKGAEHHHKAAEHHEQAAKHHHAAAEHHEKGEHEQAAHHADTAYAHHKHAEEHAAQAAKHDAEHHAPKPH' #@param {type:\"string\"}\n",
"#@markdown - Use `:` to specify inter-protein chainbreaks for **modeling complexes** (supports homo- and hetro-oligomers). For example **PI...SK:PI...SK** for a homodimer\n",
"\n",
"# remove whitespaces\n",
"query_sequence = \"\".join(query_sequence.split())\n",
"\n",
"jobname = 'test' #@param {type:\"string\"}\n",
"# remove whitespaces\n",
"basejobname = \"\".join(jobname.split())\n",
"basejobname = re.sub(r'\\W+', '', basejobname)\n",
"jobname = add_hash(basejobname, query_sequence)\n",
"while os.path.isfile(f\"{jobname}.csv\"):\n",
" jobname = add_hash(basejobname, ''.join(random.sample(query_sequence,len(query_sequence))))\n",
"\n",
"with open(f\"{jobname}.csv\", \"w\") as text_file:\n",
" text_file.write(f\"id,sequence\\n{jobname},{query_sequence}\")\n",
"\n",
"queries_path=f\"{jobname}.csv\"\n",
"\n",
"# number of models to use\n",
"use_amber = False #@param {type:\"boolean\"}\n",
"template_mode = \"none\" #@param [\"none\", \"pdb70\",\"custom\"]\n",
"#@markdown - \"none\" = no template information is used, \"pdb70\" = detect templates in pdb70, \"custom\" - upload and search own templates (PDB or mmCIF format, see [notes below](#custom_templates))\n",
"\n",
"if template_mode == \"pdb70\":\n",
" use_templates = True\n",
" custom_template_path = None\n",
"elif template_mode == \"custom\":\n",
" custom_template_path = f\"{jobname}_template\"\n",
" os.mkdir(custom_template_path)\n",
" uploaded = files.upload()\n",
" use_templates = True\n",
" for fn in uploaded.keys():\n",
" os.rename(fn, f\"{jobname}_template/{fn}\")\n",
"else:\n",
" custom_template_path = None\n",
" use_templates = False\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@markdown ### MSA options (custom MSA upload, single sequence, pairing mode)\n",
"msa_mode = \"MMseqs2 (UniRef+Environmental)\" #@param [\"MMseqs2 (UniRef+Environmental)\", \"MMseqs2 (UniRef only)\",\"single_sequence\",\"custom\"]\n",
"pair_mode = \"unpaired+paired\" #@param [\"unpaired+paired\",\"paired\",\"unpaired\"] {type:\"string\"}\n",
"#@markdown - \"unpaired+paired\" = pair sequences from same species + unpaired MSA, \"unpaired\" = seperate MSA for each chain, \"paired\" - only use paired sequences.\n",
"\n",
"# decide which a3m to use\n",
"if msa_mode.startswith(\"MMseqs2\"):\n",
" a3m_file = f\"{jobname}.a3m\"\n",
"elif msa_mode == \"custom\":\n",
" a3m_file = f\"{jobname}.custom.a3m\"\n",
" if not os.path.isfile(a3m_file):\n",
" custom_msa_dict = files.upload()\n",
" custom_msa = list(custom_msa_dict.keys())[0]\n",
" header = 0\n",
" import fileinput\n",
" for line in fileinput.FileInput(custom_msa,inplace=1):\n",
" if line.startswith(\">\"):\n",
" header = header + 1\n",
" if not line.rstrip():\n",
" continue\n",
" if line.startswith(\">\") == False and header == 1:\n",
" query_sequence = line.rstrip()\n",
" print(line, end='')\n",
"\n",
" os.rename(custom_msa, a3m_file)\n",
" queries_path=a3m_file\n",
" print(f\"moving {custom_msa} to {a3m_file}\")\n",
"else:\n",
" a3m_file = f\"{jobname}.single_sequence.a3m\"\n",
" with open(a3m_file, \"w\") as text_file:\n",
" text_file.write(\">1\\n%s\" % query_sequence)"
],
"metadata": {
"cellView": "form",
"id": "C2_sh2uAonJH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@markdown ### Advanced settings\n",
"model_type = \"auto\" #@param [\"auto\", \"AlphaFold2-ptm\", \"AlphaFold2-multimer-v1\", \"AlphaFold2-multimer-v2\"]\n",
"#@markdown - \"auto\" = protein structure prediction using \"AlphaFold2-ptm\" and complex prediction \"AlphaFold-multimer-v2\". For complexes \"AlphaFold-multimer-v[1,2]\" and \"AlphaFold-ptm\" can be used.\n",
"num_recycles = 3 #@param [1,3,6,12,24,48] {type:\"raw\"}\n",
"save_to_google_drive = False #@param {type:\"boolean\"}\n",
"\n",
"#@markdown - if the save_to_google_drive option was selected, the result zip will be uploaded to your Google Drive\n",
"dpi = 200 #@param {type:\"integer\"}\n",
"#@markdown - set dpi for image resolution\n",
"\n",
"#@markdown Don't forget to hit `Runtime` -> `Run all` after updating the form.\n",
"\n",
"\n",
"if save_to_google_drive:\n",
" from pydrive.drive import GoogleDrive\n",
" from pydrive.auth import GoogleAuth\n",
" from google.colab import auth\n",
" from oauth2client.client import GoogleCredentials\n",
" auth.authenticate_user()\n",
" gauth = GoogleAuth()\n",
" gauth.credentials = GoogleCredentials.get_application_default()\n",
" drive = GoogleDrive(gauth)\n",
" print(\"You are logged into Google Drive and are good to go!\")"
],
"metadata": {
"cellView": "form",
"id": "ADDuaolKmjGW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "iccGdbe_Pmt9",
"pycharm": {
"name": "#%%\n"
},
"cellView": "form"
},
"source": [
"#@title Install dependencies\n",
"%%bash -s $use_amber $use_templates\n",
"\n",
"set -e\n",
"\n",
"USE_AMBER=$1\n",
"USE_TEMPLATES=$2\n",
"\n",
"if [ ! -f COLABFOLD_READY ]; then\n",
" # install dependencies\n",
" # We have to use \"--no-warn-conflicts\" because colab already has a lot preinstalled with requirements different to ours\n",
" pip install -q --no-warn-conflicts \"colabfold[alphafold-minus-jax] @ git+https://github.com/sokrypton/ColabFold\"\n",
" # high risk high gain\n",
" pip install -q \"jax[cuda11_cudnn805]>=0.3.8,<0.4\" -f https://storage.googleapis.com/jax-releases/jax_releases.html\n",
" touch COLABFOLD_READY\n",
"fi\n",
"\n",
"# setup conda\n",
"if [ ${USE_AMBER} == \"True\" ] || [ ${USE_TEMPLATES} == \"True\" ]; then\n",
" if [ ! -f CONDA_READY ]; then\n",
" wget -qnc https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n",
" bash Miniconda3-latest-Linux-x86_64.sh -bfp /usr/local 2>&1 1>/dev/null\n",
" rm Miniconda3-latest-Linux-x86_64.sh\n",
" touch CONDA_READY\n",
" fi\n",
"fi\n",
"# setup template search\n",
"if [ ${USE_TEMPLATES} == \"True\" ] && [ ! -f HH_READY ]; then\n",
" conda install -y -q -c conda-forge -c bioconda kalign2=2.04 hhsuite=3.3.0 python=3.7 2>&1 1>/dev/null\n",
" touch HH_READY\n",
"fi\n",
"# setup openmm for amber refinement\n",
"if [ ${USE_AMBER} == \"True\" ] && [ ! -f AMBER_READY ]; then\n",
" conda install -y -q -c conda-forge openmm=7.5.1 python=3.7 pdbfixer 2>&1 1>/dev/null\n",
" touch AMBER_READY\n",
"fi"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "_sztQyz29DIC",
"cellView": "form"
},
"source": [
"#@title Run Prediction\n",
"\n",
"import sys\n",
"\n",
"from colabfold.download import download_alphafold_params, default_data_dir\n",
"from colabfold.utils import setup_logging\n",
"from colabfold.batch import get_queries, run, set_model_type\n",
"K80_chk = !nvidia-smi | grep \"Tesla K80\" | wc -l\n",
"if \"1\" in K80_chk:\n",
" print(\"WARNING: found GPU Tesla K80: limited to total length < 1000\")\n",
" if \"TF_FORCE_UNIFIED_MEMORY\" in os.environ:\n",
" del os.environ[\"TF_FORCE_UNIFIED_MEMORY\"]\n",
" if \"XLA_PYTHON_CLIENT_MEM_FRACTION\" in os.environ:\n",
" del os.environ[\"XLA_PYTHON_CLIENT_MEM_FRACTION\"]\n",
"\n",
"from colabfold.colabfold import plot_protein\n",
"from pathlib import Path\n",
"import matplotlib.pyplot as plt\n",
"\n",
"\n",
"# For some reason we need that to get pdbfixer to import\n",
"if use_amber and '/usr/local/lib/python3.7/site-packages/' not in sys.path:\n",
" sys.path.insert(0, '/usr/local/lib/python3.7/site-packages/')\n",
"\n",
"def prediction_callback(unrelaxed_protein, length, prediction_result, input_features, type):\n",
" fig = plot_protein(unrelaxed_protein, Ls=length, dpi=150)\n",
" plt.show()\n",
" plt.close()\n",
"\n",
"result_dir=\".\"\n",
"setup_logging(Path(\".\").joinpath(\"log.txt\"))\n",
"queries, is_complex = get_queries(queries_path)\n",
"model_type = set_model_type(is_complex, model_type)\n",
"download_alphafold_params(model_type, Path(\".\"))\n",
"run(\n",
" queries=queries,\n",
" result_dir=result_dir,\n",
" use_templates=use_templates,\n",
" custom_template_path=custom_template_path,\n",
" use_amber=use_amber,\n",
" msa_mode=msa_mode, \n",
" model_type=model_type,\n",
" num_models=5,\n",
" num_recycles=num_recycles,\n",
" model_order=[1, 2, 3, 4, 5],\n",
" is_complex=is_complex,\n",
" data_dir=Path(\".\"),\n",
" keep_existing_results=False,\n",
" recompile_padding=1.0,\n",
" rank_by=\"auto\",\n",
" pair_mode=pair_mode,\n",
" stop_at_score=float(100),\n",
" prediction_callback=prediction_callback,\n",
" dpi=dpi\n",
")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "KK7X9T44pWb7",
"cellView": "form"
},
"source": [
"#@title Display 3D structure {run: \"auto\"}\n",
"import py3Dmol\n",
"import glob\n",
"import matplotlib.pyplot as plt\n",
"from colabfold.colabfold import plot_plddt_legend\n",
"rank_num = 1 #@param [\"1\", \"2\", \"3\", \"4\", \"5\"] {type:\"raw\"}\n",
"color = \"lDDT\" #@param [\"chain\", \"lDDT\", \"rainbow\"]\n",
"show_sidechains = False #@param {type:\"boolean\"}\n",
"show_mainchains = False #@param {type:\"boolean\"}\n",
"\n",
"jobname_prefix = \".custom\" if msa_mode == \"custom\" else \"\"\n",
"if use_amber:\n",
" pdb_filename = f\"{jobname}{jobname_prefix}_relaxed_rank_{rank_num}_model_*.pdb\"\n",
"else:\n",
" pdb_filename = f\"{jobname}{jobname_prefix}_unrelaxed_rank_{rank_num}_model_*.pdb\"\n",
"\n",
"pdb_file = glob.glob(pdb_filename)\n",
"\n",
"def show_pdb(rank_num=1, show_sidechains=False, show_mainchains=False, color=\"lDDT\"):\n",
" model_name = f\"rank_{rank_num}\"\n",
" view = py3Dmol.view(js='https://3dmol.org/build/3Dmol.js',)\n",
" view.addModel(open(pdb_file[0],'r').read(),'pdb')\n",
"\n",
" if color == \"lDDT\":\n",
" view.setStyle({'cartoon': {'colorscheme': {'prop':'b','gradient': 'roygb','min':50,'max':90}}})\n",
" elif color == \"rainbow\":\n",
" view.setStyle({'cartoon': {'color':'spectrum'}})\n",
" elif color == \"chain\":\n",
" chains = len(queries[0][1]) + 1 if is_complex else 1\n",
" for n,chain,color in zip(range(chains),list(\"ABCDEFGH\"),\n",
" [\"lime\",\"cyan\",\"magenta\",\"yellow\",\"salmon\",\"white\",\"blue\",\"orange\"]):\n",
" view.setStyle({'chain':chain},{'cartoon': {'color':color}})\n",
" if show_sidechains:\n",
" BB = ['C','O','N']\n",
" view.addStyle({'and':[{'resn':[\"GLY\",\"PRO\"],'invert':True},{'atom':BB,'invert':True}]},\n",
" {'stick':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n",
" view.addStyle({'and':[{'resn':\"GLY\"},{'atom':'CA'}]},\n",
" {'sphere':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n",
" view.addStyle({'and':[{'resn':\"PRO\"},{'atom':['C','O'],'invert':True}]},\n",
" {'stick':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}}) \n",
" if show_mainchains:\n",
" BB = ['C','O','N','CA']\n",
" view.addStyle({'atom':BB},{'stick':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n",
"\n",
" view.zoomTo()\n",
" return view\n",
"\n",
"\n",
"show_pdb(rank_num,show_sidechains, show_mainchains, color).show()\n",
"if color == \"lDDT\":\n",
" plot_plddt_legend().show() "
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "11l8k--10q0C",
"cellView": "form"
},
"source": [
"#@title Plots {run: \"auto\"}\n",
"from IPython.display import display, HTML\n",
"import base64\n",
"from html import escape\n",
"\n",
"# see: https://stackoverflow.com/a/53688522\n",
"def image_to_data_url(filename):\n",
" ext = filename.split('.')[-1]\n",
" prefix = f'data:image/{ext};base64,'\n",
" with open(filename, 'rb') as f:\n",
" img = f.read()\n",
" return prefix + base64.b64encode(img).decode('utf-8')\n",
"\n",
"pae = image_to_data_url(f\"{jobname}{jobname_prefix}_PAE.png\")\n",
"cov = image_to_data_url(f\"{jobname}{jobname_prefix}_coverage.png\")\n",
"plddt = image_to_data_url(f\"{jobname}{jobname_prefix}_plddt.png\")\n",
"display(HTML(f\"\"\"\n",
"<style>\n",
" img {{\n",
" float:left;\n",
" }}\n",
" .full {{\n",
" max-width:100%;\n",
" }}\n",
" .half {{\n",
" max-width:50%;\n",
" }}\n",
" @media (max-width:640px) {{\n",
" .half {{\n",
" max-width:100%;\n",
" }}\n",
" }}\n",
"</style>\n",
"<div style=\"max-width:90%; padding:2em;\">\n",
" <h1>Plots for {escape(jobname)}</h1>\n",
" <img src=\"{pae}\" class=\"full\" />\n",
" <img src=\"{cov}\" class=\"half\" />\n",
" <img src=\"{plddt}\" class=\"half\" />\n",
"</div>\n",
"\"\"\"))\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "33g5IIegij5R",
"cellView": "form"
},
"source": [
"#@title Package and download results\n",
"#@markdown If you are having issues downloading the result archive, try disabling your adblocker and run this cell again. If that fails click on the little folder icon to the left, navigate to file: `jobname.result.zip`, right-click and select \\\"Download\\\" (see [screenshot](https://pbs.twimg.com/media/E6wRW2lWUAEOuoe?format=jpg&name=small)).\n",
"\n",
"if msa_mode == \"custom\":\n",
" print(\"Don't forget to cite your custom MSA generation method.\")\n",
"\n",
"!zip -FSr $jobname\".result.zip\" config.json $jobname*\".json\" $jobname*\".a3m\" $jobname*\"relaxed_rank_\"*\".pdb\" \"cite.bibtex\" $jobname*\".png\"\n",
"files.download(f\"{jobname}.result.zip\")\n",
"\n",
"if save_to_google_drive == True and drive:\n",
" uploaded = drive.CreateFile({'title': f\"{jobname}.result.zip\"})\n",
" uploaded.SetContentFile(f\"{jobname}.result.zip\")\n",
" uploaded.Upload()\n",
" print(f\"Uploaded {jobname}.result.zip to Google Drive with ID {uploaded.get('id')}\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "UGUBLzB3C6WN",
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# 操作指南 <a name=\"Instructions\"></a>\n",
"**Quick start**\n",
"1. 把你要预测的氨基酸序列复制进输入框.\n",
"2. 点击\"Runtime\" -> \"Run all\".\n",
"3. 目前的模型预测包括5个模块,最终会生成一个3维结构图.\n",
"\n",
"**生成文件**\n",
"\n",
"1. PDB格式的模型结构文件.\n",
"2. 模型质量图\n",
"3. 模型MSA覆盖率.\n",
"4. 其他.\n",
"**Acknowledgments**\n",
"- We thank the AlphaFold team for developing an excellent model and open sourcing the software. \n",
"\n",
"- [Söding Lab](https://www.mpibpc.mpg.de/soeding) for providing the computational resources for the MMseqs2 server\n",
"\n",
"- Richard Evans for helping to benchmark the ColabFold's Alphafold-multimer support\n",
"\n",
"- [David Koes](https://github.com/dkoes) for his awesome [py3Dmol](https://3dmol.csb.pitt.edu/) plugin, without whom these notebooks would be quite boring!\n",
"\n",
"- Do-Yoon Kim for creating the ColabFold logo.\n",
"\n",
"- A colab by Sergey Ovchinnikov ([@sokrypton](https://twitter.com/sokrypton)), Milot Mirdita ([@milot_mirdita](https://twitter.com/milot_mirdita)) and Martin Steinegger ([@thesteinegger](https://twitter.com/thesteinegger)).\n"
]
}
]
}