-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
executable file
·126 lines (112 loc) · 5.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import logging, os
import sys
import config
sys.path.insert(0, config.mxnet_path)
import mxnet as mx
from core.scheduler import multi_factor_scheduler
from core.solver import Solver
from core.metric import *
from data import *
from symbol import *
def main(config):
# log file
log_dir = "./log"
if not os.path.exists(log_dir):
os.mkdir(log_dir)
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(name)s %(levelname)s %(message)s',
datefmt='%m-%d %H:%M',
filename='{}/{}.log'.format(log_dir, config.model_prefix),
filemode='a')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(name)s %(levelname)s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
# model folder
model_dir = "./model"
if not os.path.exists(model_dir):
os.mkdir(model_dir)
# set up environment
devs = [mx.gpu(int(i)) for i in config.gpu_list]
kv = mx.kvstore.create(config.kv_store)
# set up iterator and symbol
# iterator
train, val, num_examples = imagenet_iterator(data_dir=config.data_dir,
batch_size=config.batch_size,
kv=kv)
data_names = ('data',)
label_names = ('softmax_label',)
data_shapes = [('data', (config.batch_size, 3, 224, 224))]
label_shapes = [('softmax_label', (config.batch_size,))]
symbol = eval(config.network)(num_classes=config.num_classes, config=config)
# train
epoch_size = max(int(num_examples / config.batch_size / kv.num_workers), 1)
if config.lr_step is not None:
lr_scheduler = multi_factor_scheduler(config.begin_epoch, epoch_size, step=config.lr_step,
factor=config.lr_factor)
else:
lr_scheduler = None
optimizer_params = {'learning_rate': config.lr,
'lr_scheduler': lr_scheduler,
'wd': config.wd,
'momentum': config.momentum}
optimizer = "nag"
eval_metric = ['acc']
if config.dataset == "imagenet":
eval_metric.append(mx.metric.create('top_k_accuracy', top_k=5))
# knowledge transfer
teacher_module = None
if config.kt:
eval_metric=[KTAccMetric()]
if config.dataset == 'imagenet':
eval_metric.append(KTTopkAccMetric(top_k=5))
if len(config.kt_type.split('+')) > 1:
logging.info('knowledge transfer training by {} with weight {}'.format(config.kt_type.split('+')[0], config.kt_weight[0]))
logging.info('knowledge transfer training by {} with weight {}'.format(config.kt_type.split('+')[1], config.kt_weight[1]))
else:
logging.info('knowledge transfer training by {} with weight {}'.format(config.kt_type, config.kt_weight))
label_names += config.kt_label_names
label_shapes += config.kt_label_shapes
logging.info('loading teacher model from {}-{:04d}'.format(config.teacher_prefix, config.teacher_epoch))
teacher_symbol, teacher_arg_params, teacher_aux_params = mx.model.load_checkpoint(config.teacher_prefix, config.teacher_epoch)
if len(config.kt_type.split('+')) > 1:
teacher_symbol = mx.symbol.Group([teacher_symbol.get_internals()[config.teacher_symbol[0]],
teacher_symbol.get_internals()[config.teacher_symbol[1]]])
else:
teacher_symbol = teacher_symbol.get_internals()[config.teacher_symbol]
teacher_module = mx.module.Module(teacher_symbol, context=devs)
teacher_module.bind(data_shapes=data_shapes, for_training=False, grad_req='null')
teacher_module.set_params(teacher_arg_params, teacher_aux_params)
solver = Solver(symbol=symbol,
data_names=data_names,
label_names=label_names,
data_shapes=data_shapes,
label_shapes=label_shapes,
logger=logging,
context=devs)
epoch_end_callback = mx.callback.do_checkpoint("./model/" + config.model_prefix)
batch_end_callback = mx.callback.Speedometer(config.batch_size, config.frequent)
arg_params = None
aux_params = None
if config.retrain:
logging.info('retrain from {}-{:04d}'.format(config.model_load_prefix, config.model_load_epoch))
_, arg_params, aux_params = mx.model.load_checkpoint("model/{}".format(config.model_load_prefix),
config.model_load_epoch)
initializer = mx.init.Xavier(rnd_type='gaussian', factor_type='in', magnitude=2)
solver.fit(train_data=train,
eval_data=val,
eval_metric=eval_metric,
epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback,
initializer=initializer,
arg_params=arg_params,
aux_params=aux_params,
optimizer=optimizer,
optimizer_params=optimizer_params,
begin_epoch=config.begin_epoch,
num_epoch=config.num_epoch,
kvstore=kv,
teacher_modules=teacher_module)
if __name__ == '__main__':
main(config)