-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathablateLibraryClient.cpp
145 lines (118 loc) · 8.19 KB
/
ablateLibraryClient.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#include <petsc.h>
#include <environment/runEnvironment.hpp>
#include <mathFunctions/functionFactory.hpp>
#include <memory>
#include "builder.hpp"
#include "domain/boxMesh.hpp"
#include "domain/modifiers/distributeWithGhostCells.hpp"
#include "domain/modifiers/ghostBoundaryCells.hpp"
#include "eos/perfectGas.hpp"
#include "finiteVolume/boundaryConditions/ghost.hpp"
#include "finiteVolume/compressibleFlowFields.hpp"
#include "finiteVolume/compressibleFlowSolver.hpp"
#include "finiteVolume/fluxCalculator/ausm.hpp"
#include "io/interval/fixedInterval.hpp"
#include "monitors/curveMonitor.hpp"
#include "monitors/timeStepMonitor.hpp"
#include "parameters/mapParameters.hpp"
#include "utilities/petscUtilities.hpp"
typedef struct {
PetscReal gamma;
PetscReal length;
PetscReal rhoL;
PetscReal uL;
PetscReal pL;
PetscReal rhoR;
PetscReal uR;
PetscReal pR;
} InitialConditions;
static PetscErrorCode SetInitialCondition(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx) {
InitialConditions *initialConditions = (InitialConditions *)ctx;
if (x[0] < initialConditions->length / 2.0) {
u[ablate::finiteVolume::CompressibleFlowFields::RHO] = initialConditions->rhoL;
u[ablate::finiteVolume::CompressibleFlowFields::RHOU + 0] = initialConditions->rhoL * initialConditions->uL;
PetscReal e = initialConditions->pL / ((initialConditions->gamma - 1.0) * initialConditions->rhoL);
PetscReal et = e + 0.5 * PetscSqr(initialConditions->uL);
u[ablate::finiteVolume::CompressibleFlowFields::RHOE] = et * initialConditions->rhoL;
} else {
u[ablate::finiteVolume::CompressibleFlowFields::RHO] = initialConditions->rhoR;
u[ablate::finiteVolume::CompressibleFlowFields::RHOU + 0] = initialConditions->rhoR * initialConditions->uR;
PetscReal e = initialConditions->pR / ((initialConditions->gamma - 1.0) * initialConditions->rhoR);
PetscReal et = e + 0.5 * PetscSqr(initialConditions->uR);
u[ablate::finiteVolume::CompressibleFlowFields::RHOE] = et * initialConditions->rhoR;
}
return 0;
}
static PetscErrorCode PhysicsBoundary_Euler(PetscReal time, const PetscReal *c, const PetscReal *n, const PetscScalar *a_xI, PetscScalar *a_xG, void *ctx) {
InitialConditions *initialConditions = (InitialConditions *)ctx;
if (c[0] < initialConditions->length / 2.0) {
a_xG[ablate::finiteVolume::CompressibleFlowFields::RHO] = initialConditions->rhoL;
a_xG[ablate::finiteVolume::CompressibleFlowFields::RHOU + 0] = initialConditions->rhoL * initialConditions->uL;
PetscReal e = initialConditions->pL / ((initialConditions->gamma - 1.0) * initialConditions->rhoL);
PetscReal et = e + 0.5 * PetscSqr(initialConditions->uL);
a_xG[ablate::finiteVolume::CompressibleFlowFields::RHOE] = et * initialConditions->rhoL;
} else {
a_xG[ablate::finiteVolume::CompressibleFlowFields::RHO] = initialConditions->rhoR;
a_xG[ablate::finiteVolume::CompressibleFlowFields::RHOU + 0] = initialConditions->rhoR * initialConditions->uR;
PetscReal e = initialConditions->pR / ((initialConditions->gamma - 1.0) * initialConditions->rhoR);
PetscReal et = e + 0.5 * PetscSqr(initialConditions->uR);
a_xG[ablate::finiteVolume::CompressibleFlowFields::RHOE] = et * initialConditions->rhoR;
}
return 0;
PetscFunctionReturn(0);
}
int main(int argc, char **argv) {
// initialize petsc and mpi
ablate::environment::RunEnvironment::Initialize(&argc, &argv);
ablate::utilities::PetscUtilities::Initialize();
{
// define some initial conditions
InitialConditions initialConditions{.gamma = 1.4, .length = 1.0, .rhoL = 1.0, .uL = 0.0, .pL = 1.0, .rhoR = 0.125, .uR = 0.0, .pR = .1};
// setup the run environment
ablate::parameters::MapParameters runEnvironmentParameters(std::map<std::string, std::string>{{"title", "clientExample"}});
ablate::environment::RunEnvironment::Setup(runEnvironmentParameters);
auto eos = std::make_shared<ablate::eos::PerfectGas>(std::make_shared<ablate::parameters::MapParameters>(std::map<std::string, std::string>{{"gamma", "1.4"}}));
// determine required fields for finite volume compressible flow
std::vector<std::shared_ptr<ablate::domain::FieldDescriptor>> fieldDescriptors = {std::make_shared<ablate::finiteVolume::CompressibleFlowFields>(eos)};
auto domain =
std::make_shared<ablate::domain::BoxMesh>("simpleMesh",
fieldDescriptors,
std::vector<std::shared_ptr<ablate::domain::modifiers::Modifier>>{std::make_shared<ablate::domain::modifiers::DistributeWithGhostCells>(),
std::make_shared<ablate::domain::modifiers::GhostBoundaryCells>()},
std::vector<int>{100},
std::vector<double>{0.0},
std::vector<double>{initialConditions.length},
std::vector<std::string>{"NONE"} /*boundary*/,
false /*simplex*/,
ablate::parameters::MapParameters::Create({{"dm_refine", "2"}, {"dm_distribute", ""}}));
// Set up the flow data
auto parameters = std::make_shared<ablate::parameters::MapParameters>(std::map<std::string, std::string>{{"cfl", ".4"}});
// Set the initial conditions for euler
auto initialCondition = std::make_shared<ablate::mathFunctions::FieldFunction>("euler", ablate::mathFunctions::Create(SetInitialCondition, (void *)&initialConditions));
// create a time stepper
auto timeStepper = ablate::solver::TimeStepper(domain,
ablate::parameters::MapParameters::Create({{"ts_adapt_type", "physicsConstrained"}, {"ts_max_steps", "600"}, {"ts_dt", "0.00000625"}}),
{},
std::make_shared<ablate::domain::Initializer>(initialCondition));
auto boundaryConditions = std::vector<std::shared_ptr<ablate::finiteVolume::boundaryConditions::BoundaryCondition>>{
std::make_shared<ablate::finiteVolume::boundaryConditions::Ghost>("euler", "wall left", 1, PhysicsBoundary_Euler, (void *)&initialConditions),
std::make_shared<ablate::finiteVolume::boundaryConditions::Ghost>("euler", "wall right", 2, PhysicsBoundary_Euler, (void *)&initialConditions)};
// Create a shockTube solver
auto shockTubeSolver = std::make_shared<ablate::finiteVolume::CompressibleFlowSolver>("compressibleShockTube",
ablate::domain::Region::ENTIREDOMAIN,
nullptr /*options*/,
eos,
parameters,
nullptr /*transportModel*/,
std::make_shared<ablate::finiteVolume::fluxCalculator::Ausm>(),
boundaryConditions /*boundary conditions*/);
// register the flowSolver with the timeStepper
timeStepper.Register(
shockTubeSolver,
{std::make_shared<ablate::monitors::TimeStepMonitor>(), std::make_shared<ablate::monitors::CurveMonitor>(std::make_shared<ablate::io::interval::FixedInterval>(10), "outputCurve")});
// Solve the time stepper
timeStepper.Solve();
}
ablate::environment::RunEnvironment::Finalize();
return 0;
}