diff --git a/.DS_Store b/.DS_Store index 2ba98217..97f546b3 100644 Binary files a/.DS_Store and b/.DS_Store differ diff --git a/symmer/.DS_Store b/symmer/.DS_Store index 1b6e71e6..810b0bd9 100644 Binary files a/symmer/.DS_Store and b/symmer/.DS_Store differ diff --git a/symmer/operators/base.py b/symmer/operators/base.py index 5eaacedd..c1fb59e5 100644 --- a/symmer/operators/base.py +++ b/symmer/operators/base.py @@ -21,6 +21,11 @@ from qiskit.quantum_info import SparsePauliOp warnings.simplefilter('always', UserWarning) +from qiskit._accelerate.sparse_pauli_op import ( + ZXPaulis, + to_matrix_sparse, +) + from numba.core.errors import NumbaDeprecationWarning, NumbaPendingDeprecationWarning warnings.simplefilter('ignore', category=NumbaDeprecationWarning) warnings.simplefilter('ignore', category=NumbaPendingDeprecationWarning) @@ -1464,33 +1469,45 @@ def to_sparse_matrix(self) -> csr_matrix: if self.n_qubits == 0: return csr_matrix(self.coeff_vec) - if self.n_qubits>15: - from symmer.utils import get_sparse_matrix_large_pauliwordop - sparse_matrix = get_sparse_matrix_large_pauliwordop(self) - return sparse_matrix - else: - x_int = binary_array_to_int(self.X_block).reshape(-1, 1) - z_int = binary_array_to_int(self.Z_block).reshape(-1, 1) + # if self.n_qubits>15: + # from symmer.utils import get_sparse_matrix_large_pauliwordop + # sparse_matrix = get_sparse_matrix_large_pauliwordop(self) + # return sparse_matrix + # else: + # x_int = binary_array_to_int(self.X_block).reshape(-1, 1) + # z_int = binary_array_to_int(self.Z_block).reshape(-1, 1) - Y_number = np.sum(np.bitwise_and(self.X_block, self.Z_block), axis=1) - global_phase = (-1j) ** Y_number + # Y_number = np.sum(np.bitwise_and(self.X_block, self.Z_block), axis=1) + # global_phase = (-1j) ** Y_number - dimension = 2 ** self.n_qubits - row_ind = np.repeat(np.arange(dimension).reshape(1, -1), self.X_block.shape[0], axis=0) - col_ind = np.bitwise_xor(row_ind, x_int) + # dimension = 2 ** self.n_qubits + # row_ind = np.repeat(np.arange(dimension).reshape(1, -1), self.X_block.shape[0], axis=0) + # col_ind = np.bitwise_xor(row_ind, x_int) - row_inds_and_Zint = np.bitwise_and(row_ind, z_int) - vals = global_phase.reshape(-1, 1) * (-1) ** ( - count1_in_int_bitstring(row_inds_and_Zint) % 2) # .astype(complex)) + # row_inds_and_Zint = np.bitwise_and(row_ind, z_int) + # vals = global_phase.reshape(-1, 1) * (-1) ** ( + # count1_in_int_bitstring(row_inds_and_Zint) % 2) # .astype(complex)) - values_and_coeff = np.einsum('ij,i->ij', vals, self.coeff_vec) + # values_and_coeff = np.einsum('ij,i->ij', vals, self.coeff_vec) - sparse_matrix = csr_matrix( - (values_and_coeff.flatten(), (row_ind.flatten(), col_ind.flatten())), - shape=(dimension, dimension), - dtype=complex - ) - return sparse_matrix + # sparse_matrix = csr_matrix( + # (values_and_coeff.flatten(), (row_ind.flatten(), col_ind.flatten())), + # shape=(dimension, dimension), + # dtype=complex + # ) + # return sparse_matrix + + phase = np.zeros(self.n_terms, dtype=np.uint8) + zx = ZXPaulis( + self.X_block[:,::-1], + self.Z_block[:,::-1], + phase, + self.coeff_vec, + ) + + data, indices, indptr = to_matrix_sparse(zx, force_serial=False) + side = 1 << self.n_qubits + return csr_matrix((data, indices, indptr), shape=(side, side)) def conjugate_op(self, R: 'PauliwordOp') -> 'PauliwordOp': """