-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
170 lines (133 loc) · 5.7 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as f
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import ConcatDataset
from sklearn.preprocessing import StandardScaler
class SegLoader(Dataset):
def __init__(self, data_dir, split_size, split, **kwargs):
# split:train,val,test
super().__init__()
self.data_dir = data_dir
# print(self.data_dir.split('/')[-1])
self.split_size = split_size
self._load_data(data_dir, split)
def _load_data(self, data_dir, split):
data, dlabel, wlabel = [], [], []
data_ = np.load(os.path.join(data_dir, split)+ "/data.npy")
label_ = np.load(os.path.join(data_dir, split)+ "/label.npy")
# data_, label_, (length, input_size) = np.load(filepath, allow_pickle=True)
if self.data_dir.split('/')[-1] == 'PSM':
label_ = label_.squeeze()
data_, dlabel_, wlabel_ = self._preprocess(data_, label_, self.split_size)
data.append(data_)
dlabel.append(dlabel_)
wlabel.append(wlabel_)
# self.input_size = input_size
self.data = torch.cat(data, dim=0)
self.dlabel = torch.cat(dlabel, dim=0)
self.wlabel = torch.cat(wlabel, dim=0)
# print(self.data.size())
# print(self.dlabel.size())
# print(self.wlabel.size())
def _preprocess(self, data, label, split_size):
# normalize
scaler = StandardScaler()
scaler.fit(data)
data = scaler.transform(data)
# split
data = torch.Tensor(data)
data = f.pad(data, (0, 0, split_size - data.shape[0] % split_size, 0), 'constant', 0)
data = torch.unsqueeze(data, dim=0)
data = torch.cat(torch.split(data, split_size, dim=1), dim=0)
label = torch.Tensor(label)
label = f.pad(label, (split_size - label.shape[0] % split_size, 0), 'constant', 0)
label = torch.unsqueeze(label, dim=0)
label = torch.cat(torch.split(label, split_size, dim=1), dim=0)
dlabel = label
wlabel = torch.max(label, dim=1)[0]
return data, dlabel, wlabel
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return {
'data': self.data[idx],
'dlabel': self.dlabel[idx],
'wlabel': self.wlabel[idx]
}
class PULoader(Dataset):
def __init__(self, samples, labels):
self.samples = samples
self.labels = labels
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
sample = self.samples[index]
label = self.labels[index]
return sample, label
def get_segment(args):
train_dataset = SegLoader(args.data_dir, args.win_size, 'train')
valid_dataset = SegLoader(args.data_dir, args.win_size, 'valid')
test_dataset = SegLoader(args.data_dir, args.win_size, 'test')
# whole dataset
combined_dataset = ConcatDataset([train_dataset, valid_dataset, test_dataset])
train_loader = DataLoader(dataset=train_dataset, batch_size=10000, shuffle=False, num_workers=1)
valid_loader = DataLoader(dataset=valid_dataset, batch_size=10000, shuffle=False, num_workers=1)
test_loader = DataLoader(dataset=test_dataset, batch_size=10000, shuffle=False, num_workers=1)
dataloader = DataLoader(dataset=combined_dataset, batch_size=args.batch_size, shuffle=False, num_workers=1)
print("The information of the dataset:")
# list = tensor.numpy().tolist()
for _, train_batch in enumerate(train_loader):
train_data = train_batch['data']
train_wlabel = train_batch['wlabel']
train_dlabel = train_batch['dlabel']
print("The size of train_data:",train_data.size())
print("The num of anomaly instances:",torch.sum(train_wlabel))
for _, valid_batch in enumerate(valid_loader):
valid_data = valid_batch['data']
valid_wlabel = valid_batch['wlabel']
valid_dlabel = valid_batch['dlabel']
print("The size of valid_data:",valid_data.size())
print("The num of anomaly instances:",torch.sum(valid_wlabel))
for _, test_batch in enumerate(test_loader):
test_data = test_batch['data']
test_wlabel = test_batch['wlabel']
test_dlabel = test_batch['dlabel']
print("The size of test_data:",test_data.size())
print("The num of anomaly instances:",torch.sum(test_wlabel))
print("The num of anomaly points:",torch.sum(test_dlabel))
data_ = torch.cat((train_data,valid_data,test_data),dim=0)
wlabel_ = torch.cat((train_wlabel,valid_wlabel,test_wlabel),dim=0)
dlabel_ = torch.cat((train_dlabel,valid_dlabel,test_dlabel),dim=0)
print("The whole data size:",data_.size()) # data: torch.Size([1452, 100, 8])
data = data_.tolist()
wlabel = wlabel_.tolist()
dlabel = dlabel_.tolist()
train_wlabel_ = train_wlabel.tolist()
valid_wlabel_ = valid_wlabel.tolist()
test_wlabel_ = test_wlabel.tolist()
train_i = []
train_n = []
valid_i = []
valid_n = []
test_i = []
test_n = []
for i in range(len(train_wlabel_)):
if train_wlabel_[i]>0:
train_i.append(i+1)
else:
train_n.append(i+1)
for i in range(len(valid_wlabel_)):
if valid_wlabel_[i]>0:
valid_i.append(i+1)
else:
valid_n.append(i+1)
for i in range(len(test_wlabel_)):
if test_wlabel_[i]>0:
test_i.append(i+1)
else:
test_n.append(i+1)
return train_i, train_n, valid_i, valid_n, test_i, test_n, data, wlabel, dataloader, dlabel