-
Notifications
You must be signed in to change notification settings - Fork 11
/
eval_knn.py
566 lines (473 loc) · 21.1 KB
/
eval_knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import builtins
from collections import Counter, OrderedDict
from random import shuffle
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import torch.nn.functional as F
import numpy as np
import faiss
from tools import *
from models.resnet import resnet18, resnet50
from models.alexnet import AlexNet as alexnet
from models.mobilenet import MobileNetV2 as mobilenet
# from models.resnet_swav import resnet50w5, resnet50 as swav_resnet50
# from models.resnet_byol import resnet50 as byol_resnet50
# from models.resnet_gn_ws import l_resnet18, l_resnet50
from eval_linear import load_weights
# from file_dataset import FileDataset
parser = argparse.ArgumentParser(description='NN evaluation')
parser.add_argument('data', metavar='DIR', help='path to dataset')
parser.add_argument('--dataset', type=str, default='imagenet',
choices=['imagenet', 'imagenet100', 'imagenet-lt'],
help='use full or subset of the dataset')
parser.add_argument('-j', '--workers', default=8, type=int,
help='number of data loading workers (default: 4)')
parser.add_argument('-a', '--arch', type=str, default='alexnet',
choices=['alexnet' , 'resnet18' , 'resnet50', 'mobilenet' ,
'l_resnet18', 'l_resnet50',
'two_resnet50', 'one_resnet50',
'moco_alexnet' , 'moco_resnet18' , 'moco_resnet50', 'moco_mobilenet', 'resnet50w5', 'teacher_resnet18', 'teacher_resnet50',
'sup_alexnet' , 'sup_resnet18' , 'sup_resnet50', 'sup_mobilenet', 'pt_alexnet', 'swav_resnet50', 'byol_resnet50'])
parser.add_argument('-b', '--batch-size', default=256, type=int,
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('-p', '--print-freq', default=90, type=int,
help='print frequency (default: 10)')
parser.add_argument('--save', default='./output/cluster_alignment_1', type=str,
help='experiment output directory')
parser.add_argument('--weights', dest='weights', type=str,
help='pre-trained model weights')
parser.add_argument('--load_cache', action='store_true',
help='should the features be recomputed or loaded from the cache')
parser.add_argument('-k', default=1, type=int, help='k in kNN')
parser.add_argument('--debug', action='store_true', help='whether in debug mode or not')
TEMP = 0.04
def main():
global logger
args = parser.parse_args()
makedirs(args.save)
if not args.debug:
logger = get_logger(
logpath=os.path.join(args.save, 'logs'),
# logpath=os.path.join(args.save, 'knn.logs'),
filepath=os.path.abspath(__file__)
)
def print_pass(*args):
logger.info(*args)
builtins.print = print_pass
print(args)
main_worker(args)
def get_model(args):
model = None
if args.arch == 'alexnet' :
model = alexnet()
model.fc = nn.Sequential()
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(args.weights)
if 'model' in checkpoint:
sd = checkpoint['model']
else:
sd = checkpoint['state_dict']
sd = {k.replace('module.', ''): v for k, v in sd.items()}
sd = {k: v for k, v in sd.items() if 'fc' not in k}
sd = {k: v for k, v in sd.items() if 'encoder_k' not in k}
sd = {k.replace('encoder_q.', ''): v for k, v in sd.items()}
sd = {('module.'+k): v for k, v in sd.items()}
msg = model.load_state_dict(sd, strict=False)
print(model)
print(msg)
elif args.arch == 'pt_alexnet' :
model = models.alexnet(num_classes=16000)
checkpoint = torch.load(args.weights)
sd = checkpoint['state_dict']
sd = {k.replace('module.', ''): v for k, v in sd.items()}
msg = model.load_state_dict(sd, strict=True)
classif = list(model.classifier.children())[:5]
model.classifier = nn.Sequential(*classif)
model = torch.nn.DataParallel(model).cuda()
print(model)
print(msg)
elif args.arch == 'resnet18' :
model = resnet18()
model.fc = nn.Sequential()
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(args.weights)
if 'model' in checkpoint:
sd = checkpoint['model']
else:
sd = checkpoint['state_dict']
sd = {k.replace('module.', ''): v for k, v in sd.items()}
sd = {k: v for k, v in sd.items() if 'fc' not in k}
sd = {k: v for k, v in sd.items() if 'encoder_k' not in k}
sd = {k.replace('encoder_q.', ''): v for k, v in sd.items()}
sd = {('module.'+k): v for k, v in sd.items()}
msg = model.load_state_dict(sd, strict=False)
print(model)
print(msg)
elif args.arch == 'one_resnet50' :
model = resnet50()
model.fc = nn.Sequential()
checkpoint = torch.load(args.weights)
if 'model' in checkpoint:
sd = checkpoint['model']
else:
sd = checkpoint['state_dict']
sd = {k.replace('module.', ''): v for k, v in sd.items()}
sd = {k: v for k, v in sd.items() if 'projection' not in k}
sd = {k: v for k, v in sd.items() if 'prediction' not in k}
sd = {k: v for k, v in sd.items() if 'pred_' not in k}
sd = {k: v for k, v in sd.items() if 'encoder_two' not in k}
sd = {k.replace('encoder_one.', ''): v for k, v in sd.items()}
sd = {k.replace('backbone.', ''): v for k, v in sd.items()}
model.load_state_dict(sd, strict=True)
model = torch.nn.DataParallel(model).cuda()
elif args.arch == 'two_resnet50' :
model = resnet50()
model.fc = nn.Sequential()
checkpoint = torch.load(args.weights)
if 'model' in checkpoint:
sd = checkpoint['model']
else:
sd = checkpoint['state_dict']
sd = {k.replace('module.', ''): v for k, v in sd.items()}
sd = {k: v for k, v in sd.items() if 'projection' not in k}
sd = {k: v for k, v in sd.items() if 'prediction' not in k}
sd = {k: v for k, v in sd.items() if 'pred_' not in k}
sd = {k: v for k, v in sd.items() if 'encoder_one' not in k}
sd = {k.replace('encoder_two.', ''): v for k, v in sd.items()}
sd = {k.replace('backbone.', ''): v for k, v in sd.items()}
model.load_state_dict(sd, strict=True)
model = torch.nn.DataParallel(model).cuda()
elif args.arch == 'l_resnet18' :
model = l_resnet18()
model.fc = nn.Sequential()
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(args.weights)
if 'model' in checkpoint:
sd = checkpoint['model']
else:
sd = checkpoint['state_dict']
sd = {k.replace('module.', ''): v for k, v in sd.items()}
sd = {k: v for k, v in sd.items() if 'fc' not in k}
sd = {k: v for k, v in sd.items() if 'encoder_k' not in k}
sd = {k.replace('encoder_q.', ''): v for k, v in sd.items()}
sd = {('module.'+k): v for k, v in sd.items()}
msg = model.load_state_dict(sd, strict=False)
print(model)
print(msg)
elif 'teacher_' in args.arch:
if 'resnet18' in args.arch:
model = resnet18()
elif 'resnet50' in args.arch:
model = resnet50()
model.fc = nn.Sequential()
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(args.weights)
if 'model' in checkpoint:
sd = checkpoint['model']
else:
sd = checkpoint['state_dict']
sd = {k.replace('module.', ''): v for k, v in sd.items()}
sd = {k: v for k, v in sd.items() if 'fc' not in k}
sd = {k: v for k, v in sd.items() if 'predict_q' not in k}
sd = {k: v for k, v in sd.items() if 'queue' not in k}
new_sd = {}
for key in sd.keys():
if 'encoder_k' in key and 'running_' not in key:
new_sd['module.' + key.replace('encoder_k.', '')] = sd[key]
if 'encoder_q' in key and 'running_' in key:
new_sd['module.' + key.replace('encoder_q.', '')] = sd[key]
msg = model.load_state_dict(new_sd, strict=True)
print(model)
print(msg)
elif args.arch == 'mobilenet' :
model = mobilenet()
model.fc = nn.Sequential()
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(args.weights)
msg = model.load_state_dict(checkpoint['model'] , strict=False)
print(model)
print(msg)
elif args.arch == 'resnet50' :
model = resnet50()
model.fc = nn.Sequential()
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(args.weights)
if 'model' in checkpoint:
sd = checkpoint['model']
else:
sd = checkpoint['state_dict']
sd = {k.replace('module.', ''): v for k, v in sd.items()}
sd = {k: v for k, v in sd.items() if 'fc' not in k}
sd = {k: v for k, v in sd.items() if 'encoder_k' not in k}
sd = {k.replace('encoder_q.', ''): v for k, v in sd.items()}
sd = {('module.'+k): v for k, v in sd.items()}
msg = model.load_state_dict(sd, strict=False)
print(model)
print(msg)
elif args.arch == 'byol_resnet50' :
model = byol_resnet50()
model.fc = nn.Sequential()
checkpoint = torch.load(args.weights)
if 'model' in checkpoint:
sd = checkpoint['model']
else:
sd = checkpoint['state_dict']
sd = {k.replace('module.', ''): v for k, v in sd.items()}
sd = {k: v for k, v in sd.items() if 'fc' not in k}
sd = {k: v for k, v in sd.items() if 'encoder_k' not in k}
sd = {k: v for k, v in sd.items() if 'predict_q' not in k}
sd = {k: v for k, v in sd.items() if 'queue' not in k}
sd = {k.replace('encoder_q.', ''): v for k, v in sd.items()}
msg = model.load_state_dict(sd, strict=True)
print(model)
print(msg)
model = torch.nn.DataParallel(model).cuda()
elif args.arch == 'moco_alexnet' :
model = alexnet()
model.fc = nn.Sequential()
model = nn.Sequential(OrderedDict([('encoder_q', model)]))
model = model.cuda()
checkpoint = torch.load(args.weights)
model.load_state_dict(checkpoint['state_dict'] , strict=False)
elif args.arch == 'moco_resnet18' :
model = resnet18().cuda()
model = nn.Sequential(OrderedDict([('encoder_q' , model)]))
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(args.weights)
msg = model.load_state_dict(checkpoint['state_dict'] , strict=False)
print(msg)
# model.module.encoder_q.fc = nn.Sequential()
elif args.arch == 'moco_mobilenet' :
model = mobilenet()
model.fc = nn.Sequential()
model = nn.Sequential(OrderedDict([('encoder_q', model)]))
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(args.weights)
model.load_state_dict(checkpoint['state_dict'], strict=False)
elif args.arch == 'moco_resnet50' :
model = resnet50().cuda()
model = nn.Sequential(OrderedDict([('encoder_q' , model)]))
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(args.weights)
model.load_state_dict(checkpoint['state_dict'] , strict=False)
model.module.encoder_q.fc = nn.Sequential()
elif args.arch == 'resnet50w5':
model = resnet50w5()
model.l2norm = None
load_weights(model, args.weights)
model = torch.nn.DataParallel(model).cuda()
elif args.arch == 'swav_resnet50':
model = swav_resnet50()
model.l2norm = None
load_weights(model, args.weights)
model = torch.nn.DataParallel(model).cuda()
elif args.arch == 'sup_alexnet' :
# model = models.alexnet(pretrained=True)
# modules = list(model.children())[:-1]
# classifier_modules = list(model.classifier.children())[:-1]
# modules.append(Flatten())
# modules.append(nn.Sequential(*classifier_modules))
# model = nn.Sequential(*modules)
# model = model.cuda()
####### modified #######
model = models.alexnet(pretrained=False)
model.classifier = nn.Sequential()
modules = list(model.children())
modules.append(nn.Flatten())
model = nn.Sequential(*modules)
model = model.cuda()
elif args.arch == 'sup_resnet18' :
model = models.resnet18(pretrained=True)
model.fc = nn.Sequential()
model = torch.nn.DataParallel(model).cuda()
elif args.arch == 'sup_mobilenet' :
model = models.mobilenet_v2(pretrained=True)
model.classifier = nn.Sequential()
model = torch.nn.DataParallel(model).cuda()
elif args.arch == 'sup_resnet50' :
model = models.resnet50(pretrained=True)
model.fc = nn.Sequential()
model = torch.nn.DataParallel(model).cuda()
for param in model.parameters():
param.requires_grad = False
return model
class ImageFolderEx(datasets.ImageFolder) :
def __getitem__(self, index):
sample, target = super(ImageFolderEx, self).__getitem__(index)
return index, sample, target
# class FileDatasetEx(FileDataset) :
# def __getitem__(self, index):
# sample, target = super(FileDatasetEx, self).__getitem__(index)
# return index, sample, target
def get_loaders(dataset_dir, bs, workers, dataset='imagenet'):
traindir = os.path.join(dataset_dir, 'train')
valdir = os.path.join(dataset_dir, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
augmentation = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
train_dataset = ImageFolderEx(traindir, augmentation)
val_dataset = ImageFolderEx(valdir, augmentation)
if dataset == 'imagenet100':
subset_classes(train_dataset, num_classes=100)
subset_classes(val_dataset, num_classes=100)
train_loader = DataLoader(
train_dataset, batch_size=bs, shuffle=False,
num_workers=workers, pin_memory=True,
)
val_loader = DataLoader(
val_dataset, batch_size=bs, shuffle=False,
num_workers=workers, pin_memory=True,
)
return train_loader, val_loader
def main_worker(args):
start = time.time()
# Get train/val loader
# ---------------------------------------------------------------
train_loader, val_loader = get_loaders(args.data, args.batch_size, args.workers, args.dataset)
# Create and load the model
# If you want to evaluate your model, modify this part and load your model
# ------------------------------------------------------------------------
# MODIFY 'get_model' TO EVALUATE YOUR MODEL
model = get_model(args)
# ------------------------------------------------------------------------
# Forward training samples throw the model and cache feats
# ------------------------------------------------------------------------
cudnn.benchmark = True
cached_feats = '%s/train_feats.pth.tar' % args.save
if args.load_cache and os.path.exists(cached_feats):
print('load train feats from cache =>')
train_feats, train_labels, train_inds = torch.load(cached_feats)
else:
print('get train feats =>')
train_feats, train_labels, train_inds = get_feats(train_loader, model, args.print_freq)
torch.save((train_feats, train_labels, train_inds), cached_feats)
cached_feats = '%s/val_feats.pth.tar' % args.save
if args.load_cache and os.path.exists(cached_feats):
print('load val feats from cache =>')
val_feats, val_labels, val_inds = torch.load(cached_feats)
else:
print('get val feats =>')
val_feats, val_labels, val_inds = get_feats(val_loader, model, args.print_freq)
torch.save((val_feats, val_labels, val_inds), cached_feats)
# ------------------------------------------------------------------------
# Calculate NN accuracy on validation set
# ------------------------------------------------------------------------
# train_feats = l2_normalize(train_feats)
# val_feats = l2_normalize(val_feats)
# mean = torch.mean(train_feats, dim=0)
# std = torch.std(train_feats, dim=0)
# stdmean = std.mean()
# train_feats = train_feats / stdmean
# val_feats = val_feats / stdmean
# train_feats = train_feats / std
# val_feats = val_feats / std
# train_feats = (train_feats - mean) / std
# val_feats = (val_feats - mean) / std
# train_feats = train_feats - mean
# val_feats = val_feats - mean
# train_feats = train_feats / TEMP
# val_feats = val_feats / TEMP
train_feats = l2_normalize(train_feats)
val_feats = l2_normalize(val_feats)
for k in [1,20]:
print(k)
acc = faiss_knn(train_feats, train_labels, val_feats, val_labels, k)
nn_time = time.time() - start
print('=> time : {:.2f}s'.format(nn_time))
print(' * Acc {:.2f}'.format(acc))
def l2_normalize(x):
return x / x.norm(2, dim=1, keepdim=True)
def faiss_knn(feats_train, targets_train, feats_val, targets_val, k):
feats_train = feats_train.numpy()
targets_train = targets_train.numpy()
feats_val = feats_val.numpy()
targets_val = targets_val.numpy()
d = feats_train.shape[-1]
index = faiss.IndexFlatL2(d) # build the index
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = True
co.shard = True
gpu_index = faiss.index_cpu_to_all_gpus(index, co)
gpu_index.add(feats_train)
D, I = gpu_index.search(feats_val, k)
pred = np.zeros(I.shape[0], dtype=np.int)
conf_mat = np.zeros((1000, 1000), dtype=np.int)
for i in range(I.shape[0]):
votes = list(Counter(targets_train[I[i]]).items())
shuffle(votes)
pred[i] = max(votes, key=lambda x: x[1])[0]
conf_mat[targets_val[i], pred[i]] += 1
acc = 100.0 * (pred == targets_val).mean()
assert acc == (100.0 * (np.trace(conf_mat) / np.sum(conf_mat)))
# per_cat_acc = 100.0 * (np.diag(conf_mat) / np.sum(conf_mat, axis=1))
# sparse_cats = [58, 155, 356, 747, 865, 234, 268, 384, 385, 491, 498, 538, 646, 650, 726, 860, 887, 15, 170, 231]
# s = ' '.join('{}'.format(c) for c in sparse_cats)
# print('==> cats: {}'.format(s))
# s = ' '.join('{:.1f}'.format(a) for a in per_cat_acc[sparse_cats])
# print('==> acc/cat: {}'.format(s))
# print('==> mean acc: {}'.format(per_cat_acc[sparse_cats].mean()))
return acc
def get_feats(loader, model, print_freq):
batch_time = AverageMeter('Time', ':6.3f')
progress = ProgressMeter(
len(loader),
[batch_time],
prefix='Test: ')
# switch to evaluate mode
model.eval()
feats, labels, indices, ptr = None, None, None, 0
with torch.no_grad():
end = time.time()
for i, (index, images, target) in enumerate(loader):
images = images.cuda(non_blocking=True)
cur_targets = target.cpu()
cur_feats = model(images).cpu()
cur_indices = index.cpu()
B, D = cur_feats.shape
inds = torch.arange(B) + ptr
if not ptr:
feats = torch.zeros((len(loader.dataset), D)).float()
labels = torch.zeros(len(loader.dataset)).long()
indices = torch.zeros(len(loader.dataset)).long()
feats.index_copy_(0, inds, cur_feats)
labels.index_copy_(0, inds, cur_targets)
indices.index_copy_(0, inds, cur_indices)
ptr += B
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print(progress.display(i))
return feats, labels, indices
def subset_classes(dataset, num_classes=10):
np.random.seed(1234)
all_classes = sorted(dataset.class_to_idx.items(), key=lambda x: x[1])
subset_classes = [all_classes[i] for i in np.random.permutation(len(all_classes))[:num_classes]]
subset_classes = sorted(subset_classes, key=lambda x: x[1])
dataset.classes_to_idx = {c: i for i, (c, _) in enumerate(subset_classes)}
dataset.classes = [c for c, _ in subset_classes]
orig_to_new_inds = {orig_ind: new_ind for new_ind, (_, orig_ind) in enumerate(subset_classes)}
dataset.samples = [(p, orig_to_new_inds[i]) for p, i in dataset.samples if i in orig_to_new_inds]
if __name__ == '__main__':
main()