-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathyolov5_seg_onnx.cpp
306 lines (275 loc) · 11 KB
/
yolov5_seg_onnx.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#include "yolov5_seg_onnx.h"
using namespace std;
using namespace cv;
using namespace cv::dnn;
using namespace Ort;
bool Yolov5SegOnnx::ReadModel(const std::string& modelPath, bool isCuda, int cudaID, bool warmUp) {
if (_batchSize < 1) _batchSize = 1;
try
{
if (!CheckModelPath(modelPath))
return false;
std::vector<std::string> available_providers = GetAvailableProviders();
auto cuda_available = std::find(available_providers.begin(), available_providers.end(), "CUDAExecutionProvider");
if (isCuda && (cuda_available == available_providers.end()))
{
std::cout << "Your ORT build without GPU. Change to CPU." << std::endl;
std::cout << "************* Infer model on CPU! *************" << std::endl;
}
else if (isCuda && (cuda_available != available_providers.end()))
{
//if Error code:LNK2019 of OrtSessionOptionsAppendExecutionProvider_CUDA or AppendExecutionProvider_CUDA,your onnxruntime is CPU based.
// comment it out and rebuild.
#if ORT_API_VERSION < ORT_OLD_VISON
OrtCUDAProviderOptions cudaOption;
cudaOption.device_id = cudaID;
_OrtSessionOptions.AppendExecutionProvider_CUDA(cudaOption);
#else
_OrtStatus = OrtSessionOptionsAppendExecutionProvider_CUDA(_OrtSessionOptions, cudaID);
#endif
}
else
{
std::cout << "************* Infer model on CPU! *************" << std::endl;
}
_OrtSessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
#ifdef _WIN32
std::wstring model_path(modelPath.begin(), modelPath.end());
_OrtSession = new Ort::Session(_OrtEnv, model_path.c_str(), _OrtSessionOptions);
#else
_OrtSession = new Ort::Session(_OrtEnv, modelPath.c_str(), _OrtSessionOptions);
#endif
//init input
_inputNodesNum = _OrtSession->GetInputCount();
#if ORT_API_VERSION < ORT_OLD_VISON
_inputName = _OrtSession->GetInputName(0, _OrtAllocator);
_inputNodeNames.push_back(_inputName);
#else
_inputName = std::move(_OrtSession->GetInputNameAllocated(0, _OrtAllocator));
_inputNodeNames.push_back(_inputName.get());
#endif
Ort::TypeInfo inputTypeInfo = _OrtSession->GetInputTypeInfo(0);
auto input_tensor_info = inputTypeInfo.GetTensorTypeAndShapeInfo();
_inputNodeDataType = input_tensor_info.GetElementType();
_inputTensorShape = input_tensor_info.GetShape();
if (_inputTensorShape[0] == -1)
{
_isDynamicShape = true;
_inputTensorShape[0] = _batchSize;
}
if (_inputTensorShape[2] == -1 || _inputTensorShape[3] == -1) {
_isDynamicShape = true;
_inputTensorShape[2] = _netHeight;
_inputTensorShape[3] = _netWidth;
}
//init output
_outputNodesNum = _OrtSession->GetOutputCount();
if (_outputNodesNum != 2) {
cout << "This model has " << _outputNodesNum << "output, which is not a segmentation model.Please check your model name or path!" << endl;
return false;
}
#if ORT_API_VERSION < ORT_OLD_VISON
_output_name0 = _OrtSession->GetOutputName(0, _OrtAllocator);
_output_name1 = _OrtSession->GetOutputName(1, _OrtAllocator);
#else
_output_name0 = std::move(_OrtSession->GetOutputNameAllocated(0, _OrtAllocator));
_output_name1 = std::move(_OrtSession->GetOutputNameAllocated(1, _OrtAllocator));
#endif
Ort::TypeInfo type_info_output0(nullptr);
Ort::TypeInfo type_info_output1(nullptr);
bool flag = false;
#if ORT_API_VERSION < ORT_OLD_VISON
flag = strcmp(_output_name0, _output_name1) < 0;
#else
flag = strcmp(_output_name0.get(), _output_name1.get()) < 0;
#endif
if (flag) //make sure "output0" is in front of "output1"
{
type_info_output0 = _OrtSession->GetOutputTypeInfo(0); //output0
type_info_output1 = _OrtSession->GetOutputTypeInfo(1); //output1
#if ORT_API_VERSION < ORT_OLD_VISON
_outputNodeNames.push_back(_output_name0);
_outputNodeNames.push_back(_output_name1);
#else
_outputNodeNames.push_back(_output_name0.get());
_outputNodeNames.push_back(_output_name1.get());
#endif
}
else {
type_info_output0 = _OrtSession->GetOutputTypeInfo(1); //output0
type_info_output1 = _OrtSession->GetOutputTypeInfo(0); //output1
#if ORT_API_VERSION < ORT_OLD_VISON
_outputNodeNames.push_back(_output_name1);
_outputNodeNames.push_back(_output_name0);
#else
_outputNodeNames.push_back(_output_name1.get());
_outputNodeNames.push_back(_output_name0.get());
#endif
}
auto tensor_info_output0 = type_info_output0.GetTensorTypeAndShapeInfo();
_outputNodeDataType = tensor_info_output0.GetElementType();
_outputTensorShape = tensor_info_output0.GetShape();
auto tensor_info_output1 = type_info_output1.GetTensorTypeAndShapeInfo();
if (isCuda && warmUp) {
//draw run
cout << "Start warming up" << endl;
size_t input_tensor_length = VectorProduct(_inputTensorShape);
float* temp = new float[input_tensor_length];
std::vector<Ort::Value> input_tensors;
std::vector<Ort::Value> output_tensors;
input_tensors.push_back(Ort::Value::CreateTensor<float>(
_OrtMemoryInfo, temp, input_tensor_length, _inputTensorShape.data(),
_inputTensorShape.size()));
for (int i = 0; i < 3; ++i) {
output_tensors = _OrtSession->Run(_OrtRunOptions,
_inputNodeNames.data(),
input_tensors.data(),
_inputNodeNames.size(),
_outputNodeNames.data(),
_outputNodeNames.size());
}
delete[]temp;
}
}
catch (const std::exception&) {
return false;
}
return true;
}
int Yolov5SegOnnx::Preprocessing(const std::vector<cv::Mat>& srcImgs, std::vector<cv::Mat>& outSrcImgs, std::vector<cv::Vec4d>& params) {
outSrcImgs.clear();
Size input_size = Size(_netWidth, _netHeight);
for (int i = 0; i < srcImgs.size(); ++i) {
Mat temp_img = srcImgs[i];
Vec4d temp_param = {1,1,0,0};
if (temp_img.size() != input_size) {
Mat borderImg;
LetterBox(temp_img, borderImg, temp_param, input_size, false, false, true, 32);
//cout << borderImg.size() << endl;
outSrcImgs.push_back(borderImg);
params.push_back(temp_param);
}
else {
outSrcImgs.push_back(temp_img);
params.push_back(temp_param);
}
}
int lack_num = _batchSize- srcImgs.size();
if (lack_num > 0) {
for (int i = 0; i < lack_num; ++i) {
Mat temp_img = Mat::zeros(input_size, CV_8UC3);
Vec4d temp_param = { 1,1,0,0 };
outSrcImgs.push_back(temp_img);
params.push_back(temp_param);
}
}
return 0;
}
bool Yolov5SegOnnx::OnnxDetect(cv::Mat& srcImg, std::vector<OutputSeg>& output) {
vector<cv::Mat> input_data = { srcImg };
std::vector<std::vector<OutputSeg>> tenp_output;
if (OnnxBatchDetect(input_data, tenp_output)) {
output = tenp_output[0];
return true;
}
else return false;
}
bool Yolov5SegOnnx::OnnxBatchDetect(std::vector<cv::Mat>& srcImgs, std::vector<std::vector<OutputSeg>>& output) {
vector<Vec4d> params;
vector<Mat> input_images;
Size input_size(_netWidth, _netHeight);
//preprocessing
Preprocessing(srcImgs, input_images, params);
Mat blob = cv::dnn::blobFromImages(input_images, 1 / 255.0, input_size, Scalar(0, 0, 0), true, false);
size_t input_tensor_length = VectorProduct(_inputTensorShape);
std::vector<Ort::Value> input_tensors;
std::vector<Ort::Value> output_tensors;
input_tensors.push_back(Ort::Value::CreateTensor<float>(_OrtMemoryInfo, (float*)blob.data, input_tensor_length, _inputTensorShape.data(), _inputTensorShape.size()));
output_tensors = _OrtSession->Run(_OrtRunOptions,
_inputNodeNames.data(),
input_tensors.data(),
_inputNodeNames.size(),
_outputNodeNames.data(),
_outputNodeNames.size()
);
//post-process
float* pdata = output_tensors[0].GetTensorMutableData<float>();
_outputTensorShape = output_tensors[0].GetTensorTypeAndShapeInfo().GetShape();
_outputMaskTensorShape = output_tensors[1].GetTensorTypeAndShapeInfo().GetShape();
vector<int> mask_protos_shape = { 1,(int)_outputMaskTensorShape[1],(int)_outputMaskTensorShape[2],(int)_outputMaskTensorShape[3] };
int mask_protos_length = VectorProduct(mask_protos_shape);
int64_t one_output_length = VectorProduct(_outputTensorShape) / _outputTensorShape[0];
int net_width = _outputTensorShape[2];
int net_height = _outputTensorShape[1];
int score_length = net_width - 37;
for (int img_index = 0; img_index < srcImgs.size(); ++img_index) {
std::vector<int> class_ids;//结果id数组
std::vector<float> confidences;//结果每个id对应置信度数组
std::vector<cv::Rect> boxes;//每个id矩形框
std::vector<vector<float>> picked_proposals; //output0[:,:, 5 + _className.size():net_width]===> for mask
for (int r = 0; r < net_height; r++) { //stride
float box_score = pdata[4]; ;//box-confidence
if (box_score >= _classThreshold) {
cv::Mat scores(1, score_length, CV_32FC1, pdata + 5);
Point classIdPoint;
double max_class_socre;
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
max_class_socre = (float)max_class_socre;
if (max_class_socre >= _classThreshold) {
vector<float> temp_proto(pdata + 5 + score_length, pdata + net_width);
picked_proposals.push_back(temp_proto);
//rect [x,y,w,h]
float x = (pdata[0] - params[img_index][2]) / params[img_index][0]; //x
float y = (pdata[1] - params[img_index][3]) / params[img_index][1]; //y
float w = pdata[2] / params[img_index][0]; //w
float h = pdata[3] / params[img_index][1]; //h
int left = MAX(int(x - 0.5 * w + 0.5), 0);
int top = MAX(int(y - 0.5 * h + 0.5), 0);
class_ids.push_back(classIdPoint.x);
confidences.push_back(max_class_socre * box_score);
boxes.push_back(Rect(left, top, int(w + 0.5), int(h + 0.5)));
}
}
pdata += net_width;//下一行
}
vector<int> nms_result;
cv::dnn::NMSBoxes(boxes, confidences, _classThreshold, _nmsThreshold, nms_result);
std::vector<vector<float>> temp_mask_proposals;
Rect holeImgRect(0, 0, srcImgs[img_index].cols, srcImgs[img_index].rows);
std::vector<OutputSeg > temp_output;
for (int i = 0; i < nms_result.size(); ++i) {
int idx = nms_result[i];
OutputSeg result;
result.id = class_ids[idx];
result.confidence = confidences[idx];
result.box = boxes[idx] & holeImgRect;
temp_mask_proposals.push_back(picked_proposals[idx]);
temp_output.push_back(result);
}
MaskParams mask_params;
mask_params.params = params[img_index];
mask_params.srcImgShape = srcImgs[img_index].size();
mask_params.netHeight = _netHeight;
mask_params.netWidth = _netWidth;
mask_params.maskThreshold = _maskThreshold;
Mat mask_protos = Mat(mask_protos_shape, CV_32F, output_tensors[1].GetTensorMutableData<float>() + img_index * mask_protos_length);
for (int i = 0; i < temp_mask_proposals.size(); ++i) {
GetMask2(Mat(temp_mask_proposals[i]).t(), mask_protos, temp_output[i], mask_params);
}
//******************** ****************
// 老版本的方案,如果上面在开启我注释的部分之后还一直报错,建议使用这个。
// If the GetMask2() still reports errors , it is recommended to use GetMask().
// Mat mask_proposals;
// for (int i = 0; i < temp_mask_proposals.size(); ++i) {
// mask_proposals.push_back(Mat(temp_mask_proposals[i]).t());
//}
//GetMask(mask_proposals, mask_protos, temp_output, mask_params);
//*****************************************************/
output.push_back(temp_output);
}
if (output.size())
return true;
else
return false;
return true;
}