-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
623 lines (589 loc) · 23.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<!-- <meta name="description"
content="Deformable Neural Radiance Fields creates free-viewpoint portraits (nerfies) from casually captured videos."> -->
<!-- <meta name="keywords" content="Nerfies, D-NeRF, NeRF"> -->
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Learning from Massive Human Videos for Universal Humanoid Pose Control</title>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.svg">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<!-- <nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center;">
<a class="navbar-item" href="https://keunhong.com">
<span class="icon">
<i class="fas fa-home"></i>
</span>
</a>
<div class="navbar-item has-dropdown is-hoverable">
<a class="navbar-link">
More Research
</a>
<div class="navbar-dropdown">
<a class="navbar-item" href="https://hypernerf.github.io">
HyperNeRF
</a>
<a class="navbar-item" href="https://nerfies.github.io">
Nerfies
</a>
<a class="navbar-item" href="https://latentfusion.github.io">
LatentFusion
</a>
<a class="navbar-item" href="https://photoshape.github.io">
PhotoShape
</a>
</div>
</div>
</div>
</div>
</nav> -->
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Learning from Massive Human Videos for Universal Humanoid Pose Control</h1>
<div class="is-size-5 publication-authors">
<!-- <span class="author-block">
<a href="">Author List</a><sup>1</sup>,</span> -->
<span class="author-block">
<a href="https://pointscoder.github.io/">Jiageng Mao</a><sup>1*</sup>,</span>
<span class="author-block">
<a href="https://sihengz02.github.io/">Siheng Zhao</a><sup>1*</sup>,</span>
<span class="author-block">
<a href="https://github.com/songsq21">Siqi Song</a><sup>1*</sup>,
</span>
<span class="author-block">
<a href="https://www.linkedin.com/in/tianheng-shi-5244b8201/">Tianheng Shi</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://jay-ye.github.io/">Junjie Ye</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://robo-alex.github.io/">Mingtong Zhang</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://geng-haoran.github.io/">Haoran Geng</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://people.eecs.berkeley.edu/~malik/">Jitendra Malik</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://www.linkedin.com/in/vitorguizilini/">Vitor Guizilini</a><sup>3</sup>,
</span>
<span class="author-block">
<a href="https://yuewang.xyz/">Yue Wang</a><sup>1</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<!-- <span class="author-block"><sup>1</sup>University of Washington,</span> -->
<!-- <span class="author-block"><sup>2</sup>Google Research</span> -->
<span class="author-block"><sup>1</sup>University of Southern California,</span>
<span class="author-block"><sup>2</sup>UC Berkeley,</span>
<span class="author-block"><sup>3</sup>Toyota Research Institute</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2412.14172"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2412.14172"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Video Link. -->
<!-- <span class="link-block">
<a href="https://www.youtube.com/watch?v=MrKrnHhk8IA"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span> -->
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/sihengz02/UH-1"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>UH-1</span>
</a>
</span>
<!-- Dataset Link. -->
<span class="link-block">
<a href="https://huggingface.co/collections/USC-GVL/universal-humanoid-10-6760c242f3591a933560a23a"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="far fa-images"></i>
</span>
<span>Humanoid-X</span>
</a>
</span>
<!-- Data Viewer. -->
<span class="link-block">
<a href="explorer.html" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fa fa-desktop"></i>
</span>
<span>Data Viewer</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Paper video. -->
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/teaser-uh1-long.mp4"
type="video/mp4">
</video>
</div>
</div>
</section>
<!--/ Paper video. -->
<!-- <section class="hero is-light is-small">
<div class="hero-body">
<div class="container">
<div id="results-carousel" class="carousel results-carousel">
<div class="item item-steve">
<video poster="" id="steve" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/steve.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-chair-tp">
<video poster="" id="chair-tp" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/chair-tp.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-shiba">
<video poster="" id="shiba" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/shiba.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-fullbody">
<video poster="" id="fullbody" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/fullbody.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-blueshirt">
<video poster="" id="blueshirt" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/blueshirt.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-mask">
<video poster="" id="mask" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/mask.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-coffee">
<video poster="" id="coffee" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/coffee.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-toby">
<video poster="" id="toby" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/toby2.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</section> -->
<!-- Abstract. -->
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Scalable learning of humanoid robots is crucial for their deployment in real-world applications.
While traditional approaches primarily rely on reinforcement learning or teleoperation to achieve whole-body control,
they are often limited by the diversity of simulated environments and the high costs of demonstration collection.
In contrast, human videos are ubiquitous and present an untapped source of semantic and motion information that could
significantly enhance the generalization capabilities of humanoid robots.
</p>
<p>
This paper introduces Humanoid-X, a large-scale dataset of over 20 million humanoid robot poses with corresponding
text-based motion descriptions, designed to leverage this abundant data.
Humanoid-X is curated through a comprehensive pipeline: data mining from the Internet, video caption generation,
motion retargeting of humans to humanoid robots, and policy learning for real-world deployment.
With Humanoid-X, we further train a large humanoid model, UH-1, which takes text instructions as input and outputs
corresponding actions to control a humanoid robot.
</p>
<p>
Extensive simulated and real-world experiments validate that our scalable training approach leads to superior
generalization in text-based humanoid control, marking a significant step toward adaptable, real-world-ready humanoid robots.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<!-- / Abstract. -->
<!-- Demo video. -->
<section class="hero teaser">
<div class="container is-max-desktop">
<!-- <div class="columns is-centered has-text-centered">
<h2 class="title is-3">Robot Demo</h2>
</div> -->
<!-- <div class="hero-body">
<video id="teaser" controls autoplay muted loop height="100%">
<source src="./static/videos/robot-demo-uh1.mp4"
type="video/mp4">
</video>
</div> -->
<!-- Head -->
<div class="columns is-centered has-text-centered">
<h2 class="title is-3">Text Conditioned Humanoid Control</h2>
</div>
<!--/ Head -->
</br>
<div class="columns is-centered has-text-centered">
<div class="column is-5">
<h3 class="title is-4">Play Piano</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/play_piano_demo.mp4"
type="video/mp4">
</video>
</div>
<div class="column is-5">
<h3 class="title is-4">Play Drums</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/play_drums_demo.mp4"
type="video/mp4">
</video>
</div>
<div class="column is-5">
<h3 class="title is-4">Play Violin</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/play_violin_demo.mp4"
type="video/mp4">
</video>
</div>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-5">
<h3 class="title is-4">Play Guitar</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/play_guitar_demo.mp4"
type="video/mp4">
</video>
</div>
<div class="column is-5">
<h3 class="title is-4">Wave to a Friend</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/wave_to_a_friend_demo.mp4"
type="video/mp4">
</video>
</div>
<div class="column is-5">
<h3 class="title is-4">Play Golf</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/play_golf_demo.mp4"
type="video/mp4">
</video>
</div>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-5">
<h3 class="title is-4">Right Hand Punch</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/right_hand_punch_demo.mp4"
type="video/mp4">
</video>
</div>
<div class="column is-5">
<h3 class="title is-4">Shoot a Basketball</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/shoot_a_basket_demo.mp4"
type="video/mp4">
</video>
</div>
<div class="column is-5">
<h3 class="title is-4">Clap Hands</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/clap_hands_demo.mp4"
type="video/mp4">
</video>
</div>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-5">
<h3 class="title is-4">Pray</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/pray_demo.mp4"
type="video/mp4">
</video>
</div>
<div class="column is-5">
<h3 class="title is-4">Dance</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/dance_demo.mp4"
type="video/mp4">
</video>
</div>
<div class="column is-5">
<h3 class="title is-4">Boxing</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/boxing_demo.mp4"
type="video/mp4">
</video>
</div>
</div>
</br>
<!-- Head -->
<div class="columns is-centered has-text-centered">
<h2 class="title is-3">Human-Humanoid Interaction</h2>
</div>
<!--/ Head -->
</br>
<div class="columns is-centered has-text-centered">
<div class="column is-5">
<h3 class="title is-4">Embrace</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/embrace_demo.mp4"
type="video/mp4">
</video>
</div>
<div class="column is-5">
<h3 class="title is-4">High Five</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/high_five_demo.mp4"
type="video/mp4">
</video>
</div>
<div class="column is-5">
<h3 class="title is-4">Shake Hand</h3>
<video id="teaser" controls autoplay muted loop height="100%">
<!-- playsinline -->
<source src="./static/videos/shake_hand_demo.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</section>
<!--/ Demo video. -->
<!-- Dataset. -->
<section class="section">
<div class="container is-max-desktop">
<!-- Method. -->
<div class="columns is-centered has-text-centered">
<div class="column is-full-width">
<h2 class="title is-3">Humanoid-X Dataset</h2>
<div class="content has-text-justified">
<p>
Humanoid-X dataset consists of 163,800 pairs of motion samples
\( \langle \mathcal{V}, \mathcal{T}, \mathcal{P}_{human}, \mathcal{P}_{robot}, \mathcal{A}_{robot} \rangle \)
from Internet videos:
</p>
<p>
i. We mine massive human-centric video clips \( \mathcal{V} \) from the Internet.
</p>
<p>
ii. We extract text-based action descriptions \( \mathcal{T} \) and 3D human
poses \( \mathcal{P}_{human} \) from the video clips.
</p>
<p>
iii. We retarget the motions from humans to humanoid robots, resulting in
humanoid keypoints \( \mathcal{P}_{robot} \) for high-level control.
</p>
<p>
iv. We employ reinforcement learning to generate physically deployable
humanoid actions \( \mathcal{A}_{robot} \).
</p>
<p>
In this manner, we get the Humanoid-X dataset which is leveraged to distill a universal humanoid pose control policy.
</p>
</div>
<div class="column is-full has-text-centered">
<img src="./static/images/humanoidx.jpg"
class="humanoidx-image"
alt="Humanoid-X pipeline image."/>
</div>
</div>
</div>
<!--/ Method. -->
</div>
</section>
<!--/ Dataset. -->
<!-- UH-1 Model. -->
<section class="section">
<div class="container is-max-desktop">
<!-- Header. -->
<div class="columns is-centered has-text-centered">
<div class="column is-full-width">
<h2 class="title is-3">Universal Humanoid-1 (UH-1)</h2>
</div>
</div>
<!--/ Header. -->
<!-- Method. -->
<div class="columns is-centered">
<div class="column is-full-width">
<!-- <h2 class="title is-3">Pipeline</h2> -->
<!-- Model Architecture. -->
<div class="content has-text-justified">
<p>
UH-1 leverages the Transformer for scalable learning.
Humanoid actions are first tokenized into discrete action tokens.
Then, the UH-1 Transformer is trained, which takes text commands as inputs
and auto-regressively generates the corresponding humanoid action tokens.
<!-- </p>
<p> -->
With the input text instructions \( \mathcal{T} \),
UH-1 can either generate high-level humanoid keypoints \( \mathcal{P}_{robot} \)
(text-to-keypoint) for the goal-conditioned policy \( \pi \)
to control the humanoid robot in closed-loop, or generate robotic actions
\( \mathcal{A}_{robot} \) for direct open-loop control (text-to-action).
</p>
</div>
<div class="column is-full has-text-centered">
<img src="./static/images/dataset_long.png"
style="width: 100%; height: auto;"
alt="Humanoid-X pipeline image."/>
</div>
<!-- </br> -->
<!--/ Model Architecture. -->
<!-- Control Modes. -->
<!-- <h2 class="title is-3">Control Modes</h2>
<div class="content has-text-justified">
<p>
UH-1 can either generate high-level humanoid keypoints (text-to-keypoint)
for the goal-conditioned policy \( \pi \) to control the humanoid robot
in closed-loop, or generate robotic actions \( \mathcal{A}_{robot} \)
for direct open-loop control (text-to-action).
</p>
</div>
<div class="column is-full has-text-centered">
<img src="./static/images/control_mode.jpg"
style="width: 70%; height: auto;"
alt="Humanoid-X pipeline image."/>
</div>
</br> -->
<!--/ Control Modes. -->
</div>
</div>
<!--/ Method. -->
</div>
</section>
<!--/ UH-1 Model. -->
<!-- Citation. -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@article{uh1,
author = {Mao, Jiageng and Zhao, Siheng and Song, Siqi and Shi, Tianheng and Ye, Junjie and Zhang, Mingtong and Geng, Haoran and Malik, Jitendra and Guizilini, Vitor and Wang, Yue},
title = {Learning from Massive Human Videos for Universal Humanoid Pose Control},
journal = {arXiv preprint arXiv:2412.14172},
year = {2024},
}</code></pre>
</div>
</section>
<!--/ Citation. -->
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>. Template was borrowed from <a
href="https://github.com/nerfies/nerfies.github.io">Nerfies</a>
</p>
<!-- <p>
This means you are free to borrow the <a
href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
we just ask that you link back to this page in the footer.
Please remember to remove the analytics code included in the header of the website which
you do not want on your website.
</p> -->
</div>
</div>
</div>
</div>
</footer>
</body>
</html>