diff --git a/R/SummarytoDetail.R b/R/SummarytoDetail.R index 810e8561..02441ef2 100644 --- a/R/SummarytoDetail.R +++ b/R/SummarytoDetail.R @@ -357,7 +357,7 @@ assignCombinedPercentagesByTable <- function(listOfAllocations, listOfCrosswalks allocDFUse <- reshape2::melt(t(t(listOfUseTables[[length(listOfUseTables)]])), id.vars=1) # Need double transpose to get the right melt shape and row ordering allocDFUse <- allocDFUse[,c(2,1,3)] #reorder columns - colnames(allocDFUse) <- c("IndustryCode", "CommodityCode", "PercentUse") + colnames(allocDFUse) <- c("IndustryCode", "CommodityCode", "PercentUsed") noteDF <- data.frame(Note = I(rep("CommodityDisagg", nrow(allocDFUse)))) allocDFUse <- cbind(allocDFUse, noteDF) @@ -983,7 +983,7 @@ generateEconomicAllocations <- function (disaggParams, Table, vectorToDisagg) { # Initialize dataframe that contains allocation values outputDF <- data.frame(IndustryCode = character(), CommodityCode = character(), - PercentUse = double(), Note = character()) + PercentUsed = double(), Note = character()) # Get a list of all summary sectors summarySectorList <- as.list(unique(disaggParams$detailModel$crosswalk$BEA_Summary)) @@ -997,7 +997,7 @@ generateEconomicAllocations <- function (disaggParams, Table, vectorToDisagg) { originalColCodes <- rbind(disaggParams$detailModel$Industries[c("Code", "Name", "Code_Loc")], disaggParams$detailModel$FinalDemandMeta[c("Code", "Name", "Code_Loc")]) - allocName <- "PercentUse" + allocName <- "PercentUsed" # DetailCodeOutput index indicates which column in the output data to assign the detail (disaggregated) codes. # For Use column disagg (industries) the index is 1.