-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.html
307 lines (255 loc) · 11.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
<script src="http://www.google.com/jsapi" type="text/javascript"></script>
<script type="text/javascript">google.load("jquery", "1.3.2");</script>
<html>
<head>
<title>UVRSABI</title>
<meta property="og:image" content="Path to my teaser.png"/> <!-- Facebook automatically scrapes this. Go to https://developers.facebook.com/tools/debug/ if you update and want to force Facebook to rescrape. -->
<meta property="og:title" content="Creative and Descriptive Paper Title." />
<meta property="og:description" content="Paper description." />
<!-- Get from Google Analytics -->
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src=""></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-75863369-6');
</script>
<link rel="stylesheet" href="assets/css/main.css" />
</head>
<body>
<br>
<center>
<span style="font-size:36px">UAV-based Visual Remote Sensing for Automated Building Inspection (UVRSABI)</span>
<table align=center width=600px>
<table align=center width=600px cellspacing="25px">
<tr>
<td align=center width=100px>
<center>
<span style="font-size:20px"><a href="https://kush0301.github.io/">Kushagra Srivastava*</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:20"><a href="https://dhruv2012.github.io/">Dhruv Patel*</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:20px"><a href="https://www.linkedin.com/in/aditya-kumar-jha-185b9720b/">Aditya Kumar Jha</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:20px"><a href="https://www.linkedin.com/in/mohhit1iit/">Mohit Kumar Jha</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:20px"><a href="https://jaskiratsingh2000.github.io/">Jaskirat Singh</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:20px"><a href="https://ravika.github.io/">Ravi Kiran Sarvadevabhatla</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:20px"><a href="https://sites.google.com/view/harikumar-kandath/home">Harikumar Kandath</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:20px"><a href="https://fac-webpages.iiit.ac.in/~ramancharla/">Pradeep Kumar Ramancharla</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:20px"><a href="https://www.iiit.ac.in/people/faculty/mkrishna/">K. Madhava Krishna</a></span>
</center>
</td>
</tr>
</table>
<center>
<span style="font-size:14px">
<b>*</b> denotes equal contribution <br>
</span>
</center>
<h5><i>Spotlight publication at the Computer Vision for Civil and Infrastructure Engineering Workshop, ECCV 2022</i></h5>
<table align=center width=380px>
<tr>
<td align=center width=120px>
<center>
<span style="font-size:20px"><a href='https://arxiv.org/abs/2209.13418' target='_blank' rel="noopener">[Paper]</a></span>
</center>
</td>
<td align=center width=120px>
<center>
<span style="font-size:20px"><a href='https://uvrsabi-instructions.readthedocs.io/en/latest/index.html' target='_blank' rel="noopener">[Documentation]</a></span>
</center>
</td>
<td align=center width=120px>
<center>
<span style="font-size:20px"><a href='https://github.com/UVRSABI/UVRSABI-Code' target='_blank' rel="noopener">[GitHub]</a></span><br>
</center>
</td>
</tr>
</table>
</table>
</center>
<center>
<table align=center width=850px>
<tr>
<td width=260px>
<center>
<img class="round" style="width:500px" src="assets/images/overview.png"/>
</center>
</td>
</tr>
</table>
<table align=center width=850px>
<tr>
<td> <center>
Architecture of automated building inspection using the aerial images captured using UAV. The odometry information of UAV is also used for the quantification of different parameters involved in the inspection. <center>
</td>
</tr>
</table>
</center>
<hr>
<table align=center width=850px>
<center><h1>Overview</h1></center>
<tr>
<td>
<ul>
<li>We automate the inspection of buildings through UAV-based image data collection and a post-processing module to infer and quantify the details which helps in avoiding manual inspection, reducing the time and cost.
<li> We introduced a novel method to estimate the distance between adjacent buildings and structures.
<li> We developed an architecture that can be used to segment roof tops in case of both orthogonal and non-orthogonal view using a state-of-the-art semantic segmentation model.
<li> Taking into consideration the importance of civil inspection of buildings we introduced a software library that helps in estimating the Distances between Adjacent Buildings, Plan-shape of a Building, Roof Area, Non-Structural Elements (NSE) on the rooftop, and the Roof Layout.
</td>
</tr>
</table>
<br>
<hr>
<table align=center width=850px>
<center><h1>Modules</h1></center>
<tr>
<td> <p>In order to estimate the seismic structural parameters of the buildings the following modules have been introduced:</p>
<ul>
<li>Distance between Adjacent Buildings
<li> Plan Shape and Roof Area Estimation
<li> Roof Layout Estimation
</ul>
</td>
</tr>
</table>
<br>
<center> <h3> Distance between Adjacent Buildings </h3>
<img class="round" style="width:1000px" src="assets/images/DistanceModule.png"/>
<p>This module provide us the distance between two adjacent buildings. We sampled the images from the videos captured by UAV and perform panoptic segmentation using state-of-art deep learning model, eliminating vegetation (like trees) from the images. The masked images are then fed to a state-of-the art image-based 3D reconstruction library which outputs a dense 3D point cloud. We then apply RANSAC for fitting planes between the segmented structural point cloud. Further, the points are sampled on these planes to calculate the distance between the adjacent buildings at different locations.</p>
</center>
<br>
<center> <h3> Results: Distance between Adjacent Buildings </h3>
<img class="round" style="width:800px" src="assets/images/distance_results.png"/>
<p> Distances calculated for Buildings 1 and 2, and Building 3 as per our method and Google Earth along with Ground Truth measured using a ToF sensor; Our method performs with an average error of 0.96% compared to Google Earth’s 1.36%.
</p>
</center>
<br>
<center> <h3> Plan Shape and Roof Area Estimation </h3>
<img class="round" style="width:1000px" src="assets/images/PlanShape&RoofareaEstimation.png"/>
<p>This module provides information regarding the shape and roof area of the building. We segment the roof using a state-of-the-art semantic segmentation deep learning model. We also subjected the input images to a pre-processing module that removes distortions from the wide-angle images. Data augmentation was used to increase the robustness and performance. Roof Area was calculated using the focal length of the camera, the height of the drone from the roof and the segmented mask area in pixels.
</p>
</center>
<br>
<center> <h3> Results: Plan Shape and Roof Area Estimation </h3>
<img class="round" style="width:800px" src="assets/images/Results-PlanShape&RoofareaEstimation-1.png"/>
<img class="round" style="width:600px" src="assets/images/roof_area_estimation.gif"/>
<p>This figure represents the qualitative and quantitative results for roof segmentation for 4 subject buildings.</p>
</center>
<br>
<center> <h3> Roof Layout Estimation </h3>
<img class="round" style="width:600px" src="assets/images/roof_layout_estimation.gif"/>
<p>This module provides information about the roof layout. Since it is not possible to capture the whole roof in a single frame specially in the case of large sized buildings, we perform large scale image stitching of partially visible roofs followed by NSE detection and roof segmentation.
</p>
</center>
<br>
<center> <h3> Results: Roof Layout Estimation </h3>
<img class="round" style="width:800px" src="assets/images/imagestitchingoutput.jpeg"/>
<p>Stitched Image</p>
<img class="round" style="width:800px" src="assets/images/roofmask.png"/>
<p>Roof Mask</p>
<img class="round" style="width:800px" src="assets/images/objectmask.png"/>
<p>Object Mask</p>
</center>
<br>
<!--
<center> <h1> Resources </h1>
<table width="100%" style="margin: 20pt auto; text-align: center;">
<tr>
<td width="33%" valign="middle">
<center>
<a href="https://github.com/atmacvit/meronymnet" target="_blank"
class="imageLink"><img src="./resources/Octocat.png" ,=, width="75%" /></a><br /><br />
<a href="https://github.com/atmacvit/meronymnet" target="_blank">Code</a>
</center>
</td>
<td width="33%" valign="middle">
<center>
<a href="https://drive.google.com/file/d/1NnY4tcV1wnlSWMzT_Ae6hH6v5l8GCIrX/view?usp=sharing" target="_blank"
class="imageLink"><img src="./resources/Paper_crop.png" ,=, width="75%" /></a><br /><br />
<a href="https://drive.google.com/file/d/1NnY4tcV1wnlSWMzT_Ae6hH6v5l8GCIrX/view?usp=sharing" target="_blank">Paper</a>
</center>
</td>
<td width="33%" valign="middle">
<center>
<a href="" target="_blank"
class="imageLink"><img src="./resources/Supp_crop.png" ,=, width="75%" /></a><br /><br />
<a href="" target="_blank">Supplementary</a>
</center>
</td>
</tr>
</table>
</center>
<br>
<table align=center width=600px>
<tr>
<td><span style="font-size:14pt"><center>
<a href="./resources/bibtex.txt">[Bibtex]</a>
</center></td>
</tr>
</table>
<hr>
<br>
<table align=center width=900px>
<tr>
<td width=400px>
<left>
<center><h1>Acknowledgements</h1></center>
This template was originally made by <a href="http://web.mit.edu/phillipi/">Phillip Isola</a> and <a href="http://richzhang.github.io/">Richard Zhang</a> for a <a href="http://richzhang.github.io/colorization/">colorful</a> ECCV project; the code can be found <a href="https://github.com/richzhang/webpage-template">here</a>.
</left>
</td>
</tr>
</table>
<br> -->
<hr>
<table align=center width=850px>
<center><h1>Previous Work</h1></center>
<tr>
<td> <p>Our previous work includes estimating following parameters:</p>
<ul>
<li> ROI detections (like window/storeys) and their count
<li> Frontal and top-view layout estimation
<li> Scale estimation
<li> ROIs from a global scene context etc.
</ul>
<center>More details can be found <a href="https://github.com/Dhruv2012/Drone-based-building-assessment" target="_blank" rel="noopener"><u>here</u>.</a>
</center>
</td>
</tr>
</table>
<hr>
<center> <h1> Contact </h1>
<p>If you have any question, please reach out to any of the above mentioned authors.</p>
</center>
</body>
</html>