-
Notifications
You must be signed in to change notification settings - Fork 60
/
tests.jl
95 lines (78 loc) · 2.4 KB
/
tests.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#= Tests for forced harmonic oscillator with input deadband.
Sequential convex programming algorithms for trajectory optimization.
Copyright (C) 2021 Autonomous Controls Laboratory (University of Washington)
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>. =#
using ECOS
using Test
export ptr
function ptr()::Nothing
# Problem definition
mdl = PlanarRendezvousProblem()
pbm = TrajectoryProblem(mdl)
define_problem!(pbm, :ptr)
# PTR algorithm parameters
N = 30
Nsub = 10
iter_max = 30
disc_method = IMPULSE
wvc = 5e2
wtr = 3e-2
ε_abs = -Inf#1e-5
ε_rel = 1e-3 / 100
feas_tol = 5e-3
q_tr = Inf
q_exit = Inf
solver = ECOS
solver_options = Dict("verbose" => 0)
pars = PTR.Parameters(
N,
Nsub,
iter_max,
disc_method,
wvc,
wtr,
ε_abs,
ε_rel,
feas_tol,
q_tr,
q_exit,
solver,
solver_options,
)
# Homotopy parameters
Nhom = 10
hom_κ = Homotopy(1e-3; δ_max = 5.0)
hom_grid = LinRange(0.0, 1.0, Nhom)
# Solve the trajectory generation problem
ptr_pbm = PTR.create(pars, pbm)
sols, historys = [], []
for i = 1:Nhom
mdl.traj.κ = hom_κ(hom_grid[i])
local warm = (i == 1) ? nothing : sols[end]
@printf("[%d/%d] Homotopy (κ=%.2e)\n", i, Nhom, mdl.traj.κ)
local sol_i, history_i = PTR.solve(ptr_pbm, warm)
push!(sols, sol_i)
push!(historys, history_i)
end
sol = sols[end]
history = historys[end]
@test sol.status == @sprintf("%s", SCP_SOLVED)
# Make plots
try
plot_final_trajectory(mdl, sol)
plot_attitude(mdl, sol)
plot_thrusts(mdl, sol)
plot_convergence(history, "rendezvous_planar")
catch e
showerror(stdout, e)
end
return nothing
end