-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGenerics.thy
328 lines (303 loc) · 19.2 KB
/
Generics.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
theory Generics
imports Graph Morphism "HOL-Library.Countable"
begin
type_synonym ('l,'m) ngraph = "(nat,nat,'l,'m) pre_graph"
definition to_ngraph
:: "('v::countable,'e :: countable,'l,'m) pre_graph
\<Rightarrow> ('l,'m) ngraph" where
\<open>to_ngraph G \<equiv> \<lparr>nodes = to_nat ` V\<^bsub>G\<^esub>
,edges = to_nat ` E\<^bsub>G\<^esub>
,source = \<lambda>e. to_nat (s\<^bsub>G\<^esub> (from_nat e))
,target = \<lambda>e. to_nat (t\<^bsub>G\<^esub> (from_nat e))
,node_label = \<lambda>v. l\<^bsub>G\<^esub> (from_nat v)
,edge_label = \<lambda>e. m\<^bsub>G\<^esub> (from_nat e)\<rparr>\<close>
definition from_ngraph :: " ('l,'m) ngraph \<Rightarrow> ('v::countable,'e :: countable,'l,'m) pre_graph" where
\<open>from_ngraph G \<equiv> \<lparr>nodes = from_nat ` V\<^bsub>G\<^esub>, edges = from_nat ` E\<^bsub>G\<^esub>
, source = \<lambda>e. from_nat (s\<^bsub>G\<^esub> (to_nat e)), target = \<lambda>e. from_nat (t\<^bsub>G\<^esub> (to_nat e))
, node_label = \<lambda>e. l\<^bsub>G\<^esub> (to_nat e), edge_label = \<lambda>e. m\<^bsub>G\<^esub> (to_nat e)\<rparr>\<close>
lemma ngraph_to_from[simp]:
\<open>from_ngraph (to_ngraph G) = G\<close>
by (simp add: from_ngraph_def to_ngraph_def from_nat_def)
lemma graph_ngraph_corres_iff:
\<open>graph (to_ngraph G) \<longleftrightarrow> graph G \<close>
proof
show \<open>graph (to_ngraph G)\<close> if \<open>graph G\<close>
proof
show \<open>finite V\<^bsub>to_ngraph G\<^esub>\<close>
using graph.finite_nodes[OF \<open>graph G\<close>]
by (simp add: to_ngraph_def)
next
show \<open>finite E\<^bsub>to_ngraph G\<^esub>\<close>
using graph.finite_edges[OF \<open>graph G\<close>]
by (simp add: to_ngraph_def)
next
show \<open>s\<^bsub>to_ngraph G\<^esub> e \<in> V\<^bsub>to_ngraph G\<^esub>\<close> if \<open>e \<in> E\<^bsub>to_ngraph G\<^esub>\<close> for e
using graph.source_integrity[OF \<open>graph G\<close>] that
by (auto simp add: to_ngraph_def)
next
show \<open>t\<^bsub>to_ngraph G\<^esub> e \<in> V\<^bsub>to_ngraph G\<^esub>\<close> if \<open>e \<in> E\<^bsub>to_ngraph G\<^esub>\<close> for e
using graph.target_integrity[OF \<open>graph G\<close>] that
by (auto simp add: to_ngraph_def)
qed
next
show \<open>graph G\<close> if \<open>graph (to_ngraph G)\<close>
proof
show \<open>finite V\<^bsub>G\<^esub>\<close>
using graph.finite_nodes[OF \<open>graph (to_ngraph G)\<close>] that
by (auto simp add: to_ngraph_def dest: finite_imageD)
next
show \<open>finite E\<^bsub>G\<^esub>\<close>
using graph.finite_edges[OF \<open>graph (to_ngraph G)\<close>] that
by (auto simp add: to_ngraph_def dest: finite_imageD)
next
show \<open>s\<^bsub>G\<^esub> e \<in> V\<^bsub>G\<^esub>\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
using graph.source_integrity[OF \<open>graph (to_ngraph G)\<close>] that
by (fastforce simp add: to_ngraph_def)
next
show \<open>t\<^bsub>G\<^esub> e \<in> V\<^bsub>G\<^esub>\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
using graph.target_integrity[OF \<open>graph (to_ngraph G)\<close>] that
by (fastforce simp add: to_ngraph_def)
qed
qed
type_synonym nmorph = "(nat,nat,nat,nat) pre_morph"
definition to_nmorph :: "('v\<^sub>1::countable,'v\<^sub>2::countable,'e\<^sub>1::countable,'e\<^sub>2::countable) pre_morph \<Rightarrow> nmorph" where
"to_nmorph m \<equiv> \<lparr>node_map = \<lambda>v. to_nat (\<^bsub>m\<^esub>\<^sub>V (from_nat v)), edge_map = \<lambda>e. to_nat (\<^bsub>m\<^esub>\<^sub>E (from_nat e))\<rparr>"
definition from_nmorph :: "nmorph \<Rightarrow> ('v\<^sub>1::countable,'v\<^sub>2::countable,'e\<^sub>1::countable,'e\<^sub>2::countable) pre_morph" where
"from_nmorph m \<equiv> \<lparr>node_map = \<lambda>v. from_nat (\<^bsub>m\<^esub>\<^sub>V (to_nat v)), edge_map = \<lambda>e. from_nat (\<^bsub>m\<^esub>\<^sub>E (to_nat e))\<rparr>"
lemma nmorph_to_from[simp]:
\<open>from_nmorph (to_nmorph m) = m\<close>
by (simp add: from_nmorph_def to_nmorph_def from_nat_def)
lemma to_nmorph_dist:
\<open>to_nmorph (g \<circ>\<^sub>\<rightarrow> f) = to_nmorph g \<circ>\<^sub>\<rightarrow> to_nmorph f\<close>
by (auto simp add: morph_comp_def to_nmorph_def)
definition to_nmorph2 :: "(nat,'v::countable,nat, 'e::countable) pre_morph \<Rightarrow> nmorph" where
"to_nmorph2 m \<equiv> \<lparr>node_map = \<lambda>v. to_nat (\<^bsub>m\<^esub>\<^sub>V v), edge_map = \<lambda>e. to_nat (\<^bsub>m\<^esub>\<^sub>E e)\<rparr>"
lemma morph_eq_nmorph2_iff: \<open>morphism G H u \<longleftrightarrow> morphism G (to_ngraph H) (to_nmorph2 u)\<close>
proof
show \<open>morphism G (to_ngraph H) (to_nmorph2 u)\<close> if \<open>morphism G H u\<close>
proof -
interpret u: morphism G H u
using that by assumption
show ?thesis
proof intro_locales
show \<open>graph (to_ngraph H)\<close>
by (simp add: graph_ngraph_corres_iff u.H.graph_axioms)
next
show \<open>morphism_axioms G (to_ngraph H) (to_nmorph2 u)\<close>
proof
show \<open>\<^bsub>to_nmorph2 u\<^esub>\<^sub>E e \<in> E\<^bsub>to_ngraph H\<^esub>\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
by (simp add: to_ngraph_def to_nmorph2_def that u.morph_edge_range)
next
show \<open>\<^bsub>to_nmorph2 u\<^esub>\<^sub>V v \<in> V\<^bsub>to_ngraph H\<^esub>\<close> if \<open>v \<in> V\<^bsub>G\<^esub>\<close> for v
by (simp add: to_ngraph_def to_nmorph2_def that u.morph_node_range)
next
show \<open>\<^bsub>to_nmorph2 u\<^esub>\<^sub>V (s\<^bsub>G\<^esub> e) = s\<^bsub>to_ngraph H\<^esub> (\<^bsub>to_nmorph2 u\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
by (simp add: to_ngraph_def to_nmorph2_def that u.source_preserve)
next
show \<open>\<^bsub>to_nmorph2 u\<^esub>\<^sub>V (t\<^bsub>G\<^esub> e) = t\<^bsub>to_ngraph H\<^esub> (\<^bsub>to_nmorph2 u\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
by (simp add: to_ngraph_def to_nmorph2_def that u.target_preserve)
next
show \<open>l\<^bsub>G\<^esub> v = l\<^bsub>to_ngraph H\<^esub> (\<^bsub>to_nmorph2 u\<^esub>\<^sub>V v)\<close> if \<open> v \<in> V\<^bsub>G\<^esub>\<close> for v
by (simp add: to_ngraph_def to_nmorph2_def that u.label_preserve)
next
show \<open>m\<^bsub>G\<^esub> e = m\<^bsub>to_ngraph H\<^esub> (\<^bsub>to_nmorph2 u\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
by (simp add: to_ngraph_def to_nmorph2_def that u.mark_preserve)
qed
qed
qed
next
show \<open>morphism G H u\<close> if \<open>morphism G (to_ngraph H) (to_nmorph2 u)\<close>
proof -
interpret u: morphism G \<open>to_ngraph H\<close> \<open>to_nmorph2 u\<close>
using that by assumption
show ?thesis
proof intro_locales
show \<open>graph H\<close>
using graph_ngraph_corres_iff u.H.graph_axioms
by blast
next
show \<open>morphism_axioms G H u\<close>
proof
show \<open>\<^bsub>u\<^esub>\<^sub>E e \<in> E\<^bsub>H\<^esub>\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
using u.morph_edge_range
by (simp add: to_ngraph_def to_nmorph2_def that image_iff)
next
show \<open>\<^bsub>u\<^esub>\<^sub>V v \<in> V\<^bsub>H\<^esub>\<close> if \<open>v \<in> V\<^bsub>G\<^esub>\<close> for v
using u.morph_node_range
by (simp add: to_ngraph_def to_nmorph2_def that image_iff)
next
show \<open>\<^bsub>u\<^esub>\<^sub>V (s\<^bsub>G\<^esub> e) = s\<^bsub>H\<^esub> (\<^bsub>u\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
using u.source_preserve
by (simp add: to_ngraph_def to_nmorph2_def that)
next
show \<open>\<^bsub>u\<^esub>\<^sub>V (t\<^bsub>G\<^esub> e) = t\<^bsub>H\<^esub> (\<^bsub>u\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
using u.target_preserve
by (simp add: to_ngraph_def to_nmorph2_def that)
next
show \<open>l\<^bsub>G\<^esub> v = l\<^bsub>H\<^esub> (\<^bsub>u\<^esub>\<^sub>V v)\<close> if \<open>v \<in> V\<^bsub>G\<^esub>\<close> for v
by (simp add: to_ngraph_def to_nmorph2_def that u.label_preserve)
next
show \<open>m\<^bsub>G\<^esub> e = m\<^bsub>H\<^esub> (\<^bsub>u\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
by (simp add: to_ngraph_def to_nmorph2_def that u.mark_preserve)
qed
qed
qed
qed
lemma
morph_eq_nmorph_iff: \<open>morphism G H m \<longleftrightarrow> morphism (to_ngraph G) (to_ngraph H) (to_nmorph m)\<close>
proof
show \<open>morphism (to_ngraph G) (to_ngraph H) (to_nmorph m)\<close> if asm: \<open>morphism G H m\<close>
proof intro_locales
show \<open>graph (to_ngraph G)\<close>
using morphism.axioms(1)[OF that]
by (auto iff: graph_ngraph_corres_iff[of G])
next
show \<open>graph (to_ngraph H)\<close>
using morphism.axioms(2)[OF that]
by (auto iff: graph_ngraph_corres_iff[of H])
next
show \<open>morphism_axioms (to_ngraph G) (to_ngraph H) (to_nmorph m)\<close>
proof
show \<open>\<^bsub>to_nmorph m\<^esub>\<^sub>E e \<in> E\<^bsub>to_ngraph H\<^esub>\<close> if \<open>e \<in> E\<^bsub>to_ngraph G\<^esub>\<close> for e
using morphism.morph_edge_range[OF asm] that
by (auto simp add: to_ngraph_def to_nmorph_def)
next
show \<open>\<^bsub>to_nmorph m\<^esub>\<^sub>V v \<in> V\<^bsub>to_ngraph H\<^esub>\<close> if \<open>v \<in> V\<^bsub>to_ngraph G\<^esub>\<close> for v
using morphism.morph_node_range[OF asm] that
by (auto simp add: to_ngraph_def to_nmorph_def)
next
show \<open>\<^bsub>to_nmorph m\<^esub>\<^sub>V (s\<^bsub>to_ngraph G\<^esub> e) = s\<^bsub>to_ngraph H\<^esub> (\<^bsub>to_nmorph m\<^esub>\<^sub>E e)\<close>
if \<open>e \<in> E\<^bsub>to_ngraph G\<^esub>\<close> for e
using morphism.source_preserve[OF asm] that
by (auto simp add: to_ngraph_def to_nmorph_def)
next
show \<open>\<^bsub>to_nmorph m\<^esub>\<^sub>V (t\<^bsub>to_ngraph G\<^esub> e) = t\<^bsub>to_ngraph H\<^esub> (\<^bsub>to_nmorph m\<^esub>\<^sub>E e)\<close>
if \<open>e \<in> E\<^bsub>to_ngraph G\<^esub>\<close> for e
using morphism.target_preserve[OF asm] that
by (auto simp add: to_ngraph_def to_nmorph_def)
next
show \<open>l\<^bsub>to_ngraph G\<^esub> v = l\<^bsub>to_ngraph H\<^esub> (\<^bsub>to_nmorph m\<^esub>\<^sub>V v)\<close>
if \<open>v \<in> V\<^bsub>to_ngraph G\<^esub>\<close> for v
using morphism.label_preserve[OF asm] that
by (auto simp add: to_ngraph_def to_nmorph_def)
next
show \<open>m\<^bsub>to_ngraph G\<^esub> e = m\<^bsub>to_ngraph H\<^esub> (\<^bsub>to_nmorph m\<^esub>\<^sub>E e)\<close>
if \<open>e \<in> E\<^bsub>to_ngraph G\<^esub>\<close> for e
using morphism.mark_preserve[OF asm] that
by (auto simp add: to_ngraph_def to_nmorph_def)
qed
qed
next
show \<open>morphism G H m\<close> if asm: \<open>morphism (to_ngraph G) (to_ngraph H) (to_nmorph m)\<close>
proof intro_locales
show \<open>graph G\<close>
using morphism.axioms(1)[OF that]
by (auto iff: graph_ngraph_corres_iff[of G])
next
show \<open>graph H\<close>
using morphism.axioms(2)[OF that]
by (auto iff: graph_ngraph_corres_iff[of H])
next
show \<open>morphism_axioms G H m\<close>
proof
show \<open>\<^bsub>m\<^esub>\<^sub>E e \<in> E\<^bsub>H\<^esub>\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
using morphism.morph_edge_range[OF asm] that
by (fastforce simp add: to_ngraph_def to_nmorph_def)
next
show \<open>\<^bsub>m\<^esub>\<^sub>V v \<in> V\<^bsub>H\<^esub>\<close> if \<open>v \<in> V\<^bsub>G\<^esub>\<close> for v
using morphism.morph_node_range[OF asm] that
by (fastforce simp add: to_ngraph_def to_nmorph_def)
next
show \<open>\<^bsub>m\<^esub>\<^sub>V (s\<^bsub>G\<^esub> e) = s\<^bsub>H\<^esub> (\<^bsub>m\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
using morphism.source_preserve[OF asm] that
by (fastforce simp add: to_ngraph_def to_nmorph_def)
next
show \<open>\<^bsub>m\<^esub>\<^sub>V (t\<^bsub>G\<^esub> e) = t\<^bsub>H\<^esub> (\<^bsub>m\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
using morphism.target_preserve[OF asm] that
by (fastforce simp add: to_ngraph_def to_nmorph_def)
next
show \<open>l\<^bsub>G\<^esub> v = l\<^bsub>H\<^esub> (\<^bsub>m\<^esub>\<^sub>V v)\<close> if \<open>v \<in> V\<^bsub>G\<^esub>\<close> for v
using morphism.label_preserve[OF asm] that
by (fastforce simp add: to_ngraph_def to_nmorph_def)
next
show \<open>m\<^bsub>G\<^esub> e = m\<^bsub>H\<^esub> (\<^bsub>m\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>G\<^esub>\<close> for e
using morphism.mark_preserve[OF asm] that
by (fastforce simp add: to_ngraph_def to_nmorph_def)
qed
qed
qed
lemma morph_tong_tong_u_is_morph_tonm:
assumes \<open>morphism (to_ngraph D) (to_ngraph D') u\<close>
shows \<open>morphism D D' (from_nmorph u)\<close>
proof intro_locales
show \<open>graph D\<close>
using graph_ngraph_corres_iff morphism.axioms(1)[OF assms]
by blast
next
show \<open>graph D'\<close>
using graph_ngraph_corres_iff morphism.axioms(2)[OF assms]
by blast
next
show \<open>morphism_axioms D D' (from_nmorph u)\<close>
using assms
by (auto simp add: morphism_axioms_def from_nmorph_def to_nmorph_def morphism_def to_ngraph_def from_ngraph_def)
qed
lemma comp_lift_node:
\<open>(\<forall>v \<in> V\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>V v = \<^bsub>k \<circ>\<^sub>\<rightarrow> m\<^esub>\<^sub>V v) \<longleftrightarrow> (\<forall>v \<in> V\<^bsub>to_ngraph G\<^esub>. \<^bsub>(to_nmorph f) \<circ>\<^sub>\<rightarrow> (to_nmorph g)\<^esub>\<^sub>V v = \<^bsub>(to_nmorph k) \<circ>\<^sub>\<rightarrow> (to_nmorph m)\<^esub>\<^sub>V v)\<close>
proof
show \<open>\<forall>v\<in>V\<^bsub>to_ngraph G\<^esub>. \<^bsub>to_nmorph f \<circ>\<^sub>\<rightarrow> to_nmorph g\<^esub>\<^sub>V v = \<^bsub>to_nmorph k \<circ>\<^sub>\<rightarrow> to_nmorph m\<^esub>\<^sub>V v\<close>
if \<open>\<forall>v\<in>V\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>V v = \<^bsub>k \<circ>\<^sub>\<rightarrow> m\<^esub>\<^sub>V v\<close>
using that
unfolding morph_comp_def
by (auto simp add: to_nmorph_def to_ngraph_def)
next
show \<open>\<forall>v\<in>V\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>V v = \<^bsub>k \<circ>\<^sub>\<rightarrow> m\<^esub>\<^sub>V v\<close>
if \<open>\<forall>v\<in>V\<^bsub>to_ngraph G\<^esub>. \<^bsub>to_nmorph f \<circ>\<^sub>\<rightarrow> to_nmorph g\<^esub>\<^sub>V v = \<^bsub>to_nmorph k \<circ>\<^sub>\<rightarrow> to_nmorph m\<^esub>\<^sub>V v\<close>
using that
unfolding morph_comp_def
by (auto simp add: to_nmorph_def to_ngraph_def)
qed
lemma comp_lift_node1:
\<open>(\<forall>v \<in> V\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>V v = \<^bsub>k\<^esub>\<^sub>V v) \<longleftrightarrow> (\<forall>v \<in> V\<^bsub>to_ngraph G\<^esub>. \<^bsub>(to_nmorph f) \<circ>\<^sub>\<rightarrow> (to_nmorph g)\<^esub>\<^sub>V v = \<^bsub>(to_nmorph k)\<^esub>\<^sub>V v)\<close>
proof
show \<open>\<forall>v\<in>V\<^bsub>to_ngraph G\<^esub>. \<^bsub>to_nmorph f \<circ>\<^sub>\<rightarrow> to_nmorph g\<^esub>\<^sub>V v = \<^bsub>to_nmorph k\<^esub>\<^sub>V v\<close> if \<open>\<forall>v\<in>V\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>V v = \<^bsub>k\<^esub>\<^sub>V v\<close>
using that
unfolding morph_comp_def
by (auto simp add: to_nmorph_def to_ngraph_def)
next
show \<open>\<forall>v\<in>V\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>V v = \<^bsub>k\<^esub>\<^sub>V v \<close> if \<open>\<forall>v\<in>V\<^bsub>to_ngraph G\<^esub>. \<^bsub>to_nmorph f \<circ>\<^sub>\<rightarrow> to_nmorph g\<^esub>\<^sub>V v = \<^bsub>to_nmorph k\<^esub>\<^sub>V v\<close>
using that
unfolding morph_comp_def
by (auto simp add: to_nmorph_def to_ngraph_def)
qed
lemma comp_lift_edge:
\<open>(\<forall>e \<in> E\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>E e = \<^bsub>k \<circ>\<^sub>\<rightarrow> m\<^esub>\<^sub>E e) \<longleftrightarrow> (\<forall>e \<in> E\<^bsub>to_ngraph G\<^esub>. \<^bsub>(to_nmorph f) \<circ>\<^sub>\<rightarrow> (to_nmorph g)\<^esub>\<^sub>E e = \<^bsub>(to_nmorph k) \<circ>\<^sub>\<rightarrow> (to_nmorph m)\<^esub>\<^sub>E e)\<close>
proof
show \<open>\<forall>e\<in>E\<^bsub>to_ngraph G\<^esub>. \<^bsub>to_nmorph f \<circ>\<^sub>\<rightarrow> to_nmorph g\<^esub>\<^sub>E e = \<^bsub>to_nmorph k \<circ>\<^sub>\<rightarrow> to_nmorph m\<^esub>\<^sub>E e\<close>
if \<open>\<forall>e\<in>E\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>E e = \<^bsub>k \<circ>\<^sub>\<rightarrow> m\<^esub>\<^sub>E e\<close>
using that
unfolding morph_comp_def
by (auto simp add: to_nmorph_def to_ngraph_def)
next
show \<open>\<forall>e\<in>E\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>E e = \<^bsub>k \<circ>\<^sub>\<rightarrow> m\<^esub>\<^sub>E e\<close>
if \<open>\<forall>e\<in>E\<^bsub>to_ngraph G\<^esub>. \<^bsub>to_nmorph f \<circ>\<^sub>\<rightarrow> to_nmorph g\<^esub>\<^sub>E e = \<^bsub>to_nmorph k \<circ>\<^sub>\<rightarrow> to_nmorph m\<^esub>\<^sub>E e\<close>
using that
unfolding morph_comp_def
by (auto simp add: to_nmorph_def to_ngraph_def)
qed
lemma comp_lift_edge1:
\<open>(\<forall>e \<in> E\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>E e = \<^bsub>k\<^esub>\<^sub>E e) \<longleftrightarrow> (\<forall>e \<in> E\<^bsub>to_ngraph G\<^esub>. \<^bsub>(to_nmorph f) \<circ>\<^sub>\<rightarrow> (to_nmorph g)\<^esub>\<^sub>E e = \<^bsub>(to_nmorph k)\<^esub>\<^sub>E e)\<close>
proof
show \<open> \<forall>e\<in>E\<^bsub>to_ngraph G\<^esub>. \<^bsub>to_nmorph f \<circ>\<^sub>\<rightarrow> to_nmorph g\<^esub>\<^sub>E e = \<^bsub>to_nmorph k\<^esub>\<^sub>E e\<close> if \<open>\<forall>e\<in>E\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>E e = \<^bsub>k\<^esub>\<^sub>E e\<close>
using that
unfolding morph_comp_def
by (auto simp add: to_nmorph_def to_ngraph_def)
next
show \<open>\<forall>e\<in>E\<^bsub>G\<^esub>. \<^bsub>f \<circ>\<^sub>\<rightarrow> g\<^esub>\<^sub>E e = \<^bsub>k\<^esub>\<^sub>E e\<close> if \<open>\<forall>e\<in>E\<^bsub>to_ngraph G\<^esub>. \<^bsub>to_nmorph f \<circ>\<^sub>\<rightarrow> to_nmorph g\<^esub>\<^sub>E e = \<^bsub>to_nmorph k\<^esub>\<^sub>E e\<close>
using that
unfolding morph_comp_def
by (auto simp add: to_nmorph_def to_ngraph_def)
qed
definition lift_morph :: "nmorph \<Rightarrow> ('a::countable,nat,'b::countable,nat) pre_morph" where
"lift_morph f \<equiv> \<lparr>node_map = \<lambda>v. \<^bsub>f\<^esub>\<^sub>V (to_nat v), edge_map = \<lambda>e. \<^bsub>f\<^esub>\<^sub>E (to_nat e)\<rparr>"
end