forked from wenxinxu/resnet-in-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hyper_parameters.py
58 lines (39 loc) · 2.44 KB
/
hyper_parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Coder: Wenxin Xu
# Github: https://github.com/wenxinxu/resnet_in_tensorflow
# ==============================================================================
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
## The following flags are related to save paths, tensorboard outputs and screen outputs
tf.app.flags.DEFINE_string('version', 'test_110', '''A version number defining the directory to save
logs and checkpoints''')
tf.app.flags.DEFINE_integer('report_freq', 391, '''Steps takes to output errors on the screen
and write summaries''')
tf.app.flags.DEFINE_float('train_ema_decay', 0.95, '''The decay factor of the train error's
moving average shown on tensorboard''')
## The following flags define hyper-parameters regards training
tf.app.flags.DEFINE_integer('train_steps', 80000, '''Total steps that you want to train''')
tf.app.flags.DEFINE_boolean('is_full_validation', False, '''Validation w/ full validation set or
a random batch''')
tf.app.flags.DEFINE_integer('train_batch_size', 128, '''Train batch size''')
tf.app.flags.DEFINE_integer('validation_batch_size', 250, '''Validation batch size, better to be
a divisor of 10000 for this task''')
tf.app.flags.DEFINE_integer('test_batch_size', 125, '''Test batch size''')
tf.app.flags.DEFINE_float('init_lr', 0.1, '''Initial learning rate''')
tf.app.flags.DEFINE_float('lr_decay_factor', 0.1, '''How much to decay the learning rate each
time''')
tf.app.flags.DEFINE_integer('decay_step0', 40000, '''At which step to decay the learning rate''')
tf.app.flags.DEFINE_integer('decay_step1', 60000, '''At which step to decay the learning rate''')
## The following flags define hyper-parameters modifying the training network
tf.app.flags.DEFINE_integer('num_residual_blocks', 5, '''How many residual blocks do you want''')
tf.app.flags.DEFINE_float('weight_decay', 0.0002, '''scale for l2 regularization''')
## The following flags are related to data-augmentation
tf.app.flags.DEFINE_integer('padding_size', 2, '''In data augmentation, layers of zero padding on
each side of the image''')
## If you want to load a checkpoint and continue training
tf.app.flags.DEFINE_string('ckpt_path', 'cache/logs_repeat20/model.ckpt-100000', '''Checkpoint
directory to restore''')
tf.app.flags.DEFINE_boolean('is_use_ckpt', False, '''Whether to load a checkpoint and continue
training''')
tf.app.flags.DEFINE_string('test_ckpt_path', 'model_110.ckpt-79999', '''Checkpoint
directory to restore''')
train_dir = 'logs_' + FLAGS.version + '/'