-
Notifications
You must be signed in to change notification settings - Fork 36
/
WideResNet_Deploy.py
executable file
·455 lines (328 loc) · 16.6 KB
/
WideResNet_Deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import torch
import torchvision
import torchvision.transforms as transforms
from functools import reduce
from operator import mul
from util.network import *
from util.kmeans import *
import os
from torch.autograd import Variable
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
class deployer(object):
def __init__(self, retrained_model_CR, clusters_num_list, sparsity_p, visualize_filters, visualize_layers_index):
self.workers = 4 # number of workers for dataloader
self.seed = 1000 # seed for k-means
self.bitwidth = 32 # default 32 bit float
self.test_batch_size = 100 # testing batch size
self.retrained_model_CR = retrained_model_CR # load re-trained model trained on specific compression ratio
self.clusters_num_list = clusters_num_list # layer-wise k
self.sparsity_p = sparsity_p # layer-wise sparsity p
self.visualize_filters = visualize_filters # visualize filters
self.visualize_layers_index = visualize_layers_index # layer index of visualized filters
def get_samples_num_list(self, conv_layers):
samples_num_list = []
for i, layer in enumerate(conv_layers):
weight = layer.weight.data
filters_num = weight.shape[0]
filters_channel = weight.shape[1]
filters_size = weight.shape[2]
samples_num = filters_num * filters_channel * filters_size
samples_num_list.append(samples_num)
return samples_num_list
def get_memory(self):
self.all_memory = 0
self.layer_wise_memory = []
for i, layer in enumerate(self.conv_layers):
weight = layer.weight.data
bias = layer.bias.data
filters_num = weight.shape[0]
filters_channel = weight.shape[1]
filters_size = weight.shape[2]
samples_num = filters_num * filters_channel * filters_size
memory_weight = reduce(mul, weight.shape) * self.bitwidth
memory_bias = reduce(mul, bias.shape) * self.bitwidth
self.all_memory += memory_weight + memory_bias
self.layer_wise_memory.append(memory_weight + memory_bias)
for i, layer in enumerate(self.linear_layers):
weight = layer.weight.data
bias = layer.bias.data
memory_weight = reduce(mul, weight.shape) * self.bitwidth
memory_bias = reduce(mul, bias.shape) * self.bitwidth
self.all_memory += memory_weight + memory_bias
self.layer_wise_memory.append(memory_weight + memory_bias)
self.memory_percent_layer = [a / self.all_memory * 100 for a in self.layer_wise_memory]
def get_compressed_memory(self):
self.all_memory_compressed = 0
self.layer_wise_memory_compressed = []
for i, layer in enumerate(self.conv_layers + self.linear_layers):
if layer in self.conv_layers:
weight = layer.weight.data.cpu().numpy()
bias = layer.bias.data.cpu().numpy()
filters_num = weight.shape[0]
filters_channel = weight.shape[1]
filters_size = weight.shape[2]
samples_num = filters_num * filters_channel * filters_size
feature_dim = filters_size
weight_reshape = weight.reshape(-1, filters_size)
unique, counts = np.unique(weight_reshape, return_counts=True, axis=0)
all_count = weight_reshape.shape[0]
prob = counts / all_count
huffman_length = np.sum([- p * np.log2(p) for p in prob])
memory_weight = self.clusters_num_list[i] * feature_dim * self.bitwidth + samples_num * huffman_length
memory_bias = reduce(mul, bias.shape) * self.bitwidth
self.all_memory_compressed += memory_weight + memory_bias
self.layer_wise_memory_compressed.append(memory_weight + memory_bias)
if layer in self.linear_layers:
weight = layer.weight.data
bias = layer.bias.data
memory_weight = reduce(mul, weight.shape) * self.bitwidth
memory_bias = reduce(mul, bias.shape) * self.bitwidth
self.all_memory_compressed += memory_weight + memory_bias
self.layer_wise_memory_compressed.append(memory_weight + memory_bias)
self.compressed_memory_percent_layer = [a / self.all_memory_compressed * 100 for a in self.layer_wise_memory_compressed]
self.compression_ratio = self.all_memory / self.all_memory_compressed
def seek_layers(self, model):
self.all_layers = []
self.conv_layers = []
self.linear_layers = []
self.bn_layers = []
for keys, values in model._modules.items():
self.seek_layers_base(values)
def seek_layers_base(self, values):
if isinstance(values, nn.modules.conv.Conv2d) or isinstance(values, nn.modules.BatchNorm2d) or isinstance(values, nn.modules.Linear):
self.all_layers.append(values)
if isinstance(values, nn.modules.conv.Conv2d):
self.conv_layers.append(values)
elif isinstance(values, nn.modules.Linear):
self.linear_layers.append(values)
elif isinstance(values, nn.modules.BatchNorm2d):
self.bn_layers.append(values)
else:
if isinstance(values, nn.Sequential):
for items in values:
self.seek_layers_base(items)
if isinstance(values, wide_basic):
for items in values.get_all():
self.seek_layers_base(items)
def cluster_filters(self, weight, n_clusters, seed):
# weight: cuda tensor
filters_num = weight.shape[0]
filters_channel = weight.shape[1]
filters_size = weight.shape[2]
weight_vector = weight.reshape(-1, filters_size)
weight_vector_clustered = k_means_gpu(weight_vector.astype('float32'), n_clusters, verbosity=0, seed=seed,
gpu_id=0).astype('float32')
# unique_count = np.unique(weight_vector_clustered, axis=0, return_counts=True)[1]
# all_count = np.sum(unique_count)
# prob = unique_count / all_count
# huffman_length = np.sum([- p * np.log2(p) for p in prob])
# print('Unique Count: {} Huffman Length: {}'.format(unique_count, huffman_length))
weight_cube_clustered = weight_vector_clustered.reshape(filters_num, filters_channel,
filters_size, -1)
mse = mean_squared_error(weight_vector, weight_vector_clustered)
weight_compress = torch.from_numpy(weight_cube_clustered.astype('float32')).cuda()
return weight_compress, mse
def cluster_filters_sparsity(self, weight, n_clusters, ratio, seed):
# weight: cuda tensor
filters_num = weight.shape[0]
filters_channel = weight.shape[1]
filters_size = weight.shape[2]
weight_vector = weight.reshape(-1, filters_size)
weight_vector_clustered = k_means_gpu_sparsity(weight_vector.astype('float32'), n_clusters, ratio=ratio,
verbosity=0, seed=seed, gpu_id=0).astype('float32')
# unique_count = np.unique(weight_vector_clustered, axis=0, return_counts=True)[1]
# all_count = np.sum(unique_count)
# prob = unique_count / all_count
# huffman_length = np.sum([- p * np.log2(p) for p in prob])
# print('Unique Count: {} Huffman Length: {}'.format(unique_count, huffman_length))
weight_cube_clustered = weight_vector_clustered.reshape(filters_num, filters_channel, filters_size, -1)
mse = mean_squared_error(weight_vector, weight_vector_clustered)
weight_compress = torch.from_numpy(weight_cube_clustered.astype('float32')).cuda()
return weight_compress, mse
def cluster(self, conv_layers, nums_clusters_layers):
mse_list = []
for l, (nums_clusters, layer, sparsity_p) in enumerate(zip(nums_clusters_layers, conv_layers, self.sparsity_p)):
if sparsity_p != 0:
layer.weight.data, mse = self.cluster_filters_sparsity(layer.weight.data.cpu().numpy().astype('float32'),
nums_clusters, ratio=sparsity_p, seed=self.seed + l)
else:
layer.weight.data, mse = self.cluster_filters(layer.weight.data.cpu().numpy().astype('float32'),
nums_clusters, seed=self.seed + l)
mse_list.append(mse)
return mse_list
def initialize_data(self):
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
testset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=False,
download=True, transform=transform_test)
self.testloader = torch.utils.data.DataLoader(testset, batch_size=self.test_batch_size,
shuffle=False, num_workers=self.workers)
def initialize_model(self):
self.model = Wide_ResNet(depth=16, widen_factor=4, dropout_rate=0.3, num_classes=10).cuda()
self.criterion = nn.CrossEntropyLoss().cuda()
def load_retrained_model(self):
model_file = os.path.join('./model', 'model_retrained_{}x.pth.tar'.format(self.retrained_model_CR))
if os.path.isfile(model_file):
checkpoint = torch.load(model_file)
self.model.load_state_dict(checkpoint['state_dict'])
print("=> Loaded checkpoint at '{}'".format(model_file))
else:
print("=> No checkpoint found at '{}'".format(model_file))
def load_pretrained_model(self):
model_file = os.path.join('./model', 'model_pretrained.pth.tar')
if os.path.isfile(model_file):
checkpoint = torch.load(model_file)
self.model.load_state_dict(checkpoint['state_dict'])
print("=> Loaded checkpoint at '{}'".format(model_file))
else:
print("=> No checkpoint found at '{}'".format(model_file))
def initialize_all(self):
self.initialize_data()
self.initialize_model()
print('-------------------------------------------- Wide ResNet (d=16 k=4) on CIFAR 10 --------------------------------------------')
def get_parameters(self):
self.samples_num_list = self.get_samples_num_list(self.conv_layers)
print()
print('---------------------------------------------------- Parameters Settings ---------------------------------------------------')
print('Layer-wise N Samples: {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<6} {:<6} {:<6} {:<6}'.format(*self.samples_num_list))
print('Layer-wise K Clusters: {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<6} {:<6} {:<6} {:<6}'.format(*self.clusters_num_list))
print('Layer-wise Sparsity p: {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<5} {:<6} {:<6} {:<6} {:<6}'.format(*self.sparsity_p))
print('----------------------------------------------------------------------------------------------------------------------------')
print()
def deploy(self):
self.initialize_all()
self.seek_layers(self.model)
self.get_parameters()
self.load_pretrained_model()
self.seek_layers(self.model)
self.get_memory()
loss, prec = self.test(self.model)
if self.visualize_filters:
self.plot_conv(self.conv_layers, layer_indexes=self.visualize_layers_index, save_name='Pre-Trained Model')
print()
print('------------------------------------------------------------- Deep K-Means w/o Re-Training ----------------------------------------------------------')
print('Pre-Trained Model: Accuracy: {:.2f}%, Loss: {:.4f}, Parameters: {:.2f} MB'.format(prec, loss, self.all_memory/(8*1024*1024)))
print('-----------------------------------------------------------------------------------------------------------------------------------------------------')
print('Layer-wise Memory Consumption {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}%'.format(
*self.memory_percent_layer))
print('-----------------------------------------------------------------------------------------------------------------------------------------------------')
print()
self.load_retrained_model()
self.seek_layers(self.model)
self.get_memory()
loss, prec = self.test(self.model)
if self.visualize_filters:
self.plot_conv(self.conv_layers, layer_indexes=self.visualize_layers_index, save_name='Deep k-Means Re-Trained Model (Before Comp.)')
print()
print('------------------------------------------------------------ Deep K-Means w/ Re-Training ------------------------------------------------------------')
print('Deep k-Means Re-Trained Model (Before Comp.): Accuracy: {:.2f}%, Loss: {:.4f}, Parameters: {:.2f} MB'.format(prec, loss, self.all_memory/(8*1024*1024)))
mse_list = self.cluster(self.conv_layers, self.clusters_num_list)
loss, prec = self.test(self.model)
self.get_compressed_memory()
print('Deep k-Means Re-Trained Model (After Comp.): Accuracy: {:.2f}%, Loss: {:.4f}, Parameters: {:.2f} MB, Compression Ratio: {:.3f}, MMSE: {:.3e}'.format(
prec, loss, self.all_memory_compressed/(8*1024*1024), self.compression_ratio, np.mean(mse_list)))
print('----------------------------------------------------------------------------------------------------------------------------------------------------------------')
print('Layer-wise Memory Consumption (Before Comp.) {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}%'.format(
*self.memory_percent_layer))
print('Layer-wise Memory Consumption (After Comp.) {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}% {:5.2f}%'.format(
*self.compressed_memory_percent_layer))
print('----------------------------------------------------------------------------------------------------------------------------------------------------------------')
print()
if self.visualize_filters:
self.plot_conv(self.conv_layers, layer_indexes=self.visualize_layers_index, save_name='Deep k-Means Re-Trained Model (After Comp.)')
def test(self, model):
model.eval()
test_loss = 0
correct = 0
for data, target in self.testloader:
data, target = Variable(data.cuda()), Variable(target.cuda())
output = model(data)
test_loss += self.criterion(output, target).data[0]
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss_avg = (test_loss * self.test_batch_size)/ len(self.testloader.dataset)
acc = 100. * correct / len(self.testloader.dataset)
return test_loss_avg, acc
def plot_filters(self, weights, save_name):
def add_subplot_border(ax, width=1, color=None):
fig = ax.get_figure()
x0, y0 = ax.transAxes.transform((0, 0))
x1, y1 = ax.transAxes.transform((1, 1))
x0, y0 = ax.transAxes.inverted().transform((x0, y0))
x1, y1 = ax.transAxes.inverted().transform((x1, y1))
rect = plt.Rectangle(
(x0, y0), x1 - x0, y1 - y0,
color=color,
transform=ax.transAxes,
zorder=-1,
lw=2 * width + 1,
fill=None,
)
fig.patches.append(rect)
num_filters, channel, width, _ = weights.shape
if not len(weights.shape) == 4:
raise Exception("assumes a 4D weight")
num_cols = int(np.round(np.sqrt(num_filters)))
num_rows = int(np.ceil(num_filters / num_cols))
num_sub_cols = int(np.round(np.sqrt(channel)))
num_sub_rows = int(np.ceil(channel / num_sub_cols))
fig = plt.figure(figsize=(num_cols*num_sub_cols, num_rows*num_sub_rows))
outer_grid = gridspec.GridSpec(num_cols, num_cols, wspace=0.1, hspace=0.1)
for i in range(num_cols*num_cols):
inner_grid = gridspec.GridSpecFromSubplotSpec(num_sub_cols, num_sub_rows, subplot_spec=outer_grid[i], wspace=0.1, hspace=0.1)
for j in range(num_sub_cols*num_sub_rows):
ax = plt.Subplot(fig, inner_grid[j])
add_subplot_border(ax, width=4, color='black')
ax.imshow(weights[i, j, :, :])
ax.set_xticks([])
ax.set_yticks([])
fig.add_subplot(ax)
plt.show()
fig.savefig(save_name, dpi=200, bbox_inches='tight')
def plot_conv(self, conv_layers, layer_indexes, save_name):
for layer_index in layer_indexes:
savename = os.path.join('./visuals', 'Conv{} {}.png'.format(layer_index+1, save_name))
self.plot_filters(weights=conv_layers[layer_index].weight.data.cpu().numpy(), save_name=savename)
print("=> Saved filter visualization result under '{}'".format(savename))
if __name__ == '__main__':
Compression_Rate = 45 # Compression_Rate = 45, 47, 50
retrained_model_CR = Compression_Rate
if Compression_Rate == 45: # Parameter Settings for Compression Rate = 45
clusters_num_list = [144,
90, 80, 50, 30, 30,
100, 50, 10, 50, 50,
30, 7, 12, 7, 7]
sparsity_p = [0,
0.3, 0.4, 0.5, 0.4, 0.4,
0.5, 0.5, 0.5, 0.5, 0.5,
0.62, 0.9, 0.5, 0.75, 0.9]
elif Compression_Rate == 47: # Parameter Settings for Compression Rate = 47
clusters_num_list = [144,
90, 80, 50, 30, 30,
100, 50, 10, 50, 50,
7, 6, 12, 7, 7]
sparsity_p = [0,
0.3, 0.4, 0.5, 0.4, 0.4,
0.5, 0.5, 0.5, 0.5, 0.5,
0.6, 0.9, 0.5, 0.75, 0.9]
elif Compression_Rate == 50: # Parameter Settings for Compression Rate = 50
clusters_num_list = [144,
90, 80, 50, 30, 30,
100, 50, 10, 50, 50,
7, 6, 12, 7, 7]
sparsity_p = [0,
0.3, 0.4, 0.5, 0.4, 0.4,
0.5, 0.5, 0.5, 0.5, 0.5,
0.87, 0.9, 0.5, 0.75, 0.9]
visualize_filters = True
visualize_layers_index = [1]
deployer = deployer(retrained_model_CR=retrained_model_CR,
clusters_num_list=clusters_num_list,
sparsity_p=sparsity_p,
visualize_filters=visualize_filters,
visualize_layers_index=visualize_layers_index)
deployer.deploy()