-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
823 lines (771 loc) · 30.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
import time
import warnings
import gym
from gym.envs.toy_text.frozen_lake import generate_random_map # To generate a random map if you want
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import clear_output
from QInjection import Q_Injection
# Hide the error
warnings.filterwarnings(
"ignore",
message="`np.bool8` is a deprecated alias for `np.bool_`",
category=DeprecationWarning)
plt.rcParams['figure.dpi'] = 300
plt.rcParams.update({'font.size': 17})
# Create the game environment
env = gym.make('FrozenLake-v1', desc=[
"SFFFFFFF",
"FFFFFFFF",
"FFFHFFFF",
"FFFFFHFF",
"FFFHFFFF",
"FHHFFFHF",
"FHFFHFHF",
"FFFHFFFG",
],
map_name="8x8",
render_mode="human", is_slippery=False)
map_name = "8x8"
# Hyperparameters
try:
episodes_value = float(
input("Enter the number of episodes for this training session: "))
if episodes_value > 0:
episodes = episodes_value
else:
print("Please enter a positive number:")
episodes_value = float(
input("Enter the number of episodes for this training session: "))
except ValueError:
print("Please enter a number:")
episodes_value = float(
input("Enter the number of episodes for this training session: "))
if episodes_value > 0:
episodes = episodes_value
else:
print("Please enter a positive number:")
episodes_value = float(
input("Enter the number of episodes for this training session: "))
alpha = 0.5 # Learning Rate
gamma = 0.9 # Discount factor
epsilon = 1.0 # Amount of randomness in the action selection
epsilon_decay = 1 / int(episodes) # Fixed amount to decrease
# Datas
nb_success = 0 # Number of success
outcome = [] # List of outcomes to plot
best_sequence = [] # List of states in the best (shortest) episode that reach the goal
longest_sequence = [] # List of states in the longer episode that doesn't reach the goal
longest_best_sequence = [] # List of states in the longest episode that reach the goal
shortest_sequence = [] # List of states in the shortest episode that doesn't reach the goal
reward_counter = 0 # number of time that the agent obtain the reward
reward_episode = [] # List of the episode that the agent obtain the reward
reward_sequence = [] # List of the states in the episodes that the agent obtain the reward
recurent_sequence = 0 # Number of the episodes that the agent done the same sequence to reach the goal with the best sequence (by defalt for the first time we set it at one time)
total_actions = 0 # Total number of actions
# Action detailed
LEFT = 0
DOWN = 1
RIGHT = 2
UP = 3
action_words = {LEFT: 'LEFT', DOWN: 'DOWN', RIGHT: 'RIGHT', UP: 'UP'}
injection = input("Do you want to inject a Q-table? (Y/N): ")
if injection == "y":
ep_injection = episodes
def select_qtable():
alpha = 0.5 # Learning Rate
gamma = 0.9 # Discount factor
epsilon = 1.0 # Amount of randomness in the action selection
epsilon_decay = 1 / int(ep_injection) # Fixed amount to decrease
# Datas
nb_success = 0 # Number of success
outcome = [] # List of outcomes to plot
best_sequence = [] # List of states in the best (shortest) episode that reach the goal
longest_sequence = [] # List of states in the longer episode that doesn't reach the goal
longest_best_sequence = [] # List of states in the longest episode that reach the goal
shortest_sequence = [] # List of states in the shortest episode that doesn't reach the goal
reward_counter = 0 # number of time that the agent obtain the reward
reward_episode = [] # List of the episode that the agent obtain the reward
reward_sequence = [] # List of the states in the episodes that the agent obtain the reward
recurent_sequence = 0 # Number of the episodes that the agent done the same sequence to reach the goal with the best sequence (by defalt for the first time we set it at one time)
total_actions = 0 # Total number of actions
# Action detailed
LEFT = 0
DOWN = 1
RIGHT = 2
UP = 3
action_words = {LEFT: 'LEFT', DOWN: 'DOWN', RIGHT: 'RIGHT', UP: 'UP'}
random_qtable, trained_qtable, two_r_qtable = Q_Injection()
print(" ")
print("Q-Table At your disposition:")
print(" ")
print("1. Random Q-Table")
print(random_qtable)
print(" ")
print("2. Trained Qtable")
print(trained_qtable)
print(" ")
print("3. Two rewards Q-Table")
print(two_r_qtable)
print(" ")
choice = input("Which Q-Table are you choosing? (1/2/3): ")
# selectionate the qtable
if choice == "1":
qtable = random_qtable
elif choice == "2":
qtable = trained_qtable
elif choice == "3":
qtable = two_r_qtable
else:
print("Invalid choice. Please enter 1, 2, or 3.")
return
# Afficher print the selected qtable
print(" ")
print("The Value of your Q-Table is:")
print(qtable)
print(" ")
tr_or_te = input("Do you want to train or test the Q-Table? (train/test): ")
if tr_or_te == "train":
print(" ")
print("Train in progress...")
print(" ")
# Train loop
for episode in range(int(ep_injection)):
sequence = [] # List of states in the episode
state = env.reset() # Reset the environment
state = 0
done = False
outcome.append("Failure")
episode += 1
while not done:
time.sleep(0.7)
rnd = np.random.random()
## Take an action
if epsilon > rnd:
action = env.action_space.sample() # Random exploration
elif epsilon < rnd and state == next_state:
if np.argmax(qtable[state, action]) == 0:
action = env.action_space.sample()
else:
action = np.argmax(qtable[state]) # Exploit Q-table
sequence.append(action)
next_state, reward, done, info, _ = env.step(action)
# Update Q-table
qtable[state, action] = qtable[state, action] + \
alpha * (reward + gamma * np.max(qtable[next_state, :]) - \
qtable[state, action])
state = next_state
if not longest_sequence:
longest_sequence = sequence
elif len(sequence) > len(longest_sequence):
longest_sequence = sequence
if not reward:
if not shortest_sequence:
shortest_sequence = sequence
elif len(sequence) < len(shortest_sequence):
shortest_sequence = sequence
if reward:
outcome[-1] = "Success"
reward_counter += 1
nb_success += 1
reward_episode.append(episode)
reward_sequence.append(sequence)
if not best_sequence:
best_sequence = sequence
elif len(sequence) < len(best_sequence):
best_sequence = sequence
if not longest_best_sequence:
longest_best_sequence = sequence
elif len(sequence) > len(longest_best_sequence):
longest_best_sequence = sequence
if best_sequence == sequence:
recurent_sequence = recurent_sequence + 1
epsilon = max(epsilon - epsilon_decay, 0)
clear_output(wait=True)
env.render()
time.sleep(1)
print(f'Episode: {episode}')
sequence_words = [action_words[action] for action in sequence
] # Convert actions input number into input words
print(f'Sequence: {sequence} / {sequence_words}')
print(f'Best Sequence: {best_sequence}')
if reward:
print("Is the agent reach the goal?: Yes")
print("Q-table after " + str(reward_counter) + " rewards: ")
print(qtable)
else:
print("Is the agent reach the goal?: No")
print(" ")
# Results
print("Results after " + str(ep_injection) + " training's episodes: ")
print(" ")
print('Q-table after training:')
print(qtable)
print(" ")
print(f'Shortest Sequence: {shortest_sequence}')
print(" ")
print(f'Longest Sequence: {longest_sequence}')
print(" ")
print(f'Best Sequence: {best_sequence} x{str(recurent_sequence)}')
print(" ")
print(f'Longest Best Sequence: {longest_best_sequence}')
print(" ")
print("Number of time that the agent reach the goal: " + str(reward_counter))
print(" ")
action_counts = {action_words[key]: 0 for key in action_words.keys()}
for sequence in reward_sequence:
for action in sequence:
action_counts[action_words[action]] += 1
total_actions += 1
print("Number of all inputs in " + str(reward_counter) + " sequences:")
for action, count in action_counts.items():
print(f"-({action}): {count} times")
print(f"-Total inputs: {total_actions}")
print(" ")
print("Episodes where the agent reach the goal: " + str(reward_episode))
print(" ")
for episode_num, sequence in zip(reward_episode, reward_sequence):
sequence_words = [action_words[action] for action in sequence
] # Convert actions input number into input words
print(f"Sequence {episode_num}: {sequence} / {sequence_words}")
print(" ")
print(f"Success rate = {(nb_success/ep_injection)*100}%")
print(" ")
test = input("Do you want to try your Q-Table? Y/N: ")
print(" ")
if test == "y":
print("Test of the updated Q-Table")
print(" ")
#reset the datas
episodes = 100
best_sequence = []
longest_sequence = []
longest_best_sequence = []
shortest_sequence = []
total_action = 0
reward_counter = 0
reward_episode = []
reward_sequence = []
nb_success = 0
recurent_sequence = 0
total_action = 0
for episode in range(episodes):
sequence = [] # List of states in the episode
state = env.reset() # Reset the environment
done = False
outcome.append("Failure")
state = 0
episode += 1
while not done:
time.sleep(0.7)
# Choose the action with the highest value in the current state
if np.max(qtable[state]) < 0:
action = env.action_space.sample()
# If there's no best action (only zeros), take a random one
if np.max(qtable[state]) > 0:
action = np.argmax(qtable[state])
if np.argmax(qtable[state]) == 0:
action = env.action_space.sample()
sequence.append(action)
next_state, reward, done, info, _ = env.step(action)
state = next_state
nb_success += reward
if not longest_sequence:
longest_sequence = sequence
elif len(sequence) > len(longest_sequence):
longest_sequence = sequence
if not reward:
if not shortest_sequence:
shortest_sequence = sequence
elif len(sequence) < len(shortest_sequence):
shortest_sequence = sequence
if reward:
outcome[-1] = "Success"
reward_counter = reward_counter + 1
reward_episode.append(episode)
reward_sequence.append(sequence)
if not best_sequence:
best_sequence = sequence
elif len(sequence) < len(best_sequence):
best_sequence = sequence
if not longest_best_sequence:
longest_best_sequence = sequence
elif len(sequence) > len(longest_best_sequence):
longest_best_sequence = sequence
if best_sequence == sequence:
recurent_sequence = recurent_sequence + 1
if best_sequence == []:
recurent_sequence = 0
epsilon = max(epsilon - epsilon_decay, 0)
clear_output(wait=True)
env.render()
time.sleep(1)
print(f'Episode: {episode}')
sequence_words = [action_words[action] for action in sequence] # Convert actions input number into input words
print(f'Sequence: {sequence} / {sequence_words}')
print(f'Best Sequence: {best_sequence}')
if reward:
print("Is the agent reach the goal?: Yes")
else:
print("Is the agent reach the goal?: No")
print(" ")
# Results of the Q-table after training and a test without update
print("Results after " + str(int(episodes)) + " of test's episodes: ")
print(" ")
print(qtable)
print(" ")
print(f'Shortest Sequence: {shortest_sequence}')
print(" ")
print(f'Longest Sequence: {longest_sequence}')
print(" ")
print(f'Best Sequence: {best_sequence} x{str(recurent_sequence)}')
print(" ")
print(f'Longest Best Sequence: {longest_best_sequence}')
print(" ")
print("Number of time that the agent reach the goal: " + str(reward_counter))
print(" ")
action_counts = {action_words[key]: 0 for key in action_words.keys()}
for sequence in reward_sequence:
for action in sequence:
action_counts[action_words[action]] += 1
total_actions += 1
print("Number of all inputs in " + str(reward_counter) + " sequences:")
for action, count in action_counts.items():
print(f"-({action}): {count} times")
print(f"-Total inputs: {total_actions}")
print(" ")
print("Episodes where the agent reach the goal: " + str(reward_episode))
print(" ")
for episode_num, sequence in zip(reward_episode, reward_sequence):
sequence_words = [action_words[action] for action in sequence
] # Convert actions input number into input words
print(f"Sequence {episode_num}: {sequence} / {sequence_words}")
print(" ")
print(f"Success rate = {(nb_success/int(episodes))*100}%")
#Success rate of the update of the Q-table
if (nb_success / int(episodes)) * 100 == 100:
print(" ")
print("The Update of the Q-Table is PERFECT to reach the goal!")
if 80 <= (nb_success / int(episodes)) * 100 <= 99:
print(" ")
print("The Update of the Q-Table is a great success!")
if 50 <= (nb_success / int(episodes)) * 100 <= 79:
print(" ")
print("The Update of the Q-Table is successful!")
if 33 <= (nb_success / episodes) * 100 <= 49:
print(" ")
print("The Update of the Q-Table is good enought.")
if 25 <= (nb_success / episodes) * 100 <= 32:
print(" ")
print("The Update of the Q-Table is not update well.")
if (nb_success / episodes) * 100 <= 24:
print(" ")
print("The Update of the Q-Table is not good at all.")
elif test == "n":
plt.figure(figsize=(3, 1.25))
plt.xlabel("Run number")
plt.ylabel("Outcome")
ax = plt.gca()
ax.set_facecolor('#efeeea')
plt.bar(range(len(outcome)), outcome, color="#0A047A", width=0.5)
plt.show()
# test the injection without training
elif tr_or_te == "test":
print(" ")
print("Test...")
print(" ")
#reset the datas
episodes = 100
best_sequence = []
longest_sequence = []
longest_best_sequence = []
shortest_sequence = []
total_action = 0
reward_counter = 0
reward_episode = []
reward_sequence = []
nb_success = 0
recurent_sequence = 0
total_action = 0
for episode in range(episodes):
sequence = [] # List of states in the episode
state = env.reset() # Reset the environment
done = False
outcome.append("Failure")
state = 0
episode += 1
while not done:
time.sleep(0.7)
# Choose the action with the highest value in the current state
if np.max(qtable[state]) < 0:
action = env.action_space.sample()
# If there's no best action (only zeros), take a random one
if np.max(qtable[state]) > 0:
action = np.argmax(qtable[state])
if np.argmax(qtable[state]) == 0:
action = env.action_space.sample()
sequence.append(action)
next_state, reward, done, info, _ = env.step(action)
state = next_state
nb_success += reward
if not longest_sequence:
longest_sequence = sequence
elif len(sequence) > len(longest_sequence):
longest_sequence = sequence
if not reward:
if not shortest_sequence:
shortest_sequence = sequence
elif len(sequence) < len(shortest_sequence):
shortest_sequence = sequence
if reward:
outcome[-1] = "Success"
reward_counter = reward_counter + 1
reward_episode.append(episode)
reward_sequence.append(sequence)
if not best_sequence:
best_sequence = sequence
elif len(sequence) < len(best_sequence):
best_sequence = sequence
if not longest_best_sequence:
longest_best_sequence = sequence
elif len(sequence) > len(longest_best_sequence):
longest_best_sequence = sequence
if best_sequence == sequence:
recurent_sequence = recurent_sequence + 1
if best_sequence == []:
recurent_sequence = 0
epsilon = max(epsilon - epsilon_decay, 0)
clear_output(wait=True)
env.render()
time.sleep(1)
print(f'Episode: {episode}')
sequence_words = [action_words[action] for action in sequence] # Convert actions input number into input words
print(f'Sequence: {sequence} / {sequence_words}')
print(f'Best Sequence: {best_sequence}')
if reward:
print("Is the agent reach the goal?: Yes")
else:
print("Is the agent reach the goal?: No")
print(" ")
# Results of the Q-table after training and a test without update
print("Results after " + str(int(episodes)) + " of test's episodes: ")
print(" ")
print(qtable)
print(" ")
print(f'Shortest Sequence: {shortest_sequence}')
print(" ")
print(f'Longest Sequence: {longest_sequence}')
print(" ")
print(f'Best Sequence: {best_sequence} x{str(recurent_sequence)}')
print(" ")
print(f'Longest Best Sequence: {longest_best_sequence}')
print(" ")
print("Number of time that the agent reach the goal: " + str(reward_counter))
print(" ")
action_counts = {action_words[key]: 0 for key in action_words.keys()}
for sequence in reward_sequence:
for action in sequence:
action_counts[action_words[action]] += 1
total_actions += 1
print("Number of all inputs in " + str(reward_counter) + " sequences:")
for action, count in action_counts.items():
print(f"-({action}): {count} times")
print(f"-Total inputs: {total_actions}")
print(" ")
print("Episodes where the agent reach the goal: " + str(reward_episode))
print(" ")
for episode_num, sequence in zip(reward_episode, reward_sequence):
sequence_words = [action_words[action] for action in sequence
] # Convert actions input number into input words
print(f"Sequence {episode_num}: {sequence} / {sequence_words}")
print(" ")
print(f"Success rate = {(nb_success/int(episodes))*100}%")
#Success rate of the update of the Q-table
if (nb_success / int(episodes)) * 100 == 100:
print(" ")
print("The Update of the Q-Table is PERFECT to reach the goal!")
if 80 <= (nb_success / int(episodes)) * 100 <= 99:
print(" ")
print("The Update of the Q-Table is a great success!")
if 50 <= (nb_success / int(episodes)) * 100 <= 79:
print(" ")
print("The Update of the Q-Table is successful!")
if 33 <= (nb_success / episodes) * 100 <= 49:
print(" ")
print("The Update of the Q-Table is good enought.")
if 25 <= (nb_success / episodes) * 100 <= 32:
print(" ")
print("The Update of the Q-Table is not update well.")
if (nb_success / episodes) * 100 <= 24:
print(" ")
print("The Update of the Q-Table is not good at all.")
plt.figure(figsize=(3, 1.25))
plt.xlabel("Run number")
plt.ylabel("Outcome")
ax = plt.gca()
ax.set_facecolor('#efeeea')
plt.bar(range(len(outcome)), outcome, color="#0A047A", width=0.5)
plt.show()
if __name__ == "__main__":
# call the function to select the Q-table
select_qtable()
#Q-tbale calculation
qtable = np.zeros((env.observation_space.n, env.action_space.n))
# show the Q-table
print(" ")
print('Q-table before training: ')
print(qtable)
print(' ')
# Learning loop
for episode in range(int(episodes)):
sequence = [] # List of states in the episode
state = env.reset() # Reset the environment
state = 0
done = False
outcome.append("Failure")
episode += 1
while not done:
time.sleep(0.7)
rnd = np.random.random()
## Take an action
if epsilon > rnd:
action = env.action_space.sample() # Random exploration
elif epsilon < rnd and state == next_state:
if np.argmax(qtable[state, action]) == 0:
action = env.action_space.sample()
else:
action = np.argmax(qtable[state]) # Exploit Q-table
sequence.append(action)
next_state, reward, done, info, _ = env.step(action)
# Update Q-table
qtable[state, action] = qtable[state, action] + \
alpha * (reward + gamma * np.max(qtable[next_state, :]) - \
qtable[state, action])
state = next_state
if not longest_sequence:
longest_sequence = sequence
elif len(sequence) > len(longest_sequence):
longest_sequence = sequence
if not reward:
if not shortest_sequence:
shortest_sequence = sequence
elif len(sequence) < len(shortest_sequence):
shortest_sequence = sequence
if reward:
outcome[-1] = "Success"
reward_counter += 1
nb_success += 1
reward_episode.append(episode)
reward_sequence.append(sequence)
if not best_sequence:
best_sequence = sequence
elif len(sequence) < len(best_sequence):
best_sequence = sequence
if not longest_best_sequence:
longest_best_sequence = sequence
elif len(sequence) > len(longest_best_sequence):
longest_best_sequence = sequence
if best_sequence == sequence:
recurent_sequence = recurent_sequence + 1
epsilon = max(epsilon - epsilon_decay, 0)
clear_output(wait=True)
env.render()
time.sleep(1)
print(f'Episode: {episode}')
sequence_words = [action_words[action] for action in sequence
] # Convert actions input number into input words
print(f'Sequence: {sequence} / {sequence_words}')
print(f'Best Sequence: {best_sequence}')
if reward:
print("Is the agent reach the goal?: Yes")
print("Q-table after " + str(reward_counter) + " rewards: ")
print(qtable)
else:
print("Is the agent reach the goal?: No")
print(" ")
# Results
print("Results after " + str(episodes) + " training's episodes: ")
print(" ")
print('Q-table after training:')
print(qtable)
print(" ")
print(f'Shortest Sequence: {shortest_sequence}')
print(" ")
print(f'Longest Sequence: {longest_sequence}')
print(" ")
print(f'Best Sequence: {best_sequence} x{str(recurent_sequence)}')
print(" ")
print(f'Longest Best Sequence: {longest_best_sequence}')
print(" ")
print("Number of time that the agent reach the goal: " + str(reward_counter))
print(" ")
action_counts = {action_words[key]: 0 for key in action_words.keys()}
for sequence in reward_sequence:
for action in sequence:
action_counts[action_words[action]] += 1
total_actions += 1
print("Number of all inputs in " + str(reward_counter) + " sequences:")
for action, count in action_counts.items():
print(f"-({action}): {count} times")
print(f"-Total inputs: {total_actions}")
print(" ")
print("Episodes where the agent reach the goal: " + str(reward_episode))
print(" ")
for episode_num, sequence in zip(reward_episode, reward_sequence):
sequence_words = [action_words[action] for action in sequence
] # Convert actions input number into input words
print(f"Sequence {episode_num}: {sequence} / {sequence_words}")
print(" ")
print(f"Success rate = {(nb_success/episodes)*100}%")
print(" ")
test = input("Do you want to try your Q-Table? Y/N: ")
print(" ")
if test == "n":
plt.figure(figsize=(3, 1.25))
plt.xlabel("Run number")
plt.ylabel("Outcome")
ax = plt.gca()
ax.set_facecolor('#efeeea')
plt.bar(range(len(outcome)), outcome, color="#0A047A", width=0.5)
plt.show()
# Loop for the test of the updated Q-Table
if test == "y":
print("Test of the updated Q-Table")
print(" ")
#reset the datas
episodes = 100
best_sequence = []
longest_sequence = []
longest_best_sequence = []
shortest_sequence = []
total_action = 0
reward_counter = 0
reward_episode = []
reward_sequence = []
nb_success = 0
recurent_sequence = 0
total_action = 0
for episode in range(episodes):
sequence = [] # List of states in the episode
state = env.reset() # Reset the environment
done = False
outcome.append("Failure")
state = 0
episode += 1
while not done:
time.sleep(0.7)
# Choose the action with the highest value in the current state
if np.max(qtable[state]) < 0:
action = env.action_space.sample()
# If there's no best action (only zeros), take a random one
if np.max(qtable[state]) > 0:
action = np.argmax(qtable[state])
if np.argmax(qtable[state]) == 0:
action = env.action_space.sample()
sequence.append(action)
next_state, reward, done, info, _ = env.step(action)
state = next_state
nb_success += reward
if not longest_sequence:
longest_sequence = sequence
elif len(sequence) > len(longest_sequence):
longest_sequence = sequence
if not reward:
if not shortest_sequence:
shortest_sequence = sequence
elif len(sequence) < len(shortest_sequence):
shortest_sequence = sequence
if reward:
outcome[-1] = "Success"
reward_counter = reward_counter + 1
reward_episode.append(episode)
reward_sequence.append(sequence)
if not best_sequence:
best_sequence = sequence
elif len(sequence) < len(best_sequence):
best_sequence = sequence
if not longest_best_sequence:
longest_best_sequence = sequence
elif len(sequence) > len(longest_best_sequence):
longest_best_sequence = sequence
if best_sequence == sequence:
recurent_sequence = recurent_sequence + 1
if best_sequence == []:
recurent_sequence = 0
epsilon = max(epsilon - epsilon_decay, 0)
clear_output(wait=True)
env.render()
time.sleep(1)
print(f'Episode: {episode}')
sequence_words = [action_words[action] for action in sequence] # Convert actions input number into input words
print(f'Sequence: {sequence} / {sequence_words}')
print(f'Best Sequence: {best_sequence}')
if reward:
print("Is the agent reach the goal?: Yes")
else:
print("Is the agent reach the goal?: No")
print(" ")
# Results of the Q-table after training and a test without update
print("Results after " + str(int(episodes)) + " of test's episodes: ")
print(" ")
print(qtable)
print(" ")
print(f'Shortest Sequence: {shortest_sequence}')
print(" ")
print(f'Longest Sequence: {longest_sequence}')
print(" ")
print(f'Best Sequence: {best_sequence} x{str(recurent_sequence)}')
print(" ")
print(f'Longest Best Sequence: {longest_best_sequence}')
print(" ")
print("Number of time that the agent reach the goal: " + str(reward_counter))
print(" ")
action_counts = {action_words[key]: 0 for key in action_words.keys()}
for sequence in reward_sequence:
for action in sequence:
action_counts[action_words[action]] += 1
total_actions += 1
print("Number of all inputs in " + str(reward_counter) + " sequences:")
for action, count in action_counts.items():
print(f"-({action}): {count} times")
print(f"-Total inputs: {total_actions}")
print(" ")
print("Episodes where the agent reach the goal: " + str(reward_episode))
print(" ")
for episode_num, sequence in zip(reward_episode, reward_sequence):
sequence_words = [action_words[action] for action in sequence
] # Convert actions input number into input words
print(f"Sequence {episode_num}: {sequence} / {sequence_words}")
print(" ")
print(f"Success rate = {(nb_success/int(episodes))*100}%")
#Success rate of the update of the Q-table
if (nb_success / int(episodes)) * 100 == 100:
print(" ")
print("The Update of the Q-Table is PERFECT to reach the goal!")
if 80 <= (nb_success / int(episodes)) * 100 <= 99:
print(" ")
print("The Update of the Q-Table is a great success!")
if 50 <= (nb_success / int(episodes)) * 100 <= 79:
print(" ")
print("The Update of the Q-Table is successful!")
if 33 <= (nb_success / episodes) * 100 <= 49:
print(" ")
print("The Update of the Q-Table is good enought.")
if 25 <= (nb_success / episodes) * 100 <= 32:
print(" ")
print("The Update of the Q-Table is not update well.")
if (nb_success / episodes) * 100 <= 24:
print(" ")
print("The Update of the Q-Table is not good at all.")
elif test != "y" "n":
print(" ")
print("Invalid answer please type y or n")
test = input("Do you want to try your Q-Table? y/n: ")
# Plot outcomes
plt.figure(figsize=(3, 1.25))
plt.xlabel("Run number")
plt.ylabel("Outcome")
ax = plt.gca()
ax.set_facecolor('#efeeea')
plt.bar(range(len(outcome)), outcome, color="#0A047A", width=0.5)
plt.show()