-
Notifications
You must be signed in to change notification settings - Fork 0
/
backbone.py
93 lines (79 loc) · 2.93 KB
/
backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Original code
# https://github.com/ZhaoJ9014/face.evoLVe.PyTorch/blob/master/backbone/model_irse.py
from collections import namedtuple
import torch
import torch.nn as nn
class bottleneck_IR(nn.Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR, self).__init__()
if in_channel == depth:
self.shortcut_layer = nn.MaxPool2d(1, stride)
else:
self.shortcut_layer = nn.Sequential(
nn.Conv2d(in_channel, depth, (1, 1), stride, bias=False),
nn.BatchNorm2d(depth),
)
self.res_layer = nn.Sequential(
nn.BatchNorm2d(in_channel),
nn.Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
nn.PReLU(depth),
nn.Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
nn.BatchNorm2d(depth),
)
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
'''A named tuple describing a ResNet block.'''
def get_block(in_channel, depth, num_units, stride=2):
return [Bottleneck(in_channel, depth, stride)] + [
Bottleneck(depth, depth, 1) for i in range(num_units - 1)
]
class Backbone(nn.Module):
def __init__(self, input_size):
super(Backbone, self).__init__()
assert input_size[0] in [
112,
224,
], 'input_size should be [112, 112] or [224, 224]'
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=14),
get_block(in_channel=256, depth=512, num_units=3),
]
unit_module = bottleneck_IR
self.input_layer = nn.Sequential(
nn.Conv2d(3, 64, (3, 3), 1, 1, bias=False), nn.BatchNorm2d(64), nn.PReLU(64),
)
if input_size[0] == 112:
self.output_layer = nn.Sequential(
nn.BatchNorm2d(512),
nn.Dropout(),
nn.Flatten(),
nn.Linear(512 * 7 * 7, 512),
nn.BatchNorm1d(512),
)
else:
self.output_layer = nn.Sequential(
nn.BatchNorm2d(512),
nn.Dropout(),
nn.Flatten(),
nn.Linear(512 * 14 * 14, 512),
nn.BatchNorm1d(512),
)
modules = []
for block in blocks:
for bottleneck in block:
modules.append(
unit_module(
bottleneck.in_channel, bottleneck.depth, bottleneck.stride,
),
)
self.body = nn.Sequential(*modules)
def forward(self, x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_layer(x)
return x