forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
embedding.cpp
324 lines (275 loc) · 11.2 KB
/
embedding.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include <ctime>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static std::vector<std::string> split_lines(const std::string & s, const std::string & separator = "\n") {
std::vector<std::string> lines;
size_t start = 0;
size_t end = s.find(separator);
while (end != std::string::npos) {
lines.push_back(s.substr(start, end - start));
start = end + separator.length();
end = s.find(separator, start);
}
lines.push_back(s.substr(start)); // Add the last part
return lines;
}
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
size_t n_tokens = tokens.size();
for (size_t i = 0; i < n_tokens; i++) {
common_batch_add(batch, tokens[i], i, { seq_id }, true);
}
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
const struct llama_model * model = llama_get_model(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) {
// encoder-only model
if (llama_encode(ctx, batch) < 0) {
LOG_ERR("%s : failed to encode\n", __func__);
}
} else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
// decoder-only model
if (llama_decode(ctx, batch) < 0) {
LOG_ERR("%s : failed to decode\n", __func__);
}
}
for (int i = 0; i < batch.n_tokens; i++) {
if (!batch.logits[i]) {
continue;
}
const float * embd = nullptr;
int embd_pos = 0;
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
// try to get token embeddings
embd = llama_get_embeddings_ith(ctx, i);
embd_pos = i;
GGML_ASSERT(embd != NULL && "failed to get token embeddings");
} else {
// try to get sequence embeddings - supported only when pooling_type is not NONE
embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
embd_pos = batch.seq_id[i][0];
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
}
float * out = output + embd_pos * n_embd;
common_embd_normalize(embd, out, n_embd, embd_norm);
}
}
int main(int argc, char ** argv) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
return 1;
}
common_init();
params.embedding = true;
// For non-causal models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
llama_backend_init();
llama_numa_init(params.numa);
// load the model
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
LOG_ERR("%s: computing embeddings in encoder-decoder models is not supported\n", __func__);
return 1;
}
if (n_ctx > n_ctx_train) {
LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, n_ctx);
}
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
// split the prompt into lines
std::vector<std::string> prompts = split_lines(params.prompt, params.embd_sep);
// max batch size
const uint64_t n_batch = params.n_batch;
GGML_ASSERT(params.n_batch >= params.n_ctx);
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
for (const auto & prompt : prompts) {
auto inp = common_tokenize(ctx, prompt, true, true);
if (inp.size() > n_batch) {
LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
__func__, (long long int) inp.size(), (long long int) n_batch);
return 1;
}
inputs.push_back(inp);
}
// check if the last token is SEP
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
for (auto & inp : inputs) {
if (inp.empty() || inp.back() != llama_token_sep(model)) {
LOG_WRN("%s: last token in the prompt is not SEP\n", __func__);
LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
}
}
// tokenization stats
if (params.verbose_prompt) {
for (int i = 0; i < (int) inputs.size(); i++) {
LOG_INF("%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
for (int j = 0; j < (int) inputs[i].size(); j++) {
LOG("%6d -> '%s'\n", inputs[i][j], common_token_to_piece(ctx, inputs[i][j]).c_str());
}
LOG("\n\n");
}
}
// initialize batch
const int n_prompts = prompts.size();
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
// count number of embeddings
int n_embd_count = 0;
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
for (int k = 0; k < n_prompts; k++) {
n_embd_count += inputs[k].size();
}
} else {
n_embd_count = n_prompts;
}
// allocate output
const int n_embd = llama_n_embd(model);
std::vector<float> embeddings(n_embd_count * n_embd, 0);
float * emb = embeddings.data();
// break into batches
int e = 0; // number of embeddings already stored
int s = 0; // number of prompts in current batch
for (int k = 0; k < n_prompts; k++) {
// clamp to n_batch tokens
auto & inp = inputs[k];
const uint64_t n_toks = inp.size();
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
float * out = emb + e * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
s = 0;
common_batch_clear(batch);
}
// add to batch
batch_add_seq(batch, inp, s);
s += 1;
}
// final batch
float * out = emb + e * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
if (params.embd_out.empty()) {
LOG("\n");
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
for (int j = 0; j < n_embd_count; j++) {
LOG("embedding %d: ", j);
for (int i = 0; i < std::min(3, n_embd); i++) {
if (params.embd_normalize == 0) {
LOG("%6.0f ", emb[j * n_embd + i]);
} else {
LOG("%9.6f ", emb[j * n_embd + i]);
}
}
LOG(" ... ");
for (int i = n_embd - 3; i < n_embd; i++) {
if (params.embd_normalize == 0) {
LOG("%6.0f ", emb[j * n_embd + i]);
} else {
LOG("%9.6f ", emb[j * n_embd + i]);
}
}
LOG("\n");
}
} else if (pooling_type == LLAMA_POOLING_TYPE_RANK) {
for (int j = 0; j < n_embd_count; j++) {
// NOTE: if you change this log - update the tests in ci/run.sh
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
}
} else {
// print the first part of the embeddings or for a single prompt, the full embedding
for (int j = 0; j < n_prompts; j++) {
LOG("embedding %d: ", j);
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
if (params.embd_normalize == 0) {
LOG("%6.0f ", emb[j * n_embd + i]);
} else {
LOG("%9.6f ", emb[j * n_embd + i]);
}
}
LOG("\n");
}
// print cosine similarity matrix
if (n_prompts > 1) {
LOG("\n");
LOG("cosine similarity matrix:\n\n");
for (int i = 0; i < n_prompts; i++) {
LOG("%6.6s ", prompts[i].c_str());
}
LOG("\n");
for (int i = 0; i < n_prompts; i++) {
for (int j = 0; j < n_prompts; j++) {
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
LOG("%6.2f ", sim);
}
LOG("%1.10s", prompts[i].c_str());
LOG("\n");
}
}
}
}
if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") {
const bool notArray = params.embd_out != "array";
LOG(notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "[");
for (int j = 0;;) { // at least one iteration (one prompt)
if (notArray) LOG(" {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j);
LOG("[");
for (int i = 0;;) { // at least one iteration (n_embd > 0)
LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
i++;
if (i < n_embd) LOG(","); else break;
}
LOG(notArray ? "]\n }" : "]");
j++;
if (j < n_embd_count) LOG(notArray ? ",\n" : ","); else break;
}
LOG(notArray ? "\n ]" : "]\n");
if (params.embd_out == "json+" && n_prompts > 1) {
LOG(",\n \"cosineSimilarity\": [\n");
for (int i = 0;;) { // at least two iteration (n_embd_count > 1)
LOG(" [");
for (int j = 0;;) { // at least two iteration (n_embd_count > 1)
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
LOG("%6.2f", sim);
j++;
if (j < n_embd_count) LOG(", "); else break;
}
LOG(" ]");
i++;
if (i < n_embd_count) LOG(",\n"); else break;
}
LOG("\n ]");
}
if (notArray) LOG("\n}\n");
}
LOG("\n");
llama_perf_context_print(ctx);
// clean up
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}