forked from tarmiziAdam2005/Image-Signal-Processing
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGSTVD_Img.m
96 lines (73 loc) · 2.91 KB
/
GSTVD_Img.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
function [x, err] = GSTVD_Img(y, K, lam, Nit)
% Created by Tarmizi Adam 2/09/2015. A program to do Total variation
% Denoising (TVD)
% Output:
% x : Denoised image (Display this)
% err: Error at each iteration (Plot this to see convergence)
% Input:
% y : Noisy Image (Observed Image)
% K : Group size
% lam : regularization parameter (lambda)
% Nit : Number of iteration to stop the Algorithm
% The codes here follows closely several papers as
% references:
% 1) M. Figueiredo, J. B. Dias, J. P. Oliveira, R. D. Nowak et al.,
% “On total variation denoising: A new majorization-minimization
% algorithm and an experimental comparisonwith wavalet denoising,”
% in IEEE International Conference on Image Processing.
% IEEE, 2006, pp. 2633–2636.
% 2) Micchelli, C. A., Shen, L., and Xu, Yuesheng.
% "Proximity algorithms for image models: Denoising"
% Inverse Problems (27).1-29 (2011)
% 3) Tutorial and codes from: I. Selesnick,
% “Total variation denoising (an mm algorithm)
% 4) Liu, Jun, Ting-Zhu Huang, Ivan W. Selesnick, Xiao-Guang Lv,
% and Po-Yu Chen. "Image restoration using total variation with
% overlapping group sparsity." Information Sciences 295 (2015): 232-246.
% 5) Selesnick, Ivan W., and Po-Yu Chen. "Total variation denoising
% with overlapping group sparsity."
% In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
% International Conference on, pp. 5696-5700. IEEE, 2013.
y = double(y);
y = y(:);
n = length(y);
[D, DT, DDT ] = DiffOper(sqrt(n)); %pre-compute some matrices, including
% our differential operator D (hor and
% ver)
h = ones(K,K);
%h= h(:);
x = y;
Dx = D*x;
Dy = D*y;
dim = length(Dx);
err = zeros(Nit,1);
for k = 1:Nit
xu = x;
r = sqrt(conv2(abs(Dx).^2, h,'same'));
v = conv2(1./r, h, 'same');
F = 1/lam * spdiags(1./v,0,dim,dim) + DDT; %1/lam*diag(Dx) + DDT
%******Can use backlash*****************
z = F\Dy; %*
x = y - DT*z; %update x %*
%***************************************
%*******Can use also congugate gradinet to solve the linear system****
%z = cgs(F,Dy,[],100); %solve linear system for z, F*z = Dy %*
%x = y - DT*z; %update x %*
%*********************************************************************
e = norm(xu-x)/norm(x); %convergence error
err(k) = e;
Dx = D*x;
end
x = reshape(x,256,256);
end
function [D,DT,DDT] = DiffOper(N)
e = ones(N,1);
B = spdiags([e -e], [1 0], N, N);
B(N,1) = 1;
Dv = kron(speye(N),B);
Dh = kron(B,speye(N));
D = [ Dv ; Dh ]; %combine vertical and horizontal
% difference matrix in one big matrix D. refer 2)
DT = D';
DDT = D*D';
end