-
Notifications
You must be signed in to change notification settings - Fork 3
/
example_roberta.sh
43 lines (41 loc) · 1.38 KB
/
example_roberta.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Train the base model
python main.py --model_type roberta \
--model_dir dir_base \
--task <mixatis or mixsnips> \
--data_dir data \
--do_train \
--do_eval \
--num_train_epochs 40 \
--intent_loss_coef <lambda> \
--learning_rate 1e-5 \
--num_intent_detection \
--use_crf
# Train MISCA with encoder freezed
python main.py --model_type roberta \
--model_dir freeze \
--task <mixatis or mixsnips> \
--data_dir data \
--do_train \
--do_eval \
--num_train_epochs 40 \
--intent_loss_coef <lambda> \
--learning_rate 1e-5 \
--num_intent_detection \
--use_crf \
--base_model dir_base \
--intent_slot_attn_type coattention \
--freeze
# Fine tune the whole model
python main.py --model_type roberta \
--model_dir misca \
--task <mixatis or mixsnips> \
--data_dir data \
--do_train \
--do_eval \
--num_train_epochs 20 \
--intent_loss_coef <lambda> \
--learning_rate 1e-5 \
--num_intent_detection \
--use_crf \
--base_model freeze \
--intent_slot_attn_type coattention