-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_FSC.py
120 lines (93 loc) · 3.94 KB
/
test_FSC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import cv2
import argparse
import json
import numpy as np
from tqdm import tqdm
from os.path import exists
import os
from segment_anything import sam_model_registry
from automatic_mask_generator import SamAutomaticMaskGenerator
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser(description="Few Shot Counting Evaluation code")
parser.add_argument("-dp", "--data_path", type=str, default='/data/counte/', help="Path to the FSC147 dataset")
parser.add_argument("-ts", "--test_split", type=str, default='val', choices=["val_PartA","val_PartB","test_PartA","test_PartB","test", "val"], help="what data split to evaluate on")
parser.add_argument("-mt", "--model_type", type=str, default="vit_h", help="model type")
parser.add_argument("-mp", "--model_path", type=str, default="/home/teddy/segment-anything/sam_vit_h_4b8939.pth", help="path to trained model")
parser.add_argument("-v", "--viz", type=bool, default=True, help="wether to visualize")
parser.add_argument("-d", "--device", default='0', help='assign device')
args = parser.parse_args()
data_path = args.data_path
anno_file = data_path + 'annotation_FSC147_384.json'
data_split_file = data_path + 'Train_Test_Val_FSC_147.json'
im_dir = data_path + 'images_384_VarV2'
if not exists(anno_file) or not exists(im_dir):
print("Make sure you set up the --data-path correctly.")
print("Current setting is {}, but the image dir and annotation file do not exist.".format(args.data_path))
print("Aborting the evaluation")
exit(-1)
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
for ann in sorted_anns:
x0, y0, w, h = ann['bbox']
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.scatter([x0+w//2], [y0+h//2], color='green', marker='*', s=10, edgecolor='white', linewidth=1.25)
debug = True
os.environ['CUDA_VISIBLE_DEVICES'] = args.device.strip()
device = 'cuda'
sam = sam_model_registry[args.model_type](checkpoint=args.model_path)
sam.to(device=device)
mask_generator = SamAutomaticMaskGenerator(
model=sam,
min_mask_region_area=25
)
with open(anno_file) as f:
annotations = json.load(f)
with open(data_split_file) as f:
data_split = json.load(f)
cnt = 0
SAE = 0 # sum of absolute errors
SSE = 0 # sum of square errors
print("Evaluation on {} data".format(args.test_split))
im_ids = data_split[args.test_split]
# with open("err.json") as f:
# im_ids = json.load(f)
pbar = tqdm(im_ids)
# err_list = []
for im_id in pbar:
anno = annotations[im_id]
bboxes = anno['box_examples_coordinates']
dots = np.array(anno['points'])
image = cv2.imread('{}/{}'.format(im_dir, im_id))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
input_boxes = list()
for bbox in bboxes:
x1, y1 = bbox[0][0], bbox[0][1]
x2, y2 = bbox[2][0], bbox[2][1]
input_boxes.append([x1, y1, x2, y2])
masks = mask_generator.generate(image, input_boxes)
if args.viz:
if not exists('viz'):
os.mkdir('viz')
plt.figure(figsize=(10,10))
plt.imshow(image)
show_anns(masks)
plt.axis('off')
plt.savefig('viz/{}'.format(im_id))
plt.close()
gt_cnt = dots.shape[0]
pred_cnt = len(masks)
cnt = cnt + 1
err = abs(gt_cnt - pred_cnt)
SAE += err
SSE += err**2
# if err / gt_cnt > 0.7:
# err_list.append(im_id)
pbar.set_description('{:<8}: actual-predicted: {:6d}, {:6.1f}, error: {:6.1f}. Current MAE: {:5.2f}, RMSE: {:5.2f}'.\
format(im_id, gt_cnt, pred_cnt, abs(pred_cnt - gt_cnt), SAE/cnt, (SSE/cnt)**0.5))
print('On {} data, MAE: {:6.2f}, RMSE: {:6.2f}'.format(args.test_split, SAE/cnt, (SSE/cnt)**0.5))
# with open('err.json', "w") as f:
# json.dump(err_list, f)