diff --git a/.github/workflows/build-database-docker.yml b/.github/workflows/build-database-docker.yml index 73d1b1db3..76e3b2947 100644 --- a/.github/workflows/build-database-docker.yml +++ b/.github/workflows/build-database-docker.yml @@ -16,7 +16,7 @@ jobs: steps: - name: Checkout code - uses: actions/checkout@v2 + uses: actions/checkout@v3 - name: Log in to Docker Hub uses: docker/login-action@v1 diff --git a/.github/workflows/coverage.yml.bck b/.github/workflows/coverage.yml.bck index 83d9767b8..f2bee7d8e 100644 --- a/.github/workflows/coverage.yml.bck +++ b/.github/workflows/coverage.yml.bck @@ -12,7 +12,7 @@ jobs: runs-on: ubuntu-latest steps: - name: Checkout code - uses: actions/checkout@v2 + uses: actions/checkout@v3 - name: Fetch Code Climate reporter CLI run: curl -L $CC_TEST_REPORTER_URL > ${{github.workspace}}/cc-test-reporter diff --git a/.github/workflows/deploy-to-kubernetes.yml b/.github/workflows/deploy-to-kubernetes.yml index c86925c93..000b1998c 100644 --- a/.github/workflows/deploy-to-kubernetes.yml +++ b/.github/workflows/deploy-to-kubernetes.yml @@ -13,6 +13,7 @@ on: paths: - 'api/**' - 'client/**' + - 'tiler/**' - '.github/**' workflow_dispatch: @@ -41,7 +42,7 @@ jobs: needs: wait_for_image_push steps: - name: Check out the repo - uses: actions/checkout@v2 + uses: actions/checkout@v3 - name: Log in to Docker Hub uses: docker/login-action@v1 @@ -90,18 +91,20 @@ jobs: - name: Extract branch name shell: bash run: | - echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})" - echo "##[set-output name=branch-upper;]$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" + echo "branch=$(echo ${GITHUB_REF#refs/heads/})" >> $GITHUB_OUTPUT + echo "branch-upper=$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" >> $GITHUB_OUTPUT id: extract_branch - name: Redeploy production pods if: ${{ steps.extract_branch.outputs.branch == 'main' }} run: | kubectl rollout restart deployment api -n production + kubectl rollout restart deployment tiler -n production kubectl rollout restart deployment client -n production - name: Redeploy pods for other branches if: ${{ steps.extract_branch.outputs.branch != 'main' }} run: | kubectl rollout restart deployment api -n ${{ steps.extract_branch.outputs.branch }} + kubectl rollout restart deployment tiler -n ${{ steps.extract_branch.outputs.branch }} kubectl rollout restart deployment client -n ${{ steps.extract_branch.outputs.branch }} diff --git a/.github/workflows/publish-docker-images.yml b/.github/workflows/publish-docker-images.yml index 3a7158315..fccee8a03 100644 --- a/.github/workflows/publish-docker-images.yml +++ b/.github/workflows/publish-docker-images.yml @@ -14,6 +14,7 @@ on: - 'api/**' - 'client/**' - 'marketing/**' + - 'tiler/**' - 'data/**' - '.github/**' workflow_dispatch: @@ -21,7 +22,7 @@ on: waitForTest: description: 'Set to "false" to skip waiting for the test to pass.' required: true - default: true + default: 'true' jobs: wait_for_tests: @@ -58,7 +59,7 @@ jobs: needs: wait_for_tests steps: - name: Check out the repo - uses: actions/checkout@v2 + uses: actions/checkout@v3 - name: Configure AWS credentials uses: aws-actions/configure-aws-credentials@v1 @@ -74,8 +75,8 @@ jobs: - name: Extract branch name shell: bash run: | - echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})" - echo "##[set-output name=branch-upper;]$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" + echo "branch=$(echo ${GITHUB_REF#refs/heads/})" >> $GITHUB_OUTPUT + echo "branch-upper=$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" >> $GITHUB_OUTPUT id: extract_branch - name: Build API Docker image @@ -100,7 +101,7 @@ jobs: needs: wait_for_tests steps: - name: Check out the repo - uses: actions/checkout@v2 + uses: actions/checkout@v3 - name: Configure AWS credentials uses: aws-actions/configure-aws-credentials@v1 @@ -116,8 +117,8 @@ jobs: - name: Extract branch name shell: bash run: | - echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})" - echo "##[set-output name=branch-upper;]$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" + echo "branch=$(echo ${GITHUB_REF#refs/heads/})" >> $GITHUB_OUTPUT + echo "branch-upper=$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" >> $GITHUB_OUTPUT id: extract_branch - name: Build Client Docker image @@ -151,7 +152,7 @@ jobs: needs: wait_for_tests steps: - name: Check out the repo - uses: actions/checkout@v2 + uses: actions/checkout@v3 - name: Configure AWS credentials uses: aws-actions/configure-aws-credentials@v1 @@ -167,8 +168,8 @@ jobs: - name: Extract branch name shell: bash run: | - echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})" - echo "##[set-output name=branch-upper;]$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" + echo "branch=$(echo ${GITHUB_REF#refs/heads/})" >> $GITHUB_OUTPUT + echo "branch-upper=$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" >> $GITHUB_OUTPUT id: extract_branch - name: Build Data Import Docker image @@ -187,3 +188,43 @@ jobs: run: | docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG + push_tiler_to_registry: + name: Push Tiler Docker image to AWS ECR + runs-on: ubuntu-20.04 + needs: wait_for_tests + steps: + - name: Check out the repo + uses: actions/checkout@v3 + + - name: Configure AWS credentials + uses: aws-actions/configure-aws-credentials@v1 + with: + aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }} + aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }} + aws-region: ${{ secrets.AWS_REGION }} + + - name: Get ECR Registry + id: ecr-login + uses: aws-actions/amazon-ecr-login@v1 + + - name: Extract branch name + shell: bash + run: | + echo "branch=$(echo ${GITHUB_REF#refs/heads/})" >> $GITHUB_OUTPUT + echo "branch-upper=$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" >> $GITHUB_OUTPUT + id: extract_branch + + - name: Build Tiler Docker image + env: + ECR_REGISTRY: ${{ steps.ecr-login.outputs.registry }} + ECR_REPOSITORY: tiler + IMAGE_TAG: ${{ steps.extract_branch.outputs.branch }} + run: | + docker build -t $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG tiler + - name: Push Tiler Docker image to AWS ECR + env: + ECR_REGISTRY: ${{ steps.ecr-login.outputs.registry }} + ECR_REPOSITORY: tiler + IMAGE_TAG: ${{ steps.extract_branch.outputs.branch }} + run: | + docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG diff --git a/.github/workflows/publish-marketing-site.yml b/.github/workflows/publish-marketing-site.yml index 6128045f8..51c14d779 100644 --- a/.github/workflows/publish-marketing-site.yml +++ b/.github/workflows/publish-marketing-site.yml @@ -53,8 +53,8 @@ jobs: - name: Extract branch name shell: bash run: | - echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})" - echo "##[set-output name=branch-upper;]$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" + echo "branch=$(echo ${GITHUB_REF#refs/heads/})" >> $GITHUB_OUTPUT + echo "branch-upper=$(echo ${GITHUB_REF#refs/heads/} | tr a-z A-Z )" >> $GITHUB_OUTPUT id: extract_branch - name: Build Marketing site Docker image diff --git a/.github/workflows/testing-api.yml b/.github/workflows/testing-api.yml index 3bd9d2dfc..37637fa8a 100644 --- a/.github/workflows/testing-api.yml +++ b/.github/workflows/testing-api.yml @@ -38,7 +38,7 @@ jobs: steps: - name: Checkout code - uses: actions/checkout@v2 + uses: actions/checkout@v3 - name: Use Node.js 18.12 uses: actions/setup-node@v2 @@ -86,7 +86,7 @@ jobs: steps: - name: Checkout code - uses: actions/checkout@v2 + uses: actions/checkout@v3 - name: Use Node.js 18.12 uses: actions/setup-node@v2 diff --git a/.github/workflows/testing-client.yml b/.github/workflows/testing-client.yml index e5a0d8372..4bb8a5d98 100644 --- a/.github/workflows/testing-client.yml +++ b/.github/workflows/testing-client.yml @@ -4,6 +4,7 @@ on: push: paths: - 'client/**' + - '.github/workflows/testing-client.yml' workflow_dispatch: diff --git a/.github/workflows/testing-tiler.yml b/.github/workflows/testing-tiler.yml index 4c9446206..a8042bd3c 100644 --- a/.github/workflows/testing-tiler.yml +++ b/.github/workflows/testing-tiler.yml @@ -1,7 +1,6 @@ name: Tiler Tests on: - push: paths: - 'tiler/**' @@ -9,26 +8,22 @@ on: workflow_dispatch: jobs: - test: - + testing-tiler: + name: Tiler Tests runs-on: ubuntu-latest - strategy: - matrix: - python-version: [3.10] steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@v3 - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 + uses: actions/setup-python@v3 with: - python-version: ${{ matrix.python-version }} + python-version: "3.10"W - name: Install dependencies + working-directory: tiler run: | python -m pip install --upgrade pip - pip install flake8 - if [ -f requirements.txt ]; then pip install -r requirements.txt; fi + pip install -r requirements.txt - name: Tiler tests - env: - # add environment variables for tests + working-directory: tiler/app run: | pytest diff --git a/api/src/modules/impact/comparison/actual-vs-scenario.service.ts b/api/src/modules/impact/comparison/actual-vs-scenario.service.ts index 391d59d62..848788e76 100644 --- a/api/src/modules/impact/comparison/actual-vs-scenario.service.ts +++ b/api/src/modules/impact/comparison/actual-vs-scenario.service.ts @@ -1,5 +1,8 @@ import { Injectable, Logger } from '@nestjs/common'; -import { GetActualVsScenarioImpactTableDto } from 'modules/impact/dto/impact-table.dto'; +import { + GetActualVsScenarioImpactTableDto, + ORDER_BY, +} from 'modules/impact/dto/impact-table.dto'; import { IndicatorsService } from 'modules/indicators/indicators.service'; import { SourcingRecordsService } from 'modules/sourcing-records/sourcing-records.service'; import { @@ -55,23 +58,19 @@ export class ActualVsScenarioImpactService extends BaseImpactService { } async getActualVsScenarioImpactTable( - actualVsScenarioImpactTableDto: GetActualVsScenarioImpactTableDto, + dto: GetActualVsScenarioImpactTableDto, fetchSpecification: FetchSpecification, ): Promise { const indicators: Indicator[] = - await this.indicatorService.getIndicatorsById( - actualVsScenarioImpactTableDto.indicatorIds, - ); + await this.indicatorService.getIndicatorsById(dto.indicatorIds); this.logger.log('Retrieving data from DB to build Impact Table...'); //Getting Descendants Ids for the filters, in case Parent Ids were received - await this.loadDescendantEntityIds(actualVsScenarioImpactTableDto); + await this.loadDescendantEntityIds(dto); // Get full entity tree in case ids are not passed, otherwise get trees based on // given ids and add children and parent ids to them to get full data for aggregations - const entities: ImpactTableEntityType[] = await this.getEntityTree( - actualVsScenarioImpactTableDto, - ); + const entities: ImpactTableEntityType[] = await this.getEntityTree(dto); const paginatedEntities: PaginatedEntitiesDto = ActualVsScenarioImpactService.paginateRootEntities( @@ -79,16 +78,10 @@ export class ActualVsScenarioImpactService extends BaseImpactService { fetchSpecification, ); - this.updateGroupByCriteriaFromEntityTree( - actualVsScenarioImpactTableDto, - paginatedEntities.entities, - ); + this.updateGroupByCriteriaFromEntityTree(dto, paginatedEntities.entities); const dataForActualVsScenarioImpactTable: ImpactTableData[] = - await this.getDataForImpactTable( - actualVsScenarioImpactTableDto, - paginatedEntities.entities, - ); + await this.getDataForImpactTable(dto, paginatedEntities.entities); const processedDataForComparison: ActualVsScenarioImpactTableData[] = ActualVsScenarioImpactService.processDataForComparison( @@ -97,12 +90,18 @@ export class ActualVsScenarioImpactService extends BaseImpactService { const impactTable: ActualVsScenarioImpactTable = this.buildActualVsScenarioImpactTable( - actualVsScenarioImpactTableDto, + dto, indicators, processedDataForComparison, paginatedEntities.entities, ); + this.sortEntitiesByImpactOfYear( + impactTable, + dto.sortingYear, + dto.sortingOrder, + ); + return { data: impactTable, metadata: paginatedEntities.metadata }; } @@ -367,6 +366,67 @@ export class ActualVsScenarioImpactService extends BaseImpactService { }); } + // For all indicators, entities are sorted by the value of the given sortingYear, in the order given by sortingOrder + private sortEntitiesByImpactOfYear( + impactTable: ActualVsScenarioImpactTable, + sortingYear: number | undefined, + sortingOrder: ORDER_BY | undefined = ORDER_BY.ASC, + ): void { + if (!sortingYear) { + return; + } + + for (const impactTableDataByIndicator of impactTable.impactTable) { + this.sortEntitiesRecursively( + impactTableDataByIndicator.rows, + sortingYear, + sortingOrder, + ); + } + } + + // Entities represented by ImpactTableRows will be sorted recursively by the absoluteDifference value of the given + // sortingYear, in the given sortingOrder + private sortEntitiesRecursively( + rows: ActualVsScenarioImpactTableRows[], + sortingYear: number, + sortingOrder: ORDER_BY, + ): void { + if (rows.length === 0) { + return; + } + + for (const row of rows) { + this.sortEntitiesRecursively(row.children, sortingYear, sortingOrder); + } + + rows.sort( + ( + a: ActualVsScenarioImpactTableRows, + b: ActualVsScenarioImpactTableRows, + ) => + sortingOrder === ORDER_BY.ASC + ? this.getYearAbsoluteDifference(a, sortingYear) - + this.getYearAbsoluteDifference(b, sortingYear) + : this.getYearAbsoluteDifference(b, sortingYear) - + this.getYearAbsoluteDifference(a, sortingYear), + ); + } + + // Gets the absolute difference of the given year of the TableRow, if not found, 0 is returned + // Helper function (for readability) used in sorting the entities by the absolute difference of impact on the given year, + private getYearAbsoluteDifference( + row: ActualVsScenarioImpactTableRows, + year: number, + ): number { + const yearValue: ActualVsScenarioImpactTableRowsValues | undefined = + row.values.find( + (value: ActualVsScenarioImpactTableRowsValues) => value.year === year, + ); + + return yearValue ? yearValue.absoluteDifference : 0; + } + private createActualVsScenarioImpactTableDataByIndicator( indicator: Indicator, groupBy: string, diff --git a/api/src/modules/impact/comparison/scenario-vs-scenario.service.ts b/api/src/modules/impact/comparison/scenario-vs-scenario.service.ts index 5c6dfea23..2ae8b26d0 100644 --- a/api/src/modules/impact/comparison/scenario-vs-scenario.service.ts +++ b/api/src/modules/impact/comparison/scenario-vs-scenario.service.ts @@ -2,6 +2,7 @@ import { Injectable, Logger } from '@nestjs/common'; import { GetActualVsScenarioImpactTableDto, GetScenarioVsScenarioImpactTableDto, + ORDER_BY, } from 'modules/impact/dto/impact-table.dto'; import { IndicatorsService } from 'modules/indicators/indicators.service'; import { SourcingRecordsService } from 'modules/sourcing-records/sourcing-records.service'; @@ -59,23 +60,19 @@ export class ScenarioVsScenarioImpactService extends BaseImpactService { } async getScenarioVsScenarioImpactTable( - scenarioVsScenarioImpactTableDto: GetScenarioVsScenarioImpactTableDto, + dto: GetScenarioVsScenarioImpactTableDto, fetchSpecification: FetchSpecification, ): Promise { const indicators: Indicator[] = - await this.indicatorService.getIndicatorsById( - scenarioVsScenarioImpactTableDto.indicatorIds, - ); + await this.indicatorService.getIndicatorsById(dto.indicatorIds); this.logger.log('Retrieving data from DB to build Impact Table...'); //Getting Descendants Ids for the filters, in case Parent Ids were received - await this.loadDescendantEntityIds(scenarioVsScenarioImpactTableDto); + await this.loadDescendantEntityIds(dto); // Getting entities and processing that correspond to Scenario 1 and filtered actual data - const entities: ImpactTableEntityType[] = await this.getEntityTree( - scenarioVsScenarioImpactTableDto, - ); + const entities: ImpactTableEntityType[] = await this.getEntityTree(dto); const paginatedEntities: PaginatedEntitiesDto = ScenarioVsScenarioImpactService.paginateRootEntities( @@ -83,15 +80,11 @@ export class ScenarioVsScenarioImpactService extends BaseImpactService { fetchSpecification, ); - this.updateGroupByCriteriaFromEntityTree( - scenarioVsScenarioImpactTableDto, - paginatedEntities.entities, - ); + this.updateGroupByCriteriaFromEntityTree(dto, paginatedEntities.entities); // Getting and proceesing impact data separetely for each scenario for further merge - const { baseScenarioId, comparedScenarioId, ...generalDto } = - scenarioVsScenarioImpactTableDto; + const { baseScenarioId, comparedScenarioId, ...generalDto } = dto; const scenarioOneDto: GetActualVsScenarioImpactTableDto = { comparedScenarioId: baseScenarioId, @@ -120,12 +113,18 @@ export class ScenarioVsScenarioImpactService extends BaseImpactService { dataForScenarioTwoAndActual, ); const impactTable: ScenarioVsScenarioImpactTable = this.buildImpactTable( - scenarioVsScenarioImpactTableDto, + dto, indicators, processedScenarioVsScenarioData, paginatedEntities.entities, ); + this.sortEntitiesByImpactOfYear( + impactTable, + dto.sortingYear, + dto.sortingOrder, + ); + return { data: impactTable, metadata: paginatedEntities.metadata, @@ -268,13 +267,13 @@ export class ScenarioVsScenarioImpactService extends BaseImpactService { entityRowValue.isProjected; entityRowValue.absoluteDifference = - entityRowValue.baseScenarioValue - - entityRowValue.comparedScenarioValue; + entityRowValue.comparedScenarioValue - + entityRowValue.baseScenarioValue; entityRowValue.percentageDifference = - ((entityRowValue.baseScenarioValue - - entityRowValue.comparedScenarioValue) / - ((entityRowValue.baseScenarioValue + - entityRowValue.comparedScenarioValue) / + ((entityRowValue.comparedScenarioValue - + entityRowValue.baseScenarioValue) / + ((entityRowValue.comparedScenarioValue + + entityRowValue.baseScenarioValue) / 2)) * 100; } @@ -460,12 +459,12 @@ export class ScenarioVsScenarioImpactService extends BaseImpactService { baseScenarioValue: baseScenarioTotalSumByYear, comparedScenarioValue: comparedScenarioTotalSumByYear, absoluteDifference: - (baseScenarioTotalSumByYear || 0) - comparedScenarioTotalSumByYear, + comparedScenarioTotalSumByYear - (baseScenarioTotalSumByYear || 0), percentageDifference: - (((baseScenarioTotalSumByYear || 0) - - comparedScenarioTotalSumByYear) / - (((baseScenarioTotalSumByYear || 0) + - comparedScenarioTotalSumByYear) / + ((comparedScenarioTotalSumByYear - + (baseScenarioTotalSumByYear || 0)) / + ((comparedScenarioTotalSumByYear + + (baseScenarioTotalSumByYear || 0)) / 2)) * 100, isProjected: year > lastYearWithData, @@ -473,6 +472,67 @@ export class ScenarioVsScenarioImpactService extends BaseImpactService { }); } + // For all indicators, entities are sorted by the value of the given sortingYear, in the order given by sortingOrder + private sortEntitiesByImpactOfYear( + impactTable: ScenarioVsScenarioImpactTable, + sortingYear: number | undefined, + sortingOrder: ORDER_BY | undefined = ORDER_BY.ASC, + ): void { + if (!sortingYear) { + return; + } + + for (const impactTableDataByIndicator of impactTable.impactTable) { + this.sortEntitiesRecursively( + impactTableDataByIndicator.rows, + sortingYear, + sortingOrder, + ); + } + } + + // Entities represented by ImpactTableRows will be sorted recursively by the absoluteDifference value of the given + // sortingYear, in the given sortingOrder + private sortEntitiesRecursively( + rows: ScenarioVsScenarioImpactTableRows[], + sortingYear: number, + sortingOrder: ORDER_BY, + ): void { + if (rows.length === 0) { + return; + } + + for (const row of rows) { + this.sortEntitiesRecursively(row.children, sortingYear, sortingOrder); + } + + rows.sort( + ( + a: ScenarioVsScenarioImpactTableRows, + b: ScenarioVsScenarioImpactTableRows, + ) => + sortingOrder === ORDER_BY.ASC + ? this.getYearAbsoluteDifference(a, sortingYear) - + this.getYearAbsoluteDifference(b, sortingYear) + : this.getYearAbsoluteDifference(b, sortingYear) - + this.getYearAbsoluteDifference(a, sortingYear), + ); + } + + // Gets the absolute difference of the given year of the TableRow, if not found, 0 is returned + // Helper function (for readability) used in sorting the entities by the absolute difference of impact on the given year, + private getYearAbsoluteDifference( + row: ScenarioVsScenarioImpactTableRows, + year: number, + ): number { + const yearValue: ScenarioVsScenarioImpactTableRowsValues | undefined = + row.values.find( + (value: ScenarioVsScenarioImpactTableRowsValues) => value.year === year, + ); + + return yearValue ? yearValue.absoluteDifference : 0; + } + private createScenarioVsScenarioImpactTableDataByIndicator( indicator: Indicator, groupBy: string, diff --git a/api/src/modules/impact/dto/impact-table.dto.ts b/api/src/modules/impact/dto/impact-table.dto.ts index a3cae875a..7e76827ea 100644 --- a/api/src/modules/impact/dto/impact-table.dto.ts +++ b/api/src/modules/impact/dto/impact-table.dto.ts @@ -7,6 +7,7 @@ import { IsPositive, IsString, IsUUID, + Validate, } from 'class-validator'; import { ApiProperty, ApiPropertyOptional } from '@nestjs/swagger'; import { Transform, Type } from 'class-transformer'; @@ -14,6 +15,12 @@ import { Transform, Type } from 'class-transformer'; import { GROUP_BY_VALUES } from 'modules/h3-data/dto/get-impact-map.dto'; import { LOCATION_TYPES } from 'modules/sourcing-locations/sourcing-location.entity'; import { replaceStringWhiteSpacesWithDash } from 'utils/transform-location-type.util'; +import { ValidSortingYearValidator } from 'modules/impact/validation/valid-sorting-year.validator'; + +export enum ORDER_BY { + DESC = 'DESC', + ASC = 'ASC', +} export type AnyImpactTableDto = | GetImpactTableDto @@ -90,30 +97,65 @@ export class BaseImpactTableDto { locationTypes?: LOCATION_TYPES[]; } -export class GetActualVsScenarioImpactTableDto extends BaseImpactTableDto { - @ApiProperty() - @IsNotEmpty() +export class GetImpactTableDto extends BaseImpactTableDto { + @ApiPropertyOptional({ + description: + 'Include in the response elements that are being intervened in a Scenario,', + }) + @IsOptional() @IsUUID(4) - comparedScenarioId: string; + scenarioId?: string; + + @ApiPropertyOptional({ + description: + 'Sort all the entities recursively by the impact value corresponding to the sortingYear', + }) + @Type(() => Number) + @IsOptional() + @IsNumber() + @Validate(ValidSortingYearValidator) + sortingYear?: number; + + @ApiPropertyOptional({ + description: 'Indicates the order by which the entities will be sorted', + }) + @IsOptional() + @IsEnum(ORDER_BY) + sortingOrder?: ORDER_BY; // Property for internal api use (entity filters) @IsOptional() scenarioIds?: string[]; } -export class GetImpactTableDto extends BaseImpactTableDto { +export class GetActualVsScenarioImpactTableDto extends BaseImpactTableDto { + @ApiProperty() + @IsNotEmpty() + @IsUUID(4) + comparedScenarioId: string; + @ApiPropertyOptional({ description: - 'Include in the response elements that are being intervened in a Scenario,', + 'Sort all the entities recursively by the absolute difference value corresponding to the sortingYear', }) + @Type(() => Number) @IsOptional() - @IsUUID(4) - scenarioId?: string; + @IsNumber() + @Validate(ValidSortingYearValidator) + sortingYear?: number; + + @ApiPropertyOptional({ + description: 'Indicates the order by which the entities will be sorted', + }) + @IsOptional() + @IsEnum(ORDER_BY) + sortingOrder?: ORDER_BY; // Property for internal api use (entity filters) @IsOptional() scenarioIds?: string[]; } + export class GetScenarioVsScenarioImpactTableDto extends BaseImpactTableDto { @ApiPropertyOptional() @IsOptional() @@ -125,6 +167,23 @@ export class GetScenarioVsScenarioImpactTableDto extends BaseImpactTableDto { @IsUUID(4) comparedScenarioId: string; + @ApiPropertyOptional({ + description: + 'Sort all the entities recursively by the absolute difference value corresponding to the sortingYear', + }) + @Type(() => Number) + @IsOptional() + @IsNumber() + @Validate(ValidSortingYearValidator) + sortingYear?: number; + + @ApiPropertyOptional({ + description: 'Indicates the order by which the entities will be sorted', + }) + @IsOptional() + @IsEnum(ORDER_BY) + sortingOrder?: ORDER_BY; + // Property for internal api use (entity filters) @IsOptional() scenarioIds?: string[]; diff --git a/api/src/modules/impact/impact.service.ts b/api/src/modules/impact/impact.service.ts index 674ae7c77..08d5080ca 100644 --- a/api/src/modules/impact/impact.service.ts +++ b/api/src/modules/impact/impact.service.ts @@ -2,6 +2,7 @@ import { Injectable, Logger } from '@nestjs/common'; import { GetImpactTableDto, GetRankedImpactTableDto, + ORDER_BY, } from 'modules/impact/dto/impact-table.dto'; import { IndicatorsService } from 'modules/indicators/indicators.service'; import { SourcingRecordsService } from 'modules/sourcing-records/sourcing-records.service'; @@ -101,6 +102,12 @@ export class ImpactService extends BaseImpactService { paginatedEntities.entities, ); + this.sortEntitiesByImpactOfYear( + impactTable, + impactTableDto.sortingYear, + impactTableDto.sortingOrder, + ); + return { data: impactTable, metadata: paginatedEntities.metadata }; } @@ -171,14 +178,13 @@ export class ImpactService extends BaseImpactService { : 'DES'; const { startYear, endYear, maxRankingEntities } = rankedImpactTableDto; - // Helper function used in sorting the entities later, defined here for readability - // Gets the impact value of the given year, if not found, 0 is returned - const getYearImpact = (row: ImpactTableRows, year: number): number => { - const yearValue: ImpactTableRowsValues | undefined = row.values.find( - (value: ImpactTableRowsValues) => value.year === year, - ); - - return yearValue ? yearValue.value : 0; + const sortByStartingYearImpact = ( + a: ImpactTableRows, + b: ImpactTableRows, + ): number => { + return sort === 'ASC' + ? this.getYearImpact(a, startYear) - this.getYearImpact(b, startYear) + : this.getYearImpact(b, startYear) - this.getYearImpact(a, startYear); }; //For each indicator, Sort and limit the number of impact data for entity rows @@ -186,11 +192,7 @@ export class ImpactService extends BaseImpactService { for (const impactTableDataByIndicator of impactTable.impactTable) { //Sort the impact data rows by the most impact on the starYear impactTableDataByIndicator.rows = impactTableDataByIndicator.rows?.sort( - (a: ImpactTableRows, b: ImpactTableRows) => { - return sort === 'ASC' - ? getYearImpact(a, startYear) - getYearImpact(b, startYear) - : getYearImpact(b, startYear) - getYearImpact(a, startYear); - }, + sortByStartingYearImpact, ); // extract the entities that are over the maxRankingEntities threshold @@ -204,11 +206,11 @@ export class ImpactService extends BaseImpactService { ).map((year: number) => { const value: number = overMaxRankingEntities.reduce( (aggregate: number, current: ImpactTableRows) => - aggregate + getYearImpact(current, year), + aggregate + this.getYearImpact(current, year), 0, ); - return { year, value: value }; + return { year, value }; }); impactTableDataByIndicator.others = { @@ -445,6 +447,59 @@ export class ImpactService extends BaseImpactService { return result; } + // For all indicators, entities are sorted by the value of the given sortingYear, in the order given by sortingOrder + private sortEntitiesByImpactOfYear( + impactTable: ImpactTable, + sortingYear: number | undefined, + sortingOrder: ORDER_BY | undefined = ORDER_BY.DESC, + ): void { + if (!sortingYear) { + return; + } + + for (const impactTableDataByIndicator of impactTable.impactTable) { + this.sortEntitiesRecursively( + impactTableDataByIndicator.rows, + sortingYear, + sortingOrder, + ); + } + } + + // Entities represented by ImpactTableRows will be sorted recursively by the value of the given + // sortingYear, in the given sortingOrder + private sortEntitiesRecursively( + impactTableRows: ImpactTableRows[], + sortingYear: number, + sortingOrder: ORDER_BY, + ): void { + if (impactTableRows.length === 0) { + return; + } + + for (const row of impactTableRows) { + this.sortEntitiesRecursively(row.children, sortingYear, sortingOrder); + } + + impactTableRows.sort((a: ImpactTableRows, b: ImpactTableRows) => + sortingOrder === ORDER_BY.ASC + ? this.getYearImpact(a, sortingYear) - + this.getYearImpact(b, sortingYear) + : this.getYearImpact(b, sortingYear) - + this.getYearImpact(a, sortingYear), + ); + } + + // Gets the absolute difference of the given year of the TableRow, if not found, 0 is returned + // Helper function (for readability) used in sorting the entities by the absolute difference of impact on the given year, + private getYearImpact(row: ImpactTableRows, year: number): number { + const yearValue: ImpactTableRowsValues | undefined = row.values.find( + (value: ImpactTableRowsValues) => value.year === year, + ); + + return yearValue ? yearValue.value : 0; + } + private createImpactTableDataByIndicator( indicator: Indicator, groupBy: string, diff --git a/api/src/modules/impact/validation/valid-sorting-year.validator.ts b/api/src/modules/impact/validation/valid-sorting-year.validator.ts new file mode 100644 index 000000000..bb47657cc --- /dev/null +++ b/api/src/modules/impact/validation/valid-sorting-year.validator.ts @@ -0,0 +1,26 @@ +import { + ValidationArguments, + ValidatorConstraint, + ValidatorConstraintInterface, +} from 'class-validator'; +import { AnyImpactTableDto } from 'modules/impact/dto/impact-table.dto'; + +// Custom validator that checks to be used by Impact Table dtos +// checks that the sortingYear value of the dto is comprised between startYear and endYear +@ValidatorConstraint({ name: 'ValidSortingYearValidator', async: false }) +export class ValidSortingYearValidator implements ValidatorConstraintInterface { + validate( + value: number, + validationArguments?: ValidationArguments, + ): Promise | boolean { + const dto: AnyImpactTableDto = + validationArguments?.object as AnyImpactTableDto; + return value >= dto.startYear && value <= dto.endYear; + } + + defaultMessage(validationArguments?: ValidationArguments): string { + const dto: AnyImpactTableDto = + validationArguments?.object as AnyImpactTableDto; + return `sortingYear must be have a value between startYear and endYear. ${dto.startYear} and ${dto.endYear} on this request.`; + } +} diff --git a/api/src/modules/scenarios/scenario.entity.ts b/api/src/modules/scenarios/scenario.entity.ts index c5f1bcc08..459cfad34 100644 --- a/api/src/modules/scenarios/scenario.entity.ts +++ b/api/src/modules/scenarios/scenario.entity.ts @@ -71,6 +71,7 @@ export class Scenario extends TimestampedBaseEntity { @ManyToOne(() => User, (user: User) => user.scenarios, { eager: false, + onDelete: 'CASCADE', }) @ApiProperty({ type: () => User }) user?: User; diff --git a/api/src/modules/users/users.controller.ts b/api/src/modules/users/users.controller.ts index 81a02e51c..1c4c0d73f 100644 --- a/api/src/modules/users/users.controller.ts +++ b/api/src/modules/users/users.controller.ts @@ -40,6 +40,7 @@ import { CreateUserDTO } from 'modules/users/dto/create.user.dto'; import { RolesGuard } from 'guards/roles.guard'; import { ROLES } from 'modules/authorization/roles/roles.enum'; import { RequiredRoles } from 'decorators/roles.decorator'; +import { DeleteResult } from 'typeorm'; @ApiTags(userResource.className) @Controller(`/api/v1/users`) @@ -181,4 +182,17 @@ export class UsersController { ): Promise { return this.service.markAsDeleted(req.user.id); } + + @ApiOperation({ + description: + 'Delete a user. This operation will destroy any resource related to the user and it will be irreversible', + }) + @ApiOkResponse() + @ApiUnauthorizedResponse() + @ApiForbiddenResponse() + @RequiredRoles(ROLES.ADMIN) + @Delete(':userId') + async deleteUser(@Param('userId') userId: string): Promise { + return this.service.deleteUser(userId); + } } diff --git a/api/src/modules/users/users.service.ts b/api/src/modules/users/users.service.ts index 5604075bf..c4829a6af 100644 --- a/api/src/modules/users/users.service.ts +++ b/api/src/modules/users/users.service.ts @@ -3,7 +3,6 @@ import { forwardRef, Inject, Injectable, - Logger, NotImplementedException, } from '@nestjs/common'; import { User, userResource } from 'modules/users/user.entity'; @@ -22,6 +21,7 @@ import { compare, hash } from 'bcrypt'; import { AuthenticationService } from 'modules/authentication/authentication.service'; import { v4 } from 'uuid'; import { UserRepository } from 'modules/users/user.repository'; +import { DeleteResult } from 'typeorm'; @Injectable() export class UsersService extends AppBaseService< @@ -179,4 +179,8 @@ export class UsersService extends AppBaseService< async createUser(createUserDTO: CreateUserDTO): Promise> { return this.authenticationService.createUser(createUserDTO); } + + async deleteUser(userId: string): Promise { + return this.repository.delete(userId); + } } diff --git a/api/test/e2e/impact/impact-table/actual-vs-scenario.spec.ts b/api/test/e2e/impact/impact-table/actual-vs-scenario.spec.ts index 023e7169b..32e3317ff 100644 --- a/api/test/e2e/impact/impact-table/actual-vs-scenario.spec.ts +++ b/api/test/e2e/impact/impact-table/actual-vs-scenario.spec.ts @@ -36,6 +36,9 @@ import { SourcingLocation } from 'modules/sourcing-locations/sourcing-location.e import { SourcingLocationGroup } from 'modules/sourcing-location-groups/sourcing-location-group.entity'; import { createScenario } from '../../../entity-mocks'; import { DataSource } from 'typeorm'; +import { GROUP_BY_VALUES } from 'modules/h3-data/dto/get-impact-map.dto'; +import { createImpactTableSortingPreconditions } from '../mocks/sorting.preconditions'; +import { ImpactTableRows } from 'modules/impact/dto/response-impact-table.dto'; describe('Actual VS Scenario Impact Table test suite (e2e)', () => { let testApplication: TestApplication; @@ -239,4 +242,54 @@ describe('Actual VS Scenario Impact Table test suite (e2e)', () => { 'Supplier B', ); }); + + describe('Sorting Tests', () => { + test('When I query the API for an Actual Vs Scenario Impact table sorted by a given year, Then I should get the correct ordered data, in ascendant order by default ', async () => { + //ARRANGE + const data: any = await createImpactTableSortingPreconditions( + 'ActualVsScenario', + ); + const { + indicator, + supplier, + scenario, + parentMaterials, + childMaterialParent1, + } = data; + + // ACT + const response = await request(testApplication.getHttpServer()) + .get('/api/v1/impact/compare/scenario/vs/actual') + .set('Authorization', `Bearer ${jwtToken}`) + .query({ + 'indicatorIds[]': [indicator.id], + 'supplierIds[]': [supplier.id], + sortingYear: 2020, + endYear: 2021, + startYear: 2020, + groupBy: GROUP_BY_VALUES.MATERIAL, + comparedScenarioId: scenario.id, + }); + + //ASSERT + const response1OrderParents: string[] = + response.body.data.impactTable[0].rows.map( + (row: ImpactTableRows) => row.name, + ); + const response1OrderMaterial1Children: string[] = + response.body.data.impactTable[0].rows[2].children.map( + (row: ImpactTableRows) => row.name, + ); + expect(response1OrderParents).toEqual([ + parentMaterials[1].name, + parentMaterials[2].name, + parentMaterials[0].name, + ]); + expect(response1OrderMaterial1Children).toEqual([ + childMaterialParent1[0].name, + childMaterialParent1[1].name, + childMaterialParent1[2].name, + ]); + }); + }); }); diff --git a/api/test/e2e/impact/impact-table/impact.spec.ts b/api/test/e2e/impact/impact-table/impact.spec.ts index 4ce94a7d5..c6fba2936 100644 --- a/api/test/e2e/impact/impact-table/impact.spec.ts +++ b/api/test/e2e/impact/impact-table/impact.spec.ts @@ -57,7 +57,10 @@ import { SourcingLocationGroup } from 'modules/sourcing-location-groups/sourcing import { createNewMaterialInterventionPreconditions } from '../mocks/actual-vs-scenario-preconditions/new-material-intervention.preconditions'; import { Scenario } from 'modules/scenarios/scenario.entity'; import { DataSource } from 'typeorm'; -import { GROUP_BY_VALUES } from '../../../../src/modules/h3-data/dto/get-impact-map.dto'; +import { GROUP_BY_VALUES } from 'modules/h3-data/dto/get-impact-map.dto'; +import { ORDER_BY } from 'modules/impact/dto/impact-table.dto'; +import { ImpactTableRows } from 'modules/impact/dto/response-impact-table.dto'; +import { createImpactTableSortingPreconditions } from '../mocks/sorting.preconditions'; describe('Impact Table and Charts test suite (e2e)', () => { let testApplication: TestApplication; @@ -122,7 +125,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [uuidv4(), uuidv4(), uuidv4()], endYear: 1, startYear: 2, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, }) .expect(HttpStatus.NOT_FOUND); @@ -240,7 +243,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2012, startYear: 2010, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, 'materialIds[]': [material.id], }) .expect(HttpStatus.OK); @@ -272,7 +275,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2012, startYear: 2010, - groupBy: 'business-unit', + groupBy: GROUP_BY_VALUES.BUSINESS_UNIT, }) .expect(HttpStatus.OK); @@ -287,7 +290,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2012, startYear: 2010, - groupBy: 'supplier', + groupBy: GROUP_BY_VALUES.SUPPLIER, }) .expect(HttpStatus.OK); @@ -301,7 +304,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2012, startYear: 2010, - groupBy: 'region', + groupBy: GROUP_BY_VALUES.REGION, }) .expect(HttpStatus.OK); @@ -352,7 +355,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2012, startYear: 2010, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, }) .expect(HttpStatus.OK); @@ -410,7 +413,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2012, startYear: 2010, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, }) .expect(HttpStatus.OK); @@ -423,6 +426,205 @@ describe('Impact Table and Charts test suite (e2e)', () => { ); }); + describe('Sorting Tests', () => { + test('When I query the API for an impact table with an invalid sorting year, then I should get an error', async () => { + //ARRANGE/ACT + const response1 = await request(testApplication.getHttpServer()) + .get('/api/v1/impact/table') + .set('Authorization', `Bearer ${jwtToken}`) + .query({ + 'indicatorIds[]': [uuidv4()], + 'supplierIds[]': [uuidv4()], + sortingYear: 2019, + endYear: 2021, + startYear: 2020, + groupBy: GROUP_BY_VALUES.MATERIAL, + }); + + const response2 = await request(testApplication.getHttpServer()) + .get('/api/v1/impact/table') + .set('Authorization', `Bearer ${jwtToken}`) + .query({ + 'indicatorIds[]': [uuidv4()], + 'supplierIds[]': [uuidv4()], + sortingYear: 3145, + endYear: 2030, + startYear: 2025, + groupBy: GROUP_BY_VALUES.MATERIAL, + }); + + expect(response1.body.errors[0].meta.rawError.response.message).toEqual([ + 'sortingYear must be have a value between startYear and endYear. 2020 and 2021 on this request.', + ]); + expect(response2.body.errors[0].meta.rawError.response.message).toEqual([ + 'sortingYear must be have a value between startYear and endYear. 2025 and 2030 on this request.', + ]); + }); + + test('When I query the API for an impact table sorted by a given year, Then I should get the correct data in descendent order by default ', async () => { + //ARRANGE + const data: any = await createImpactTableSortingPreconditions('Normal'); + const { indicator, supplier, parentMaterials, childMaterialParent1 } = + data; + + // ACT + const response = await request(testApplication.getHttpServer()) + .get('/api/v1/impact/table') + .set('Authorization', `Bearer ${jwtToken}`) + .query({ + 'indicatorIds[]': [indicator.id], + 'supplierIds[]': [supplier.id], + startYear: 2020, + endYear: 2021, + sortingYear: 2020, + groupBy: GROUP_BY_VALUES.MATERIAL, + }); + const response2 = await request(testApplication.getHttpServer()) + .get('/api/v1/impact/table') + .set('Authorization', `Bearer ${jwtToken}`) + .query({ + 'indicatorIds[]': [indicator.id], + 'supplierIds[]': [supplier.id], + startYear: 2020, + endYear: 2021, + sortingYear: 2021, + groupBy: GROUP_BY_VALUES.MATERIAL, + }); + + //ASSERT + const reponse1OrderParents: string[] = + response.body.data.impactTable[0].rows.map( + (row: ImpactTableRows) => row.name, + ); + const reponse1OrderMaterial1Children: string[] = + response.body.data.impactTable[0].rows[2].children.map( + (row: ImpactTableRows) => row.name, + ); + expect(reponse1OrderParents).toEqual([ + parentMaterials[1].name, + parentMaterials[2].name, + parentMaterials[0].name, + ]); + expect(reponse1OrderMaterial1Children).toEqual([ + childMaterialParent1[2].name, + childMaterialParent1[0].name, + childMaterialParent1[1].name, + ]); + + const reponse2OrderParents: string[] = + response2.body.data.impactTable[0].rows.map( + (row: ImpactTableRows) => row.name, + ); + const reponse2OrderMaterial1Children: string[] = + response2.body.data.impactTable[0].rows[1].children.map( + (row: ImpactTableRows) => row.name, + ); + expect(reponse2OrderParents).toEqual([ + parentMaterials[2].name, + parentMaterials[0].name, + parentMaterials[1].name, + ]); + expect(reponse2OrderMaterial1Children).toEqual([ + childMaterialParent1[1].name, + childMaterialParent1[2].name, + childMaterialParent1[0].name, + ]); + }); + + test('When I query the API for an impact table sorted by a given year, it muse be ordered by the sortingOrder parameter ', async () => { + //ARRANGE + const adminRegion: AdminRegion = await createAdminRegion({ + name: 'Fake AdminRegion', + }); + const unit: Unit = await createUnit({ shortName: 'fakeUnit' }); + const indicator: Indicator = await createIndicator({ + name: 'Fake Indicator', + unit, + nameCode: INDICATOR_TYPES.DEFORESTATION, + }); + + const parentMaterial1 = await createMaterial({ + name: 'Parent Fake Material 1', + }); + const parentMaterial2 = await createMaterial({ + name: 'Parent Fake Material 2', + }); + const parentMaterial3 = await createMaterial({ + name: 'Parent Fake Material 3', + }); + + const businessUnit: BusinessUnit = await createBusinessUnit({ + name: 'Fake Business Unit', + }); + + const supplier: Supplier = await createSupplier({ + name: 'Fake Supplier', + }); + + const parentLocations: SourcingLocation[] = await Promise.all( + [parentMaterial1, parentMaterial2, parentMaterial3].map( + async (material: Material) => + await createSourcingLocation({ + material: material, + businessUnit, + t1Supplier: supplier, + adminRegion, + }), + ), + ); + + await indicatorSourcingRecord(2020, 100, indicator, parentLocations[0]); + await indicatorSourcingRecord(2020, 200, indicator, parentLocations[1]); + await indicatorSourcingRecord(2020, 150, indicator, parentLocations[2]); + + // ACT + const responseDesc = await request(testApplication.getHttpServer()) + .get('/api/v1/impact/table') + .set('Authorization', `Bearer ${jwtToken}`) + .query({ + 'indicatorIds[]': [indicator.id], + 'supplierIds[]': [supplier.id], + endYear: 2021, + startYear: 2020, + groupBy: GROUP_BY_VALUES.MATERIAL, + sortingYear: 2020, + sortingOrder: ORDER_BY.DESC, + }); + const response2Asc = await request(testApplication.getHttpServer()) + .get('/api/v1/impact/table') + .set('Authorization', `Bearer ${jwtToken}`) + .query({ + 'indicatorIds[]': [indicator.id], + 'supplierIds[]': [supplier.id], + endYear: 2021, + startYear: 2020, + groupBy: GROUP_BY_VALUES.MATERIAL, + sortingYear: 2020, + sortingOrder: ORDER_BY.ASC, + }); + + //ASSERT + const reponse1OrderParents: string[] = + responseDesc.body.data.impactTable[0].rows.map( + (row: ImpactTableRows) => row.name, + ); + expect(reponse1OrderParents).toEqual([ + parentMaterial2.name, + parentMaterial3.name, + parentMaterial1.name, + ]); + + const reponse2OrderParents: string[] = + response2Asc.body.data.impactTable[0].rows.map( + (row: ImpactTableRows) => row.name, + ); + expect(reponse2OrderParents).toEqual([ + parentMaterial1.name, + parentMaterial3.name, + parentMaterial2.name, + ]); + }); + }); describe('Group By tests', () => { test('When I query the API for a Impact table grouped by material with filters Then I should get the correct data', async () => { const adminRegion: AdminRegion = await createAdminRegion({ @@ -520,7 +722,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'supplierIds[]': [supplier.id], endYear: 2013, startYear: 2010, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, }) .expect(HttpStatus.OK); @@ -612,7 +814,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2013, startYear: 2010, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, }) .expect(HttpStatus.OK); @@ -635,7 +837,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'materialIds[]': [childMaterial.id], endYear: 2013, startYear: 2010, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, }) .expect(HttpStatus.OK); expect(responseWithFilter.body.data.impactTable[0].rows).toHaveLength(1); @@ -656,7 +858,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'materialIds[]': [grandchildMaterial.id], endYear: 2013, startYear: 2010, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, }) .expect(HttpStatus.OK); @@ -755,7 +957,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2013, startYear: 2010, - groupBy: 'region', + groupBy: GROUP_BY_VALUES.REGION, }) .expect(HttpStatus.OK); @@ -849,7 +1051,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2013, startYear: 2010, - groupBy: 'supplier', + groupBy: GROUP_BY_VALUES.SUPPLIER, }) .expect(HttpStatus.OK); @@ -860,7 +1062,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2013, startYear: 2010, - groupBy: 'supplier', + groupBy: GROUP_BY_VALUES.SUPPLIER, 'materialIds[]': [material2.id], }) .expect(HttpStatus.OK); @@ -960,7 +1162,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2013, startYear: 2010, - groupBy: 'business-unit', + groupBy: GROUP_BY_VALUES.BUSINESS_UNIT, }) .expect(HttpStatus.OK); @@ -1052,7 +1254,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2013, startYear: 2010, - groupBy: 'location-type', + groupBy: GROUP_BY_VALUES.LOCATION_TYPE, }) .expect(HttpStatus.OK); @@ -1144,7 +1346,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'page[number]': 1, endYear: 2013, startYear: 2010, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, }) .expect(HttpStatus.OK); const responseSecondPage = await request(testApplication.getHttpServer()) @@ -1156,7 +1358,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'page[number]': 2, endYear: 2013, startYear: 2010, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, }) .expect(HttpStatus.OK); const paginationMetadata: PaginationMeta = new PaginationMeta({ @@ -1233,13 +1435,14 @@ describe('Impact Table and Charts test suite (e2e)', () => { locationType: LOCATION_TYPES.PRODUCTION_AGGREGATION_POINT, }); - await createSourcingLocation({ - material: material2, - businessUnit: businessUnit1, - t1Supplier: supplier1, - adminRegion: adminRegion, - locationType: LOCATION_TYPES.COUNTRY_OF_PRODUCTION, - }); + const sourcingLocationMaterial2: SourcingLocation = + await createSourcingLocation({ + material: material2, + businessUnit: businessUnit1, + t1Supplier: supplier1, + adminRegion: adminRegion, + locationType: LOCATION_TYPES.COUNTRY_OF_PRODUCTION, + }); // Creating Sourcing Records and Indicator Records for previously created Sourcing Locations of different Location Types for await (const [index, year] of [2010, 2011, 2012].entries()) { @@ -1328,7 +1531,7 @@ describe('Impact Table and Charts test suite (e2e)', () => { 'indicatorIds[]': [indicator.id], endYear: 2022, startYear: 2017, - groupBy: 'material', + groupBy: GROUP_BY_VALUES.MATERIAL, scenarioId: scenario.id, }); @@ -1354,3 +1557,22 @@ describe('Impact Table and Charts test suite (e2e)', () => { ); }); }); + +async function indicatorSourcingRecord( + year: number, + value: number, + indicator: Indicator, + sourcingLocation: SourcingLocation, + tonnage: number = 100, +): Promise { + const indicatorRecord: IndicatorRecord = await createIndicatorRecord({ + value, + indicator, + }); + await createSourcingRecord({ + tonnage, + year, + indicatorRecords: [indicatorRecord], + sourcingLocation, + }); +} diff --git a/api/test/e2e/impact/impact-table/scenario-vs-scenario.spec.ts b/api/test/e2e/impact/impact-table/scenario-vs-scenario.spec.ts index 21856030f..84dd59944 100644 --- a/api/test/e2e/impact/impact-table/scenario-vs-scenario.spec.ts +++ b/api/test/e2e/impact/impact-table/scenario-vs-scenario.spec.ts @@ -29,6 +29,9 @@ import { } from '../mocks/scenario-vs-scenario-responses/same-materials-scenarios.reponse'; import { createSameMaterialScenariosPreconditions } from '../mocks/scenario-vs-scenario-preconditions/same-materials-scenarios.preconditions'; import { DataSource } from 'typeorm'; +import { createImpactTableSortingPreconditions } from '../mocks/sorting.preconditions'; +import { GROUP_BY_VALUES } from 'modules/h3-data/dto/get-impact-map.dto'; +import { ImpactTableRows } from 'modules/impact/dto/response-impact-table.dto'; describe('Scenario VS Scenario Impact Table test suite (e2e)', () => { let testApplication: TestApplication; @@ -180,4 +183,56 @@ describe('Scenario VS Scenario Impact Table test suite (e2e)', () => { ); }, ); + + describe('Sorting Tests', () => { + test('When I query the API for an Actual Vs Scenario mpact table sorted by a given year, Then I should get the correct data in ascendant order by default ', async () => { + //ARRANGE + const data: any = await createImpactTableSortingPreconditions( + 'ScenarioVsScenario', + ); + const { + indicator, + supplier, + scenario, + comparedScenario, + parentMaterials, + childMaterialParent1, + } = data; + + // ACT + const response = await request(testApplication.getHttpServer()) + .get('/api/v1/impact/compare/scenario/vs/scenario') + .set('Authorization', `Bearer ${jwtToken}`) + .query({ + 'indicatorIds[]': [indicator.id], + 'supplierIds[]': [supplier.id], + sortingYear: 2020, + endYear: 2021, + startYear: 2020, + groupBy: GROUP_BY_VALUES.MATERIAL, + baseScenarioId: scenario.id, + comparedScenarioId: comparedScenario.id, + }); + + //ASSERT + const response1OrderParents: string[] = + response.body.data.impactTable[0].rows.map( + (row: ImpactTableRows) => row.name, + ); + const response1OrderMaterial1Children: string[] = + response.body.data.impactTable[0].rows[1].children.map( + (row: ImpactTableRows) => row.name, + ); + expect(response1OrderParents).toEqual([ + parentMaterials[1].name, + parentMaterials[0].name, + parentMaterials[2].name, + ]); + expect(response1OrderMaterial1Children).toEqual([ + childMaterialParent1[1].name, + childMaterialParent1[2].name, + childMaterialParent1[0].name, + ]); + }); + }); }); diff --git a/api/test/e2e/impact/mocks/scenario-vs-scenario-responses/same-materials-scenarios.reponse.ts b/api/test/e2e/impact/mocks/scenario-vs-scenario-responses/same-materials-scenarios.reponse.ts index 76270bc6e..f8a5e4495 100644 --- a/api/test/e2e/impact/mocks/scenario-vs-scenario-responses/same-materials-scenarios.reponse.ts +++ b/api/test/e2e/impact/mocks/scenario-vs-scenario-responses/same-materials-scenarios.reponse.ts @@ -20,16 +20,16 @@ export function getSameMaterialScenarioComparisonResponse( baseScenarioValue: 900, comparedScenarioValue: 0, isProjected: false, - absoluteDifference: 900, - percentageDifference: 200, + absoluteDifference: -900, + percentageDifference: -200, }, { year: 2021, baseScenarioValue: 913.5, comparedScenarioValue: 0, isProjected: true, - absoluteDifference: 913.5, - percentageDifference: 200, + absoluteDifference: -913.5, + percentageDifference: -200, }, ], }, @@ -42,16 +42,16 @@ export function getSameMaterialScenarioComparisonResponse( baseScenarioValue: 0, comparedScenarioValue: 1500, isProjected: false, - absoluteDifference: -1500, - percentageDifference: -200, + absoluteDifference: 1500, + percentageDifference: 200, }, { year: 2021, baseScenarioValue: 0, comparedScenarioValue: 1522.5, isProjected: true, - absoluteDifference: -1522.5, - percentageDifference: -200, + absoluteDifference: 1522.5, + percentageDifference: 200, }, ], }, @@ -64,16 +64,16 @@ export function getSameMaterialScenarioComparisonResponse( baseScenarioValue: 1100, comparedScenarioValue: 0, isProjected: false, - absoluteDifference: 1100, - percentageDifference: 200, + absoluteDifference: -1100, + percentageDifference: -200, }, { year: 2021, baseScenarioValue: 1116.5, comparedScenarioValue: 0, isProjected: true, - absoluteDifference: 1116.5, - percentageDifference: 200, + absoluteDifference: -1116.5, + percentageDifference: -200, }, ], }, @@ -84,16 +84,16 @@ export function getSameMaterialScenarioComparisonResponse( baseScenarioValue: 2000, comparedScenarioValue: 1500, isProjected: false, - absoluteDifference: 500, - percentageDifference: 28.57142857142857, + absoluteDifference: -500, + percentageDifference: -28.57142857142857, }, { year: 2021, baseScenarioValue: 2030, comparedScenarioValue: 1522.5, isProjected: true, - absoluteDifference: 507.5, - percentageDifference: 28.57142857142857, + absoluteDifference: -507.5, + percentageDifference: -28.57142857142857, }, ], }, @@ -103,16 +103,16 @@ export function getSameMaterialScenarioComparisonResponse( year: 2020, baseScenarioValue: 2000, comparedScenarioValue: 1500, - absoluteDifference: 500, - percentageDifference: 28.57142857142857, + absoluteDifference: -500, + percentageDifference: -28.57142857142857, isProjected: false, }, { year: 2021, baseScenarioValue: 2030, comparedScenarioValue: 1522.5, - absoluteDifference: 507.5, - percentageDifference: 28.57142857142857, + absoluteDifference: -507.5, + percentageDifference: -28.57142857142857, isProjected: true, }, ], @@ -152,19 +152,19 @@ export function getScenarioComparisonResponseBySupplier( name: 'Supplier A Textile', values: [ { - absoluteDifference: -400, + absoluteDifference: 400, baseScenarioValue: 1100, comparedScenarioValue: 1500, isProjected: false, - percentageDifference: -30.76923076923077, + percentageDifference: 30.76923076923077, year: 2020, }, { - absoluteDifference: -406, + absoluteDifference: 406, baseScenarioValue: 1116.5, comparedScenarioValue: 1522.5, isProjected: true, - percentageDifference: -30.76923076923077, + percentageDifference: 30.76923076923077, year: 2021, }, ], @@ -174,19 +174,19 @@ export function getScenarioComparisonResponseBySupplier( name: 'Supplier B Textile', values: [ { - absoluteDifference: 900, + absoluteDifference: -900, baseScenarioValue: 900, comparedScenarioValue: 0, isProjected: false, - percentageDifference: 200, + percentageDifference: -200, year: 2020, }, { - absoluteDifference: 913.5, + absoluteDifference: -913.5, baseScenarioValue: 913.5, comparedScenarioValue: 0, isProjected: true, - percentageDifference: 200, + percentageDifference: -200, year: 2021, }, ], @@ -197,15 +197,15 @@ export function getScenarioComparisonResponseBySupplier( year: 2020, baseScenarioValue: 2000, comparedScenarioValue: 0, - absoluteDifference: 2000, - percentageDifference: 200, + absoluteDifference: -2000, + percentageDifference: -200, }, { year: 2021, baseScenarioValue: 2030, comparedScenarioValue: 0, - absoluteDifference: 2030, - percentageDifference: 200, + absoluteDifference: -2030, + percentageDifference: -200, }, ], metadata: { @@ -267,24 +267,24 @@ export function getComparisonResponseWithProjectedYears( baseScenarioValue: 900, comparedScenarioValue: 0, isProjected: false, - absoluteDifference: 900, - percentageDifference: 200, + absoluteDifference: -900, + percentageDifference: -200, }, { year: 2021, baseScenarioValue: 913.5, comparedScenarioValue: 0, isProjected: true, - absoluteDifference: 913.5, - percentageDifference: 200, + absoluteDifference: -913.5, + percentageDifference: -200, }, { year: 2022, baseScenarioValue: 927.2025, comparedScenarioValue: 0, isProjected: true, - absoluteDifference: 927.2025, - percentageDifference: 200, + absoluteDifference: -927.2025, + percentageDifference: -200, }, ], }, @@ -313,24 +313,24 @@ export function getComparisonResponseWithProjectedYears( baseScenarioValue: 0, comparedScenarioValue: 1500, isProjected: false, - absoluteDifference: -1500, - percentageDifference: -200, + absoluteDifference: 1500, + percentageDifference: 200, }, { year: 2021, baseScenarioValue: 0, comparedScenarioValue: 1522.5, isProjected: true, - absoluteDifference: -1522.5, - percentageDifference: -200, + absoluteDifference: 1522.5, + percentageDifference: 200, }, { year: 2022, baseScenarioValue: 0, comparedScenarioValue: 1545.3375, isProjected: true, - absoluteDifference: -1545.3375, - percentageDifference: -200, + absoluteDifference: 1545.3375, + percentageDifference: 200, }, ], }, @@ -359,24 +359,24 @@ export function getComparisonResponseWithProjectedYears( baseScenarioValue: 1100, comparedScenarioValue: 0, isProjected: false, - absoluteDifference: 1100, - percentageDifference: 200, + absoluteDifference: -1100, + percentageDifference: -200, }, { year: 2021, baseScenarioValue: 1116.5, comparedScenarioValue: 0, isProjected: true, - absoluteDifference: 1116.5, - percentageDifference: 200, + absoluteDifference: -1116.5, + percentageDifference: -200, }, { year: 2022, baseScenarioValue: 1133.2475, comparedScenarioValue: 0, isProjected: true, - absoluteDifference: 1133.2475, - percentageDifference: 200, + absoluteDifference: -1133.2475, + percentageDifference: -200, }, ], }, @@ -403,24 +403,24 @@ export function getComparisonResponseWithProjectedYears( baseScenarioValue: 2000, comparedScenarioValue: 1500, isProjected: false, - absoluteDifference: 500, - percentageDifference: 28.57142857142857, + absoluteDifference: -500, + percentageDifference: -28.57142857142857, }, { year: 2021, baseScenarioValue: 2030, comparedScenarioValue: 1522.5, isProjected: true, - absoluteDifference: 507.5, - percentageDifference: 28.57142857142857, + absoluteDifference: -507.5, + percentageDifference: -28.57142857142857, }, { year: 2022, baseScenarioValue: 2060.45, comparedScenarioValue: 1545.3375, isProjected: true, - absoluteDifference: 515.1124999999997, - percentageDifference: 28.57142857142856, + absoluteDifference: -515.1124999999997, + percentageDifference: -28.57142857142856, }, ], }, @@ -446,24 +446,24 @@ export function getComparisonResponseWithProjectedYears( year: 2020, baseScenarioValue: 2000, comparedScenarioValue: 1500, - absoluteDifference: 500, - percentageDifference: 28.57142857142857, + absoluteDifference: -500, + percentageDifference: -28.57142857142857, isProjected: false, }, { year: 2021, baseScenarioValue: 2030, comparedScenarioValue: 1522.5, - absoluteDifference: 507.5, - percentageDifference: 28.57142857142857, + absoluteDifference: -507.5, + percentageDifference: -28.57142857142857, isProjected: true, }, { year: 2022, baseScenarioValue: 2060.45, comparedScenarioValue: 1545.3375, - absoluteDifference: 515.1124999999997, - percentageDifference: 28.57142857142856, + absoluteDifference: -515.1124999999997, + percentageDifference: -28.57142857142856, isProjected: true, }, ], diff --git a/api/test/e2e/impact/mocks/sorting.preconditions.ts b/api/test/e2e/impact/mocks/sorting.preconditions.ts new file mode 100644 index 000000000..8808a4e47 --- /dev/null +++ b/api/test/e2e/impact/mocks/sorting.preconditions.ts @@ -0,0 +1,273 @@ +import { AdminRegion } from 'modules/admin-regions/admin-region.entity'; +import { + createAdminRegion, + createBusinessUnit, + createIndicator, + createIndicatorRecord, + createMaterial, + createScenario, + createScenarioIntervention, + createSourcingLocation, + createSourcingRecord, + createSupplier, + createUnit, +} from '../../../entity-mocks'; +import { Unit } from 'modules/units/unit.entity'; +import { + Indicator, + INDICATOR_TYPES, +} from 'modules/indicators/indicator.entity'; +import { Material } from 'modules/materials/material.entity'; +import { BusinessUnit } from 'modules/business-units/business-unit.entity'; +import { Supplier } from 'modules/suppliers/supplier.entity'; +import { + SOURCING_LOCATION_TYPE_BY_INTERVENTION, + SourcingLocation, +} from 'modules/sourcing-locations/sourcing-location.entity'; +import { IndicatorRecord } from 'modules/indicator-records/indicator-record.entity'; +import { + SCENARIO_INTERVENTION_TYPE, + ScenarioIntervention, +} from 'modules/scenario-interventions/scenario-intervention.entity'; +import { Scenario } from 'modules/scenarios/scenario.entity'; + +export async function createImpactTableSortingPreconditions( + type: 'Normal' | 'ActualVsScenario' | 'ScenarioVsScenario', +): Promise { + const adminRegion: AdminRegion = await createAdminRegion({ + name: 'Fake AdminRegion', + }); + const unit: Unit = await createUnit({ shortName: 'fakeUnit' }); + const indicator: Indicator = await createIndicator({ + name: 'Fake Indicator', + unit, + nameCode: INDICATOR_TYPES.DEFORESTATION, + }); + + const parentMaterial1 = await createMaterial({ + name: 'Parent Fake Material 1', + }); + const parentMaterial2 = await createMaterial({ + name: 'Parent Fake Material 2', + }); + const parentMaterial3 = await createMaterial({ + name: 'Parent Fake Material 3', + }); + const child11: Material = await createMaterial({ + name: 'Child Fake Material 1-1', + parent: parentMaterial1, + }); + const child12: Material = await createMaterial({ + name: 'Child Fake Material 1-2', + parent: parentMaterial1, + }); + const child13: Material = await createMaterial({ + name: 'Child Fake Material 1-3', + parent: parentMaterial1, + }); + + const businessUnit: BusinessUnit = await createBusinessUnit({ + name: 'Fake Business Unit', + }); + + const supplier: Supplier = await createSupplier({ + name: 'Fake Supplier', + }); + + const parentLocations: SourcingLocation[] = await Promise.all( + [parentMaterial1, parentMaterial2, parentMaterial3].map( + async (material: Material) => + await createSourcingLocation({ + material: material, + businessUnit, + t1Supplier: supplier, + adminRegion, + }), + ), + ); + + const childLocations: SourcingLocation[] = await Promise.all( + [child11, child12, child13].map( + async (material: Material) => + await createSourcingLocation({ + material: material, + businessUnit, + t1Supplier: supplier, + adminRegion, + }), + ), + ); + + await indicatorSourcingRecord(2020, 0, indicator, parentLocations[0]); + await indicatorSourcingRecord(2020, 200, indicator, parentLocations[1]); + await indicatorSourcingRecord(2020, 150, indicator, parentLocations[2]); + await indicatorSourcingRecord(2020, 30, indicator, childLocations[0]); + await indicatorSourcingRecord(2020, 20, indicator, childLocations[1]); + await indicatorSourcingRecord(2020, 50, indicator, childLocations[2]); + await indicatorSourcingRecord(2021, 0, indicator, parentLocations[0]); + await indicatorSourcingRecord(2021, 100, indicator, parentLocations[1]); + await indicatorSourcingRecord(2021, 200, indicator, parentLocations[2]); + await indicatorSourcingRecord(2021, 20, indicator, childLocations[0]); + await indicatorSourcingRecord(2021, 90, indicator, childLocations[1]); + await indicatorSourcingRecord(2021, 40, indicator, childLocations[2]); + + const result: any = { + indicator, + supplier, + parentMaterials: [parentMaterial1, parentMaterial2, parentMaterial3], + childMaterialParent1: [child11, child12, child13], + }; + + if (type === 'ActualVsScenario' || 'ScenarioVsScenario') { + const scenario: Scenario = await createScenario({ title: 'scenario1' }); + + const scenarioIntervention: ScenarioIntervention = + await createScenarioIntervention({ + scenario, + description: 'intervention 1', + type: SCENARIO_INTERVENTION_TYPE.CHANGE_PRODUCTION_EFFICIENCY, + }); + + const sharedLocationAdditionalData: Partial = { + businessUnit, + t1Supplier: supplier, + adminRegion, + scenarioInterventionId: scenarioIntervention.id, + }; + // Sourcing Locations of Type cancelled (the one that will be replaced by Linen) + const [parent2Canceled, parent2Replacing] = + await createSourceLocationsForIntervention({ + material: parentMaterial2, + ...sharedLocationAdditionalData, + }); + + await indicatorSourcingRecord(2020, -200, indicator, parent2Canceled); + await indicatorSourcingRecord(2020, 170, indicator, parent2Replacing); + + const [parent3Canceled, parent3Replacing] = + await createSourceLocationsForIntervention({ + material: parentMaterial3, + ...sharedLocationAdditionalData, + }); + + await indicatorSourcingRecord(2020, -150, indicator, parent3Canceled); + await indicatorSourcingRecord(2020, 130, indicator, parent3Replacing); + + const [child11Canceled, child11Replacing] = + await createSourceLocationsForIntervention({ + material: child11, + ...sharedLocationAdditionalData, + }); + + await indicatorSourcingRecord(2020, -30, indicator, child11Canceled); + await indicatorSourcingRecord(2020, 20, indicator, child11Replacing); + + const [child12Canceled, child12Replacing] = + await createSourceLocationsForIntervention({ + material: child12, + ...sharedLocationAdditionalData, + }); + + await indicatorSourcingRecord(2020, -20, indicator, child12Canceled); + await indicatorSourcingRecord(2020, 15, indicator, child12Replacing); + + result.scenario = scenario; + } + + if (type === 'ScenarioVsScenario') { + const comparedScenario: Scenario = await createScenario({ + title: 'comparedScenario', + }); + + const scenarioIntervention: ScenarioIntervention = + await createScenarioIntervention({ + scenario: comparedScenario, + description: 'intervention 1 Compared scenario', + type: SCENARIO_INTERVENTION_TYPE.CHANGE_PRODUCTION_EFFICIENCY, + }); + + const sharedLocationAdditionalData: Partial = { + businessUnit, + t1Supplier: supplier, + adminRegion, + scenarioInterventionId: scenarioIntervention.id, + }; + // Sourcing Locations of Type cancelled (the one that will be replaced by Linen) + const [parent2Canceled, parent2Replacing] = + await createSourceLocationsForIntervention({ + material: parentMaterial2, + ...sharedLocationAdditionalData, + }); + + await indicatorSourcingRecord(2020, -200, indicator, parent2Canceled); + await indicatorSourcingRecord(2020, 150, indicator, parent2Replacing); + + const [parent3Canceled, parent3Replacing] = + await createSourceLocationsForIntervention({ + material: parentMaterial3, + ...sharedLocationAdditionalData, + }); + + await indicatorSourcingRecord(2020, -150, indicator, parent3Canceled); + await indicatorSourcingRecord(2020, 140, indicator, parent3Replacing); + + const [child11Canceled, child11Replacing] = + await createSourceLocationsForIntervention({ + material: child11, + ...sharedLocationAdditionalData, + }); + + await indicatorSourcingRecord(2020, -30, indicator, child11Canceled); + await indicatorSourcingRecord(2020, 25, indicator, child11Replacing); + + const [child12Canceled, child12Replacing] = + await createSourceLocationsForIntervention({ + material: child12, + ...sharedLocationAdditionalData, + }); + + await indicatorSourcingRecord(2020, -20, indicator, child12Canceled); + await indicatorSourcingRecord(2020, 5, indicator, child12Replacing); + + result.comparedScenario = comparedScenario; + } + + return result; +} + +async function createSourceLocationsForIntervention( + sharedLocationAdditionalData: Partial, +): Promise<[SourcingLocation, SourcingLocation]> { + const parent1CancelledLocation: SourcingLocation = + await createSourcingLocation({ + interventionType: SOURCING_LOCATION_TYPE_BY_INTERVENTION.CANCELED, + ...sharedLocationAdditionalData, + }); + + const parent1ReplacingLocation: SourcingLocation = + await createSourcingLocation({ + interventionType: SOURCING_LOCATION_TYPE_BY_INTERVENTION.REPLACING, + ...sharedLocationAdditionalData, + }); + + return [parent1CancelledLocation, parent1ReplacingLocation]; +} + +async function indicatorSourcingRecord( + year: number, + value: number, + indicator: Indicator, + sourcingLocation: SourcingLocation, + tonnage: number = 100, +): Promise { + const indicatorRecord: IndicatorRecord = await createIndicatorRecord({ + value, + indicator, + }); + await createSourcingRecord({ + tonnage, + year, + indicatorRecords: [indicatorRecord], + sourcingLocation, + }); +} diff --git a/api/test/e2e/users/users.spec.ts b/api/test/e2e/users/users.spec.ts index f17f5489e..45c3de6ef 100644 --- a/api/test/e2e/users/users.spec.ts +++ b/api/test/e2e/users/users.spec.ts @@ -12,7 +12,20 @@ import ApplicationManager, { import { DataSource } from 'typeorm'; import { clearTestDataFromDatabase } from '../../utils/database-test-helper'; import { UserRepository } from 'modules/users/user.repository'; -import { createUser } from '../../entity-mocks'; +import { + createScenario, + createScenarioIntervention, + createSourcingLocation, + createSourcingRecord, + createUser, +} from '../../entity-mocks'; +import { Scenario } from '../../../src/modules/scenarios/scenario.entity'; +import { ScenarioIntervention } from '../../../src/modules/scenario-interventions/scenario-intervention.entity'; +import { + SOURCING_LOCATION_TYPE_BY_INTERVENTION, + SourcingLocation, +} from '../../../src/modules/sourcing-locations/sourcing-location.entity'; +import { SourcingRecord } from '../../../src/modules/sourcing-records/sourcing-record.entity'; /** * Tests for the UsersModule. @@ -241,7 +254,7 @@ describe('UsersModule (e2e)', () => { }); describe('Users - account deletion', () => { - test('A user should be able to delete their own account', async () => { + test('A user should be able to soft delete their own account', async () => { await request(testApplication.getHttpServer()) .delete('/api/v1/users/me') .set('Authorization', `Bearer ${adminTestUser.jwtToken}`) @@ -254,5 +267,55 @@ describe('UsersModule (e2e)', () => { .set('Authorization', `Bearer ${adminTestUser.jwtToken}`) .expect(HttpStatus.UNAUTHORIZED); }); + + test('A user with no admin role should not be able to delete any user', async () => { + await request(testApplication.getHttpServer()) + .delete(`/api/v1/users/${adminTestUser.user.id}`) + .set('Authorization', `Bearer ${userTestUser.jwtToken}`) + .expect(HttpStatus.FORBIDDEN); + }); + + test('A user with admin role should be able to delete a user, and all scenarios and interventions of the user should be gone as well', async () => { + const randomUser = await createUser({ email: 'test1@mail.com' }); + const newAdminUser = await setupTestUser(testApplication, ROLES.ADMIN, { + email: 'newadmin@test.com', + }); + for (const number of [1, 2, 3, 4, 5]) { + const scenario: Scenario = await createScenario({ + userId: randomUser.id, + }); + const scenarioIntervention: ScenarioIntervention = + await createScenarioIntervention({ scenario }); + + const sourcingLocation: SourcingLocation = await createSourcingLocation( + { + scenarioInterventionId: scenarioIntervention.id, + interventionType: SOURCING_LOCATION_TYPE_BY_INTERVENTION.REPLACING, + }, + ); + + await createSourcingRecord({ sourcingLocationId: sourcingLocation.id }); + } + const response = await request(testApplication.getHttpServer()) + .delete(`/api/v1/users/${randomUser.id}`) + .set('Authorization', `Bearer ${newAdminUser.jwtToken}`); + + console.log(response); + + const scenarios = await dataSource.getRepository(Scenario).find(); + const interventions = await dataSource + .getRepository(ScenarioIntervention) + .find(); + const sourcingLocations = await dataSource + .getRepository(SourcingLocation) + .find(); + const sourcingRecords = await dataSource + .getRepository(SourcingRecord) + .find(); + + [scenarios, interventions, sourcingLocations, sourcingRecords].forEach( + (entityArray: any[]) => expect(entityArray).toHaveLength(0), + ); + }); }); }); diff --git a/api/test/entity-mocks.ts b/api/test/entity-mocks.ts index 318f3d802..e7fc8ffbb 100644 --- a/api/test/entity-mocks.ts +++ b/api/test/entity-mocks.ts @@ -335,12 +335,15 @@ async function createScenario( async function createScenarioIntervention( additionalData: Partial = {}, ): Promise { - const scenario: Scenario = await createScenario(); + let scenario = {}; + if (!additionalData.scenario) { + scenario = await createScenario(); + } const defaultData: DeepPartial = { title: 'Scenario intervention title', startYear: 2020, percentage: 50, - scenario: scenario, + scenario: additionalData.scenario ?? scenario, type: SCENARIO_INTERVENTION_TYPE.CHANGE_PRODUCTION_EFFICIENCY, newIndicatorCoefficients: JSON.parse( JSON.stringify({ ce: 11, de: 10, ww: 5, bi: 3 }), diff --git a/client/CHANGELOG.md b/client/CHANGELOG.md index 70f6607b2..2c4d0a87d 100644 --- a/client/CHANGELOG.md +++ b/client/CHANGELOG.md @@ -8,13 +8,11 @@ and this project adheres to [Semantic Versioning](https://semver.org/). ## [v0.5.0 Unreleased] ### Fixed -- analysis page: location type selected holds values after closing popover. [LANDGRIF-1250](https://vizzuality.atlassian.net/browse/LANDGRIF-1250) - Fix permissions for edit scenarios on analysis pages [LANDGRIF-1253](https://vizzuality.atlassian.net/browse/LANDGRIF-1253) ## [v0.4.0] ### Added -- Added clearable property for autocomplete selects. - Added role check to enable upload data source button [LANDGRIF-1125](https://vizzuality.atlassian.net/browse/LANDGRIF-1125) - Added `@floating-ui/react` and `@floating-ui/react-dom` dependencies. [LANDGRIF-1037](https://vizzuality.atlassian.net/browse/LANDGRIF-1037) - Added disabled option styles for single and autocomplete selects. [LANDGRIF-1037](https://vizzuality.atlassian.net/browse/LANDGRIF-1037) @@ -42,7 +40,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/). - Move the users page from data to user [LANDGRIF-1122](https://vizzuality.atlassian.net/browse/LANDGRIF-1122) ### Fixed -- Scenario comparison was not working on the charts page [LANDGRIF-1252](https://vizzuality.atlassian.net/browse/LANDGRIF-1252) - Intervention form: an empty object was being sent for coefficients when these were `undefined`. [LANDGRIF-1238](https://vizzuality.atlassian.net/browse/LANDGRIF-1238) - Material layer fixed to resolution 4 [LANDGRIF-1234](https://vizzuality.atlassian.net/browse/LANDGRIF-1234) - Issue preventing new users to sign up in the platform. [LANDGRIF-1222](https://vizzuality.atlassian.net/browse/LANDGRIF-1222) diff --git a/client/cypress.config.ts b/client/cypress.config.ts index 4ba17dc39..20b52799a 100644 --- a/client/cypress.config.ts +++ b/client/cypress.config.ts @@ -1,10 +1,10 @@ import { defineConfig } from 'cypress'; export default defineConfig({ - defaultCommandTimeout: 60000, - requestTimeout: 60000, + defaultCommandTimeout: 90000, + requestTimeout: 90000, responseTimeout: 90000, - execTimeout: 60000, + execTimeout: 90000, e2e: { baseUrl: 'http://localhost:3000', screenshotOnRunFailure: true, diff --git a/client/cypress/e2e/analysis-chart.cy.ts b/client/cypress/e2e/analysis-chart.cy.ts deleted file mode 100644 index ae42aace4..000000000 --- a/client/cypress/e2e/analysis-chart.cy.ts +++ /dev/null @@ -1,57 +0,0 @@ -describe('Analysis charts', () => { - beforeEach(() => { - cy.intercept('GET', '/api/v1/indicators*', { - fixture: 'indicators/index', - }).as('fetchIndicators'); - - cy.intercept('GET', '/api/v1/impact/ranking?*', { - fixture: 'impact/chart', - }).as('fetchChartRanking'); - - cy.intercept('GET', '/api/v1/h3/years*', { - statusCode: 200, - fixture: 'years/index', - }); - - cy.intercept('GET', '/api/v1/materials/trees?depth=1&withSourcingLocations=true', { - statusCode: 200, - fixture: 'trees/materials', - }); - - cy.intercept('GET', '/api/v1/suppliers/trees?withSourcingLocations=true', { - statusCode: 200, - fixture: 'trees/suppliers', - }); - - cy.intercept('GET', '/api/v1/sourcing-locations/location-types/supported', { - statusCode: 200, - fixture: 'sourcing-locations/supported', - }); - - cy.intercept('GET', '/api/v1/admin-regions/trees?withSourcingLocations=true', { - statusCode: 200, - fixture: 'trees/admin-regions', - }); - - cy.intercept('GET', '/api/v1/scenarios*', { - statusCode: 200, - fixture: 'scenario/scenarios', - }); - - cy.login(); - }); - - afterEach(() => { - cy.logout(); - }); - - it('should load the charts', () => { - cy.visit('/analysis/chart'); - - cy.wait(['@fetchIndicators', '@fetchChartRanking']).then(() => { - cy.get('[data-testid="analysis-chart"]').as('chart'); - cy.get('@chart').should('be.visible'); - cy.get('@chart').find('.recharts-responsive-container').and('have.length', 5); - }); - }); -}); diff --git a/client/cypress/e2e/analysis-filters.cy.ts b/client/cypress/e2e/analysis-filters.cy.ts deleted file mode 100644 index 30c6f7991..000000000 --- a/client/cypress/e2e/analysis-filters.cy.ts +++ /dev/null @@ -1,151 +0,0 @@ -describe('Analysis and filters', () => { - beforeEach(() => { - cy.intercept('GET', '/api/v1/impact/table*', { - fixture: 'impact/table', - }).as('impactTable'); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/indicators*', - }, - { - fixture: 'indicators/index', - }, - ).as('fetchIndicators'); - - cy.intercept('GET', '/api/v1/indicators/*', { - fixture: 'indicators/show', - }); - - cy.intercept('GET', '/api/v1/h3/years*', { - statusCode: 200, - fixture: 'years/index', - }); - - cy.intercept('GET', '/api/v1/materials/trees?depth=1&withSourcingLocations=true', { - fixture: 'trees/materials.json', - }).as('materialsTrees'); - - cy.intercept('GET', '/api/v1/admin-regions/trees?withSourcingLocations=true*', { - fixture: 'trees/admin-regions.json', - }).as('originsTrees'); - - cy.intercept('GET', '/api/v1/suppliers/trees?withSourcingLocations=true', { - fixture: 'trees/suppliers.json', - }).as('suppliersTrees'); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/sourcing-locations/location-types/supported', - }, - { - fixture: 'sourcing-locations/supported', - }, - ); - - cy.intercept('GET', '/api/v1/scenarios*', { - statusCode: 200, - fixture: 'scenario/scenarios', - }); - - cy.login(); - }); - - afterEach(() => { - cy.logout(); - }); - - it('should be able to select an indicator', () => { - cy.intercept('GET', '/api/v1/indicators*', { - fixture: 'indicators/index', - }).as('fetchIndicators'); - - cy.visit('/analysis/table'); - - cy.wait('@fetchIndicators').then((interception) => { - expect(interception.response.body?.data).have.length(5); - }); - cy.get('[data-testid="analysis-table"]').should('be.visible'); - - cy.url().should('not.include', 'indicator'); - - // select indicator - cy.get('[data-testid="select-indicators-filter"]').find('button').type('{enter}{enter}'); - - cy.url().should('include', 'indicator=all'); - - cy.get('[data-testid="select-indicators-filter"]') - .find('button') - .type('{enter}{downArrow}{enter}'); - - cy.url().should('include', 'indicator=5c595ac7-f144-485f-9f32-601f6faae9fe'); // Land use - }); - - it('should update the params playing with the filters', () => { - cy.visit('/analysis/table'); - - // Step 1: open more filters - cy.get('[data-testid="more-filters-button"]').click(); - cy.wait('@materialsTrees'); - cy.wait('@originsTrees'); - cy.wait('@suppliersTrees'); - - // Adding new interceptors after selecting a filter - cy.intercept( - 'GET', - '/api/v1/suppliers/trees?*originIds[]=8bd7e578-f64f-4042-8a3a-2a7652ce850b*', - { - fixture: 'trees/suppliers-filtered.json', - }, - ).as('suppliersTreesFiltered'); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/materials/trees', - query: { - 'supplierIds[]': 'c8bca40d-1aec-44e3-b82b-8170898800ad', - }, - }, - { - fixture: 'trees/materials-filtered.json', - }, - ).as('materialsTreesFiltered'); - - // Step 2: Selecting Angola in the admin regions selector - cy.get('[data-testid="tree-select-origins-filter"]').find('div[role="combobox"]').click(); - cy.get('[data-testid="tree-select-origins-filter"]') - .find('div[role="listbox"]') - .find('.rc-tree-treenode') - .eq(1) - .click(); - cy.get('[data-testid="tree-select-origins-filter"]') - .find('input:visible:first') - .type('{enter}'); - - // Step 3: Selecting Moll in the material selector - cy.wait('@suppliersTreesFiltered'); - cy.get('[data-testid="tree-select-suppliers-filter"]').find('div[role="combobox"]').click(); - cy.get('[data-testid="tree-select-suppliers-filter"]') - .find('div[role="listbox"]') - .find('.rc-tree-treenode') - .eq(1) - .click(); - - cy.get('[data-testid="tree-select-materials-filter"]') - .find('input:visible:first') - .type('{enter}'); - - // Step 4: Checking material selector - cy.wait('@materialsTreesFiltered') - .its('request.url') - .should('include', '8bd7e578-f64f-4042-8a3a-2a7652ce850b'); - cy.get('[data-testid="tree-select-materials-filter"]').find('div[role="combobox"]').click(); - cy.get('[data-testid="tree-select-materials-filter"]') - .find('div[role="listbox"]') - .find('.rc-tree-treenode:visible') - .should('have.length', 1); // first treenode is empty - }); -}); diff --git a/client/cypress/e2e/analysis-map.cy.ts b/client/cypress/e2e/analysis-map.cy.ts deleted file mode 100644 index 9e3e56213..000000000 --- a/client/cypress/e2e/analysis-map.cy.ts +++ /dev/null @@ -1,113 +0,0 @@ -describe('Analysis map', () => { - beforeEach(() => { - cy.intercept('GET', '/api/v1/indicators*', { - fixture: 'indicators/index', - }).as('fetchIndicators'); - - cy.intercept('GET', '/api/v1/indicators/*', { - fixture: 'indicators/show', - }); - - cy.intercept('GET', '/api/v1/contextual-layers/categories', { - fixture: 'layers/contextual-layer-categories.json', - }).as('fetchContextualLayerCategories'); - - cy.intercept('GET', '/api/v1/contextual-layers/*/h3data*', { - fixture: 'layers/contextual-layer.json', - }).as('fetchContextualLayerH3Data'); - - cy.intercept('GET', '/api/v1/h3/map/material*', { - fixture: 'layers/material-layer.json', - }).as('fetchMaterialLayerH3Data'); - - cy.intercept('GET', '/api/v1/h3/map/impact*', { - fixture: 'layers/impact-layer.json', - }); - - cy.intercept('GET', '/api/v1/h3/years*', { - statusCode: 200, - fixture: 'years/index', - }); - - cy.intercept('GET', '/api/v1/materials/*', { - fixture: 'materials/show.json', - }); - - cy.intercept('GET', '/api/v1/materials/trees?*', { - statusCode: 200, - fixture: 'trees/materials', - }); - - cy.intercept('GET', '/api/v1/suppliers/trees?withSourcingLocations=true', { - statusCode: 200, - fixture: 'trees/suppliers', - }); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/sourcing-locations/location-types/supported', - }, - { - fixture: 'sourcing-locations/supported', - }, - ); - - cy.intercept('GET', '/api/v1/admin-regions/trees?withSourcingLocations=true', { - statusCode: 200, - fixture: 'trees/admin-regions', - }); - - cy.intercept('GET', '/api/v1/scenarios*', { - statusCode: 200, - fixture: 'scenario/scenarios', - }); - - cy.login(); - cy.visit('/analysis/map'); - }); - - afterEach(() => { - cy.logout(); - }); - - it('contextual layer request does not include indicatorId as param', () => { - cy.wait(['@fetchIndicators', '@fetchContextualLayerCategories']); - - cy.get('[data-testid="contextual-layer-modal-toggle"]').click(); - cy.get('[data-testid="category-header-Environmental datasets"]').click(); - cy.get('[data-testid="layer-settings-item-Agriculture blue water footprint"]') - .find('[data-testid="switch-button"]') - .click(); - cy.get('[data-testid="contextual-layer-apply-button"').click(); - - cy.wait('@fetchContextualLayerH3Data').then((interception) => { - expect(interception.request.url).not.to.contain('indicatorId'); - expect(interception.request.url).contain('year'); - expect(interception.request.url).contain('resolution=4'); - }); - }); - - it('contextual material layer request does not include indicatorId as param', () => { - cy.wait(['@fetchIndicators', '@fetchContextualLayerCategories']); - - cy.get('[data-testid="contextual-layer-modal-toggle"]').click(); - cy.get('[data-testid="contextual-material-header"]') - .click() - .find('[data-testid="switch-button"]') - .click(); - cy.wait(100); - cy.get('[data-testid="contextual-material-content"]') - .find('[data-testid="tree-select-material"]') - .find('input[type="search"]') - .type('Cotton'); - cy.get('[data-testid="tree-select-search-results"]').find('button').click(); - cy.get('[data-testid="contextual-layer-apply-button"').click(); - - cy.wait('@fetchMaterialLayerH3Data').then((interception) => { - expect(interception.request.url).not.to.contain('indicatorId'); - expect(interception.request.url).contain('year'); - expect(interception.request.url).contain('resolution=4'); - }); - }); -}); diff --git a/client/cypress/e2e/analysis-nav.cy.ts b/client/cypress/e2e/analysis-nav.cy.ts deleted file mode 100644 index 90caaf5e2..000000000 --- a/client/cypress/e2e/analysis-nav.cy.ts +++ /dev/null @@ -1,89 +0,0 @@ -describe('Analysis navigation and common behaviors', () => { - beforeEach(() => { - cy.intercept('GET', '/api/v1/indicators*', { - fixture: 'indicators/index', - }).as('fetchIndicators'); - - cy.intercept('GET', '/api/v1/indicators/*', { - fixture: 'indicators/show', - }); - - cy.intercept('GET', '/api/v1/contextual-layers/categories', { - fixture: 'layers/contextual-layer-categories.json', - }).as('fetchContextualLayerCategories'); - - cy.intercept('GET', '/api/v1/impact/ranking?*', { - fixture: 'impact/chart', - }).as('fetchChartRanking'); - - cy.intercept('GET', '/api/v1/impact/table*', { - fixture: 'impact/table', - }).as('fetchImpactTable'); - - cy.intercept('GET', '/api/v1/h3/map/impact*', { - fixture: 'impact/map', - }).as('fetchImpactMap'); - - cy.intercept('GET', '/api/v1/h3/years*', { - statusCode: 200, - fixture: 'years/index', - }); - - cy.intercept('GET', '/api/v1/materials/trees*', { - statusCode: 200, - fixture: 'trees/materials', - }); - - cy.intercept('GET', '/api/v1/suppliers/trees?withSourcingLocations=true', { - statusCode: 200, - fixture: 'trees/suppliers', - }); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/sourcing-locations/location-types/supported', - }, - { - fixture: 'sourcing-locations/supported', - }, - ); - - cy.intercept('GET', '/api/v1/admin-regions/trees?withSourcingLocations=true', { - statusCode: 200, - fixture: 'trees/admin-regions', - }); - - cy.intercept('GET', '/api/v1/scenarios*', { - statusCode: 200, - fixture: 'scenario/scenarios', - }); - - cy.login(); - }); - - afterEach(() => { - cy.logout(); - }); - - it('should be able to navigate to map, table, and chart', () => { - cy.visit('/analysis'); - cy.wait(['@fetchImpactMap', '@fetchIndicators', '@fetchContextualLayerCategories']); - cy.get('[data-testid="analysis-map"]').should('be.visible'); - cy.url().should('contain', '/analysis/map'); - - cy.get('[data-testid="mode-control-table"]').click(); - cy.wait('@fetchImpactTable'); - cy.get('[data-testid="analysis-table"]').should('be.visible'); - cy.url().should('contain', '/analysis/table'); - - cy.get('[data-testid="mode-control-chart"]').click(); - cy.wait('@fetchChartRanking'); - cy.get('[data-testid="analysis-charts"]').should('be.visible'); - cy.url().should('contain', '/analysis/chart'); - - cy.get('[data-testid="mode-control-map"]').click(); - cy.get('[data-testid="analysis-map"]').should('be.visible'); - cy.url().should('contain', '/analysis/map'); - }); -}); diff --git a/client/cypress/e2e/analysis-scenarios.cy.ts b/client/cypress/e2e/analysis-scenarios.cy.ts deleted file mode 100644 index b4ece1ff5..000000000 --- a/client/cypress/e2e/analysis-scenarios.cy.ts +++ /dev/null @@ -1,320 +0,0 @@ -beforeEach(() => { - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/scenarios*', - query: { - include: 'scenarioInterventions', - 'page[number]': '1', - 'page[size]': '10', - sort: '-updatedAt', - }, - }, - { - statusCode: 200, - fixture: 'scenario/scenarios', - }, - ).as('scenariosList'); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/scenarios', - query: { - disablePagination: 'true', - hasActiveInterventions: 'true', - }, - }, - { - statusCode: 200, - fixture: 'scenario/scenarios', - }, - ).as('scenariosNoPaginated'); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/scenarios/*', - }, - { - statusCode: 200, - fixture: 'scenario/scenario-creation', - }, - ); - - cy.intercept('GET', '/api/v1/impact/compare/scenario/vs/actual?*', { - statusCode: 200, - fixture: 'scenario/scenario-vs-actual', - }).as('scenarioVsActual'); - - cy.intercept('GET', '/api/v1/impact/compare/scenario/vs/scenario?*', { - statusCode: 200, - fixture: 'scenario/scenario-vs-scenario', - }).as('scenarioVsScenario'); - - cy.intercept('GET', '/api/v1/h3/map/impact*', { - fixture: 'layers/impact-layer.json', - }); - - cy.intercept('GET', '/api/v1/impact/table*', { - fixture: 'impact/table', - }).as('fetchImpactTable'); - - cy.intercept('GET', '/api/v1/impact/ranking?*', { - fixture: 'impact/chart', - }).as('fetchChartRanking'); - - cy.intercept('GET', '/api/v1/indicators*', { - fixture: 'indicators/index', - }); - - cy.intercept('GET', '/api/v1/indicators/*', { - fixture: 'indicators/show', - }); - - cy.intercept('GET', '/api/v1/contextual-layers/categories', { - fixture: 'layers/contextual-layer-categories.json', - }); - - cy.intercept('GET', '/api/v1/h3/years*', { - statusCode: 200, - fixture: 'years/index', - }); - - cy.intercept('GET', '/api/v1/materials/trees*', { - statusCode: 200, - fixture: 'trees/materials', - }); - - cy.intercept('GET', '/api/v1/suppliers/trees*', { - statusCode: 200, - fixture: 'trees/suppliers', - }); - - cy.intercept('GET', '/api/v1/sourcing-locations/location-types/supported', { - statusCode: 200, - fixture: 'sourcing-locations/supported', - }); - - cy.intercept('GET', '/api/v1/admin-regions/trees*', { - statusCode: 200, - fixture: 'trees/admin-regions', - }); - - cy.login(); -}); - -afterEach(() => { - cy.logout(); -}); - -describe('Analysis and scenarios', () => { - beforeEach(() => { - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/scenarios*', - query: { - include: 'scenarioInterventions', - 'page[number]': '1', - 'page[size]': '10', - sort: '-updatedAt', - }, - }, - { - statusCode: 200, - fixture: 'scenario/scenarios', - }, - ).as('scenariosList'); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/scenarios', - query: { - disablePagination: 'true', - hasActiveInterventions: 'true', - }, - }, - { - statusCode: 200, - fixture: 'scenario/scenarios', - }, - ).as('scenariosNoPaginated'); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/scenarios/*', - }, - { - statusCode: 200, - fixture: 'scenario/scenario-creation', - }, - ); - - cy.intercept('GET', '/api/v1/impact/compare/scenario/vs/actual?*', { - statusCode: 200, - fixture: 'scenario/scenario-vs-actual', - }).as('scenarioVsActual'); - - cy.intercept('GET', '/api/v1/impact/compare/scenario/vs/scenario?*', { - statusCode: 200, - fixture: 'scenario/scenario-vs-scenario', - }).as('scenarioVsScenario'); - - cy.intercept('GET', '/api/v1/h3/map/impact*', { - fixture: 'layers/impact-layer.json', - }); - - cy.intercept('GET', '/api/v1/impact/table*', { - fixture: 'impact/table', - }).as('fetchImpactTable'); - - cy.intercept('GET', '/api/v1/indicators*', { - fixture: 'indicators/index', - }); - - cy.intercept('GET', '/api/v1/indicators/*', { - fixture: 'indicators/show', - }); - - cy.intercept('GET', '/api/v1/contextual-layers/categories', { - fixture: 'layers/contextual-layer-categories.json', - }); - - cy.intercept('GET', '/api/v1/h3/years*', { - statusCode: 200, - fixture: 'years/index', - }); - - cy.intercept('GET', '/api/v1/materials/trees*', { - statusCode: 200, - fixture: 'trees/materials', - }); - - cy.intercept('GET', '/api/v1/suppliers/trees*', { - statusCode: 200, - fixture: 'trees/suppliers', - }); - - cy.intercept('GET', '/api/v1/sourcing-locations/location-types/supported', { - statusCode: 200, - fixture: 'sourcing-locations/supported', - }); - - cy.intercept('GET', '/api/v1/admin-regions/trees*', { - statusCode: 200, - fixture: 'trees/admin-regions', - }); - - cy.login(); - }); - - afterEach(() => { - cy.logout(); - }); - - it('should be able to see the analysis page', () => { - cy.visit('/analysis/map'); - cy.url().should('contain', '/analysis/map'); - }); - - it('users with "canCreateScenario" permission should be able to click add new scenario button', () => { - cy.intercept('/api/v1/users/me', { fixture: '/profiles/all-permissions.json' }).as('profile'); - cy.visit('/analysis/map'); - cy.wait('@profile'); - cy.get('a[data-testid="create-scenario"]').click(); - cy.wait('@profile'); - cy.url().should('contain', '/data/scenarios/new'); - }); - - it('users without "canCreateScenario" permission should not be able to click add new scenario button', () => { - cy.intercept('/api/v1/users/me', { fixture: '/profiles/no-permissions.json' }); - cy.visit('/analysis/map'); - cy.get('a[data-testid="create-scenario"]').should('not.exist'); - }); - - it('should be scenarioIds empty when there is no scenario selected in the more filters endpoints', () => { - cy.intercept('GET', '/api/v1/**/trees?*').as('treesSelectors'); - cy.visit('/analysis/table'); - cy.wait('@treesSelectors').then((interception) => { - const url = new URL(interception.request.url); - const scenarioIds = url.searchParams.get('scenarioIds'); - expect(scenarioIds).to.be.null; - }); - }); - - it('should be able to select a scenario vs actual data in the comparison select', () => { - cy.visit('/analysis/table'); - cy.wait('@scenariosNoPaginated'); - - cy.intercept( - 'GET', - '/api/v1/**/trees?withSourcingLocations=true&scenarioIds[]=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7', - ).as('treesSelectorsWithScenarioId'); - - cy.get('[data-testid="scenario-item-null"]') // actual data - .find('[data-testid="select-comparison"]') - .click() - .find('input:visible') - .type('Test{enter}'); - - cy.url().should('contain', 'compareScenarioId=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7'); - - // checking comparison cell is there - cy.wait('@scenarioVsActual') - .its('request.url') - .should('contain', 'comparedScenarioId=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7'); - cy.get('[data-testid="comparison-cell"]').should('have.length.above', 1); - - // checking tree selectors on more filers - cy.wait('@treesSelectorsWithScenarioId') - .its('request.url') - .should('contain', 'scenarioIds[]=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7'); - }); - - it('should be able to select a scenario vs scenario in the comparison select', () => { - cy.intercept( - 'GET', - '/api/v1/impact/table?*scenarioId=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7*', - ).as('fetchImpactTableData'); - cy.visit('/analysis/table'); - cy.wait('@scenariosNoPaginated'); - cy.wait('@scenariosList'); - - cy.get('[data-testid="scenario-item-8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7"]') - .find('[data-testid="scenario-item-radio"]') - .click(); - - cy.wait('@fetchImpactTableData') - .its('request.url') - .should('contain', 'scenarioId=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7'); - - cy.url().should('contain', 'scenarioId=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7'); - - cy.intercept({ - path: '/api/v1/**/trees?*scenarioIds[]=7646039e-b2e0-4bd5-90fd-925e5868f9af', - }).as('treesSelectorsWithBothScenarioIds'); - - cy.get('[data-testid="scenario-item-8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7"]') - .find('[data-testid="select-comparison"]') - .click() - .find('input:visible') - .type('Example{enter}'); - - cy.url().should('contain', 'compareScenarioId=7646039e-b2e0-4bd5-90fd-925e5868f9af'); - - // checking tree selectors on more filers - cy.wait('@treesSelectorsWithBothScenarioIds') - .its('request.url') - .should('contain', 'scenarioIds[]=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7') - .and('contain', 'scenarioIds[]=7646039e-b2e0-4bd5-90fd-925e5868f9af'); - - // checking comparison cell is there - cy.wait('@scenarioVsScenario') - .its('request.url') - .should('contain', 'comparedScenarioId=7646039e-b2e0-4bd5-90fd-925e5868f9af'); - cy.get('[data-testid="comparison-cell"]').should('have.length.above', 1); - }); -}); diff --git a/client/cypress/e2e/analysis-table.cy.ts b/client/cypress/e2e/analysis-table.cy.ts deleted file mode 100644 index 402f72ed6..000000000 --- a/client/cypress/e2e/analysis-table.cy.ts +++ /dev/null @@ -1,55 +0,0 @@ -describe('Analysis table', () => { - beforeEach(() => { - cy.intercept('GET', '/api/v1/indicators*', { - fixture: 'indicators/index', - }).as('fetchIndicators'); - - cy.intercept('GET', '/api/v1/h3/years*', { - statusCode: 200, - fixture: 'years/index', - }); - - cy.intercept('GET', '/api/v1/impact/table*', { - fixture: 'impact/table', - }).as('fetchTableRanking'); - - cy.intercept('GET', '/api/v1/materials/trees?depth=1&withSourcingLocations=true', { - statusCode: 200, - fixture: 'trees/materials', - }); - - cy.intercept('GET', '/api/v1/suppliers/trees?withSourcingLocations=true', { - statusCode: 200, - fixture: 'trees/suppliers', - }); - - cy.intercept('GET', '/api/v1/sourcing-locations/location-types/supported', { - statusCode: 200, - fixture: 'sourcing-locations/supported', - }); - - cy.intercept('GET', '/api/v1/admin-regions/trees?withSourcingLocations=true', { - statusCode: 200, - fixture: 'trees/admin-regions', - }); - - cy.intercept('GET', '/api/v1/scenarios*', { - statusCode: 200, - fixture: 'scenario/scenarios', - }); - - cy.login(); - }); - - afterEach(() => { - cy.logout(); - }); - - it('should load the table', () => { - cy.visit('/analysis/table'); - - cy.wait(['@fetchIndicators', '@fetchTableRanking']).then(() => { - cy.get('[data-testid="analysis-table"]').should('be.visible'); - }); - }); -}); diff --git a/client/cypress/e2e/analysis.cy.ts b/client/cypress/e2e/analysis.cy.ts new file mode 100644 index 000000000..a57fa55f1 --- /dev/null +++ b/client/cypress/e2e/analysis.cy.ts @@ -0,0 +1,304 @@ +beforeEach(() => { + cy.interceptAllRequests(); + cy.login(); +}); + +afterEach(() => { + cy.logout(); +}); + +describe('Analysis tab', () => { + beforeEach(() => { + cy.visit('/analysis'); + }); + + it('should navigate to map, table, and chart', () => { + cy.wait(['@fetchImpactMap', '@fetchIndicators', '@fetchContextualLayerCategories']); + cy.get('[data-testid="analysis-map"]').should('be.visible'); + cy.url().should('contain', '/analysis/map'); + + cy.get('[data-testid="mode-control-table"]').click(); + cy.wait('@fetchImpactTable'); + cy.get('[data-testid="analysis-table"]').should('be.visible'); + cy.url().should('contain', '/analysis/table'); + + cy.get('[data-testid="mode-control-chart"]').click(); + cy.wait('@fetchChartRanking'); + cy.get('[data-testid="analysis-charts"]').should('be.visible'); + cy.url().should('contain', '/analysis/chart'); + + cy.get('[data-testid="mode-control-map"]').click(); + cy.get('[data-testid="analysis-map"]').should('be.visible'); + cy.url().should('contain', '/analysis/map'); + }); +}); + +describe('Analysis filters', () => { + beforeEach(() => { + cy.visit('/analysis/map'); + }); + + it('should be able to select an indicator', () => { + cy.intercept('GET', '/api/v1/indicators*', { + fixture: 'indicators/index', + }).as('fetchIndicators'); + + cy.visit('/analysis/table'); + + cy.wait('@fetchIndicators').then((interception) => { + expect(interception.response.body?.data).have.length(5); + }); + cy.get('[data-testid="analysis-table"]').should('be.visible'); + + cy.url().should('not.include', 'indicator'); + + // select indicator + cy.get('[data-testid="select-indicators-filter"]').find('button').type('{enter}{enter}'); + + cy.url().should('include', 'indicator=all'); + + cy.get('[data-testid="select-indicators-filter"]') + .find('button') + .type('{enter}{downArrow}{enter}'); + + cy.url().should('include', 'indicator=5c595ac7-f144-485f-9f32-601f6faae9fe'); // Land use + }); + + it('should update the params playing with the filters', () => { + cy.visit('/analysis/table'); + + // Step 1: open more filters + cy.get('[data-testid="more-filters-button"]').click(); + cy.wait('@materialsTrees'); + cy.wait('@originsTrees'); + cy.wait('@suppliersTrees'); + + // Adding new interceptors after selecting a filter + cy.intercept( + 'GET', + '/api/v1/suppliers/trees?*originIds[]=8bd7e578-f64f-4042-8a3a-2a7652ce850b*', + { + fixture: 'trees/suppliers-filtered.json', + }, + ).as('suppliersTreesFiltered'); + + cy.intercept( + { + method: 'GET', + pathname: '/api/v1/materials/trees', + query: { + 'supplierIds[]': 'c8bca40d-1aec-44e3-b82b-8170898800ad', + }, + }, + { + fixture: 'trees/materials-filtered.json', + }, + ).as('materialsTreesFiltered'); + + // Step 2: Selecting Angola in the admin regions selector + cy.get('[data-testid="tree-select-origins-filter"]').find('div[role="combobox"]').click(); + cy.get('[data-testid="tree-select-origins-filter"]') + .find('div[role="listbox"]') + .find('.rc-tree-treenode') + .eq(1) + .click(); + cy.get('[data-testid="tree-select-origins-filter"]') + .find('input:visible:first') + .type('{enter}'); + + // Step 3: Selecting Moll in the material selector + cy.wait('@suppliersTreesFiltered'); + cy.get('[data-testid="tree-select-suppliers-filter"]').find('div[role="combobox"]').click(); + cy.get('[data-testid="tree-select-suppliers-filter"]') + .find('div[role="listbox"]') + .find('.rc-tree-treenode') + .eq(1) + .click(); + + cy.get('[data-testid="tree-select-materials-filter"]') + .find('input:visible:first') + .type('{enter}'); + + // Step 4: Checking material selector + cy.wait('@materialsTreesFiltered') + .its('request.url') + .should('include', '8bd7e578-f64f-4042-8a3a-2a7652ce850b'); + cy.get('[data-testid="tree-select-materials-filter"]').find('div[role="combobox"]').click(); + cy.get('[data-testid="tree-select-materials-filter"]') + .find('div[role="listbox"]') + .find('.rc-tree-treenode:visible') + .should('have.length', 1); // first treenode is empty + }); +}); + +describe('Analysis contextual layers', () => { + beforeEach(() => { + cy.visit('/analysis/map'); + }); + + it('requests should not include the params indicatorId and should be in resolution 4', () => { + cy.wait(['@fetchIndicators', '@fetchContextualLayerCategories']); + + cy.get('[data-testid="contextual-layer-modal-toggle"]').click(); + cy.get('[data-testid="category-header-Environmental datasets"]').click(); + cy.get('[data-testid="layer-settings-item-Agriculture blue water footprint"]') + .find('[data-testid="switch-button"]') + .click(); + cy.get('[data-testid="contextual-layer-apply-button"').click(); + + cy.wait('@fetchContextualLayerH3Data').then((interception) => { + expect(interception.request.url).not.to.contain('indicatorId'); + expect(interception.request.url).contain('year'); + expect(interception.request.url).contain('resolution=4'); + }); + }); + + it('materials requests should not include the params indicatorId and should be in resolution 4', () => { + cy.wait(['@fetchIndicators', '@fetchContextualLayerCategories']); + + cy.get('[data-testid="contextual-layer-modal-toggle"]').click(); + cy.get('[data-testid="contextual-material-header"]') + .click() + .find('[data-testid="switch-button"]') + .click(); + cy.wait(100); + cy.get('[data-testid="contextual-material-content"]') + .find('[data-testid="tree-select-material"]') + .find('input[type="search"]') + .type('Cotton'); + cy.get('[data-testid="tree-select-search-results"]').find('button').click(); + cy.get('[data-testid="contextual-layer-apply-button"').click(); + + cy.wait('@fetchMaterialLayerH3Data').then((interception) => { + expect(interception.request.url).not.to.contain('indicatorId'); + expect(interception.request.url).contain('year'); + expect(interception.request.url).contain('resolution=4'); + }); + }); +}); + +describe('Analysis charts', () => { + beforeEach(() => { + cy.visit('/analysis/chart'); + }); + + it('should load one chart per indicator', () => { + cy.wait(['@fetchIndicators', '@fetchChartRanking']).then(() => { + cy.get('[data-testid="analysis-chart"]').as('chart'); + cy.get('@chart').should('be.visible'); + cy.get('@chart').find('.recharts-responsive-container').and('have.length', 5); + }); + }); +}); + +describe('Analysis table', () => { + beforeEach(() => { + cy.visit('/analysis/table'); + }); + + it('should load the table', () => { + cy.wait(['@fetchIndicators', '@fetchImpactTable']).then(() => { + cy.get('[data-testid="analysis-table"]').should('be.visible'); + }); + }); +}); + +describe('Analysis scenarios', () => { + it('users with "canCreateScenario" permission should be able to click add new scenario button', () => { + cy.intercept('/api/v1/users/me', { fixture: '/profiles/all-permissions.json' }).as('profile'); + cy.visit('/analysis/map'); + cy.wait('@profile'); + cy.get('a[data-testid="create-scenario"]').click(); + cy.wait('@profile'); + cy.url().should('contain', '/data/scenarios/new'); + }); + + it('users without "canCreateScenario" permission should not be able to click add new scenario button', () => { + cy.intercept('/api/v1/users/me', { fixture: '/profiles/no-permissions.json' }); + cy.visit('/analysis/map'); + cy.get('a[data-testid="create-scenario"]').should('not.exist'); + }); + + it('should be scenarioIds empty when there is no scenario selected in the more filters endpoints', () => { + cy.intercept('GET', '/api/v1/**/trees?*').as('treesSelectors'); + cy.visit('/analysis/table'); + cy.wait('@treesSelectors').then((interception) => { + const url = new URL(interception.request.url); + const scenarioIds = url.searchParams.get('scenarioIds'); + expect(scenarioIds).to.be.null; + }); + }); + + it('should be able to select a scenario vs actual data in the comparison select', () => { + cy.visit('/analysis/table'); + cy.wait('@scenariosNoPaginated'); + + cy.intercept( + 'GET', + '/api/v1/**/trees?withSourcingLocations=true&scenarioIds[]=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7', + ).as('treesSelectorsWithScenarioId'); + + cy.get('[data-testid="scenario-item-null"]') // actual data + .find('[data-testid="select-comparison"]') + .click() + .find('input:visible') + .type('Test{enter}'); + + cy.url().should('contain', 'compareScenarioId=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7'); + + // checking comparison cell is there + cy.wait('@scenarioVsActual') + .its('request.url') + .should('contain', 'comparedScenarioId=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7'); + cy.get('[data-testid="comparison-cell"]').should('have.length.above', 1); + + // checking tree selectors on more filers + cy.wait('@treesSelectorsWithScenarioId') + .its('request.url') + .should('contain', 'scenarioIds[]=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7'); + }); + + it('should be able to select a scenario vs scenario in the comparison select', () => { + cy.intercept( + 'GET', + '/api/v1/impact/table?*scenarioId=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7*', + ).as('fetchImpactTableData'); + cy.visit('/analysis/table'); + cy.wait('@scenariosNoPaginated'); + cy.wait('@scenariosList'); + + cy.get('[data-testid="scenario-item-8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7"]') + .find('[data-testid="scenario-item-radio"]') + .click(); + + cy.wait('@fetchImpactTableData') + .its('request.url') + .should('contain', 'scenarioId=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7'); + + cy.url().should('contain', 'scenarioId=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7'); + + cy.intercept({ + path: '/api/v1/**/trees?*scenarioIds[]=7646039e-b2e0-4bd5-90fd-925e5868f9af', + }).as('treesSelectorsWithBothScenarioIds'); + + cy.get('[data-testid="scenario-item-8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7"]') + .find('[data-testid="select-comparison"]') + .click() + .find('input:visible') + .type('Example{enter}'); + + cy.url().should('contain', 'compareScenarioId=7646039e-b2e0-4bd5-90fd-925e5868f9af'); + + // checking tree selectors on more filers + cy.wait('@treesSelectorsWithBothScenarioIds') + .its('request.url') + .should('contain', 'scenarioIds[]=8dfd0ce0-67b7-4f1d-be9c-41bc3ceafde7') + .and('contain', 'scenarioIds[]=7646039e-b2e0-4bd5-90fd-925e5868f9af'); + + // checking comparison cell is there + cy.wait('@scenarioVsScenario') + .its('request.url') + .should('contain', 'comparedScenarioId=7646039e-b2e0-4bd5-90fd-925e5868f9af'); + cy.get('[data-testid="comparison-cell"]').should('have.length.above', 1); + }); +}); diff --git a/client/cypress/e2e/data.cy.ts b/client/cypress/e2e/data.cy.ts index b7f5c61b9..2e1c1f68c 100644 --- a/client/cypress/e2e/data.cy.ts +++ b/client/cypress/e2e/data.cy.ts @@ -8,21 +8,7 @@ const disabledLinks = Object.values(ADMIN_TABS).filter( describe('Data page', () => { beforeEach(() => { - cy.intercept('GET', '/api/v1/sourcing-locations/location-types*', { - statusCode: 200, - fixture: 'location-types/index', - }); - - cy.intercept('GET', '/api/v1/tasks*', { - statusCode: 200, - fixture: 'tasks/index', - }); - - cy.intercept('GET', '/api/v1/sourcing-locations*', { - statusCode: 200, - fixture: 'sourcing-locations/index', - }); - + cy.interceptAllRequests(); cy.login(); cy.visit('/data'); }); diff --git a/client/cypress/e2e/intervention-creation.cy.ts b/client/cypress/e2e/intervention-creation.cy.ts index 852d62802..7a74a5e6c 100644 --- a/client/cypress/e2e/intervention-creation.cy.ts +++ b/client/cypress/e2e/intervention-creation.cy.ts @@ -1,75 +1,15 @@ beforeEach(() => { - cy.intercept('GET', '/api/v1/indicators*', { - fixture: 'indicators/index', - }).as('fetchIndicators'); + cy.interceptAllRequests(); - cy.intercept('POST', '/api/v1/scenarios', { - statusCode: 201, - fixture: 'scenario/scenario-creation', - }).as('scenarioCreation'); - - cy.intercept('GET', '/api/v1/sourcing-records/years', { + cy.intercept('GET', '/api/v1/admin-regions/trees*', { statusCode: 200, - fixture: 'scenario/scenario-years', - }).as('scenarioYears'); + fixture: 'scenario/scenario-location-countries', + }).as('originsTrees'); cy.intercept('GET', '/api/v1/materials/trees?depth=1', { statusCode: 200, fixture: 'scenario/scenario-materials', - }).as('scenarioNewMaterials'); - - cy.intercept('GET', '/api/v1/business-units/trees?depth=1*', { - statusCode: 200, - fixture: 'trees/business-units', - }).as('businessUnits'); - - cy.intercept('GET', '/api/v1/suppliers/trees*', { - statusCode: 200, - fixture: 'trees/suppliers', - }); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/suppliers/types', - query: { - type: 't1supplier', - }, - }, - { - statusCode: 200, - fixture: 'suppliers/types-t1supplier', - }, - ); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/suppliers/types', - query: { - type: 'producer', - }, - }, - { - statusCode: 200, - fixture: 'suppliers/types-producer', - }, - ); - - cy.intercept('GET', '/api/v1/materials/trees?depth=1&withSourcingLocations=true*', { - statusCode: 200, - fixture: 'trees/materials', - }).as('scenarioRawMaterials'); - - cy.intercept('GET', '/api/v1/sourcing-locations/location-types/supported', { - statusCode: 200, - fixture: 'location-types/index', - }).as('scenarioLocationTypes'); - - cy.intercept('GET', '/api/v1/admin-regions/trees*', { - statusCode: 200, - fixture: 'scenario/scenario-location-countries', - }).as('scenarioLocationCountries'); + }).as('materialsTrees'); cy.login(); cy.createScenario(); @@ -81,11 +21,11 @@ afterEach(() => { }); describe('Intervention creation', () => { - it('a user creates an intervetion – Switch to new material flow (successful creation)', () => { + it('a user creates an intervention – Switch to new material flow (successful creation)', () => { cy.intercept('POST', '/api/v1/scenario-interventions', { statusCode: 201, fixture: 'intervention/intervention-creation-dto', - }).as('successfullInterventionCreation'); + }).as('successfullyInterventionCreation'); cy.url().should('contains', '/interventions/new'); @@ -93,7 +33,7 @@ describe('Intervention creation', () => { cy.get('[data-testid="title-input"]').type('Lorem ipsum title'); // selects a material - cy.wait('@scenarioRawMaterials').then(() => { + cy.wait('@materialsTrees').then(() => { const $inputSelect = cy.get('[data-testid="materials-select"]'); $inputSelect.click(); @@ -101,7 +41,7 @@ describe('Intervention creation', () => { }); // selects a year - cy.wait('@scenarioYears'); + cy.wait('@sourcingRecordYears'); cy.get('[data-testid="select-startYear"]').type( '{enter}{downArrow}{downArrow}{downArrow}{downArrow}{enter}', ); @@ -125,7 +65,7 @@ describe('Intervention creation', () => { cy.get('[data-testid="BL_LUC_T-input-input"]').should('have.length', 0); // waits for material request and selects an option - cy.wait('@scenarioNewMaterials').then(() => { + cy.wait('@materialsTrees').then(() => { const $inputSelect = cy.get('[data-testid="new-material-select"]'); $inputSelect.click(); $inputSelect.find('.rc-tree-list').contains('Fruits, berries and nuts').click(); @@ -135,14 +75,14 @@ describe('Intervention creation', () => { cy.get('[data-testid="volume-input"]').should('be.disabled'); // waits for scenario location types request and selects an option - cy.wait('@scenarioLocationTypes'); + cy.wait('@supportedLocationTypes'); cy.get('[data-testid="select-newLocationType"]') .click() .find('input:visible') .type('Country of production{enter}'); // waits for scenario location countries request and selects an option - cy.wait('@scenarioLocationCountries'); + cy.wait('@originsTrees'); cy.get('[data-testid="select-newLocationCountryInput"]') .click() .find('input:visible') @@ -151,7 +91,7 @@ describe('Intervention creation', () => { // submits intervention cy.get('[data-testid="intervention-submit-btn"]').click(); - cy.wait('@successfullInterventionCreation').then(() => { + cy.wait('@successfullyInterventionCreation').then(() => { // checks the toast message triggered after intervention creation cy.get('[data-testid="toast-message"]').should( 'contain', @@ -171,7 +111,7 @@ describe('Intervention creation', () => { cy.get('[data-testid="title-input"]').type('Lorem ipsum title'); // selects a material - cy.wait('@scenarioRawMaterials').then(() => { + cy.wait('@materialsTrees').then(() => { const $inputSelect = cy.get('[data-testid="materials-select"]'); $inputSelect.click(); @@ -179,7 +119,7 @@ describe('Intervention creation', () => { }); // selects a year - cy.wait('@scenarioYears'); + cy.wait('@sourcingRecordYears'); cy.get('[data-testid="select-startYear"]').type( '{enter}{downArrow}{downArrow}{downArrow}{downArrow}{enter}', ); @@ -203,21 +143,21 @@ describe('Intervention creation', () => { cy.get('[data-testid="BL_LUC_T-input-input"]').should('have.length', 0); // waits for material request and selects an option - cy.wait('@scenarioNewMaterials').then(() => { + cy.wait('@materialsTrees').then(() => { const $inputSelect = cy.get('[data-testid="new-material-select"]'); $inputSelect.click(); $inputSelect.find('.rc-tree-list').contains('Fruits, berries and nuts').click(); }); // waits for scenario location types request and selects an option - cy.wait('@scenarioLocationTypes'); + cy.wait('@supportedLocationTypes'); cy.get('[data-testid="select-newLocationType"]') .click() .find('input:visible') .type('Country of production{enter}'); // waits for scenario location countries request and selects an option - cy.wait('@scenarioLocationCountries'); + cy.wait('@originsTrees'); cy.get('[data-testid="select-newLocationCountryInput"]') .click() .find('input:visible') @@ -252,7 +192,7 @@ describe('Intervention location type', () => { fixture: 'intervention/intervention-creation-dto', }).as('successfullInterventionCreation'); - cy.wait('@scenarioLocationTypes'); + cy.wait('@supportedLocationTypes'); // Choose a location type: Switch to new material cy.get('[data-testid="intervention-type-option"]').first().click(); @@ -362,7 +302,7 @@ describe('Intervention creation: Change production efficiency', () => { cy.get('[data-testid="title-input"]').type('Lorem ipsum title'); // selects a material - cy.wait('@scenarioRawMaterials').then(() => { + cy.wait('@materialsTrees').then(() => { const $inputSelect = cy.get('[data-testid="materials-select"]'); $inputSelect.click(); @@ -370,7 +310,7 @@ describe('Intervention creation: Change production efficiency', () => { }); // selects a year - cy.wait('@scenarioYears'); + cy.wait('@sourcingRecordYears'); cy.get('[data-testid="select-startYear"]').type( '{enter}{downArrow}{downArrow}{downArrow}{downArrow}{enter}', ); diff --git a/client/cypress/e2e/intervention-edition.cy.ts b/client/cypress/e2e/intervention-edition.cy.ts index e70a20227..521f611d6 100644 --- a/client/cypress/e2e/intervention-edition.cy.ts +++ b/client/cypress/e2e/intervention-edition.cy.ts @@ -1,71 +1,5 @@ beforeEach(() => { - cy.intercept('POST', '/api/v1/scenarios', { - statusCode: 201, - fixture: 'scenario/scenario-creation', - }).as('scenarioCreation'); - - cy.intercept('GET', '/api/v1/sourcing-records/years', { - statusCode: 200, - fixture: 'scenario/scenario-years', - }).as('scenarioYears'); - - cy.intercept('GET', '/api/v1/materials/trees?depth=1', { - statusCode: 200, - fixture: 'scenario/scenario-materials', - }).as('scenarioNewMaterials'); - - cy.intercept('GET', '/api/v1/materials/trees?depth=1&withSourcingLocations=true', { - statusCode: 200, - fixture: 'scenario/scenario-raw-materials', - }).as('scenarioRawMaterials'); - - cy.intercept('GET', '/api/v1/sourcing-locations/location-types', { - statusCode: 200, - fixture: 'scenario/scenario-location-types', - }).as('scenarioLocationTypes'); - - cy.intercept('GET', '/api/v1/admin-regions/trees?depth=0', { - statusCode: 200, - fixture: 'scenario/scenario-location-countries', - }).as('scenarioLocationCountries'); - - cy.intercept('GET', '/api/v1/scenario-interventions/random-intervention-id?*', { - statusCode: 200, - fixture: 'intervention/intervention-creation-dto', - }).as('fetchIntervention'); - - cy.intercept('GET', '/api/v1/suppliers/trees*', { - statusCode: 200, - fixture: 'trees/suppliers', - }); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/suppliers/types', - query: { - type: 't1supplier', - }, - }, - { - statusCode: 200, - fixture: 'suppliers/types-t1supplier', - }, - ); - - cy.intercept( - { - method: 'GET', - pathname: '/api/v1/suppliers/types', - query: { - type: 'producer', - }, - }, - { - statusCode: 200, - fixture: 'suppliers/types-producer', - }, - ); + cy.interceptAllRequests(); cy.login(); cy.visit('/data/scenarios/some-random-id/interventions/random-intervention-id/edit'); @@ -77,11 +11,6 @@ afterEach(() => { describe('Intervention edition', () => { it('a user creates an intervetion – Switch to Change production efficiency', () => { - cy.intercept('PATCH', '/api/v1/scenario-interventions/random-intervention-id', { - statusCode: 200, - fixture: 'intervention/intervention-creation-dto', - }).as('successfulInterventionEdition'); - cy.url().should('contains', '/interventions/random-intervention-id/edit'); }); }); diff --git a/client/cypress/e2e/scenario-creation.cy.ts b/client/cypress/e2e/scenario-creation.cy.ts index 14c4c2436..17b8343f0 100644 --- a/client/cypress/e2e/scenario-creation.cy.ts +++ b/client/cypress/e2e/scenario-creation.cy.ts @@ -1,12 +1,7 @@ beforeEach(() => { - cy.login().visit('/data/scenarios/new'); - - cy.intercept('POST', '/api/v1/scenarios', { - statusCode: 201, - fixture: 'scenario/scenario-creation', - }).as('scenarioCreation'); - - cy.intercept('api/v1/users/me', { fixture: 'profiles/all-permissions' }).as('profile'); + cy.interceptAllRequests(); + cy.login(); + cy.visit('/data/scenarios/new'); }); afterEach(() => { diff --git a/client/cypress/e2e/scenarios.cy.ts b/client/cypress/e2e/scenarios.cy.ts index 6a7b54aea..3a488695c 100644 --- a/client/cypress/e2e/scenarios.cy.ts +++ b/client/cypress/e2e/scenarios.cy.ts @@ -1,8 +1,9 @@ beforeEach(() => { - cy.intercept('GET', '/api/v1/scenarios/**/interventions*', { - statusCode: 200, - fixture: 'scenario/scenario-interventions', - }).as('fetchScenarioInterventions'); + cy.interceptAllRequests(); + // cy.intercept('GET', '/api/v1/scenarios/**/interventions*', { + // statusCode: 200, + // fixture: 'scenario/scenario-interventions', + // }).as('fetchScenarioInterventions'); cy.intercept( { @@ -17,11 +18,11 @@ beforeEach(() => { statusCode: 200, fixture: 'scenario/scenarios', }, - ).as('fetchScenarios'); + ).as('scenariosNoPaginated'); - cy.intercept('DELETE', '/api/v1/scenarios/**', { - statusCode: 200, - }).as('deleteScenario'); + // cy.intercept('DELETE', '/api/v1/scenarios/**', { + // statusCode: 200, + // }).as('deleteScenario'); cy.login(); cy.visit('/data/scenarios'); @@ -41,13 +42,13 @@ describe('Scenarios', () => { it('should be the same scenarios cards length than API', () => { cy.wait('@fetchScenarioInterventions'); - cy.wait('@fetchScenarios'); + cy.wait('@scenariosNoPaginated'); cy.get('[data-testid="scenario-card"]').should('have.length', 10); }); it('should every scenario have interventions', () => { cy.wait('@fetchScenarioInterventions'); - cy.wait('@fetchScenarios'); + cy.wait('@scenariosNoPaginated'); cy.get('[data-testid="scenario-card"]') .first() .find('[data-testid="scenario-interventions-item"]') @@ -58,7 +59,7 @@ describe('Scenarios', () => { cy.intercept('api/v1/users/me', { fixture: 'profiles/all-permissions' }).as('profile'); cy.wait('@profile'); cy.wait('@fetchScenarioInterventions'); - cy.wait('@fetchScenarios'); + cy.wait('@scenariosNoPaginated'); cy.get('a[data-testid="scenario-add-button"]').click(); cy.url().should('contain', '/data/scenarios/new'); @@ -73,7 +74,7 @@ describe('Scenarios', () => { cy.intercept('api/v1/users/me', { fixture: 'profiles/no-permissions' }).as('profile'); cy.wait('@profile'); cy.wait('@fetchScenarioInterventions'); - cy.wait('@fetchScenarios'); + cy.wait('@scenariosNoPaginated'); cy.get('[data-testid="scenario-add-button"]').should('be.disabled'); }); @@ -81,7 +82,7 @@ describe('Scenarios', () => { cy.intercept('api/v1/users/me', { fixture: 'profiles/all-permissions' }).as('profile'); cy.wait('@profile'); cy.wait('@fetchScenarioInterventions'); - cy.wait('@fetchScenarios'); + cy.wait('@scenariosNoPaginated'); // ? check there are, initially, 10 scenarios available before deletion cy.get('[data-testid="scenario-card"]').should('have.length', 10); @@ -113,7 +114,7 @@ describe('Scenarios', () => { cy.intercept('api/v1/users/me', { fixture: 'profiles/no-permissions' }).as('profile'); cy.wait('@profile'); cy.wait('@fetchScenarioInterventions'); - cy.wait('@fetchScenarios'); + cy.wait('@scenariosNoPaginated'); cy.get('[data-testid="scenario-card"]') .first() .find('[data-testid="scenario-delete-btn"]') @@ -124,7 +125,7 @@ describe('Scenarios', () => { cy.intercept('api/v1/users/me', { fixture: 'profiles/all-permissions' }).as('profile'); cy.wait('@profile'); cy.wait('@fetchScenarioInterventions'); - cy.wait('@fetchScenarios'); + cy.wait('@scenariosNoPaginated'); cy.get('[data-testid="scenario-card"]') .first() .find('a[data-testid="scenario-edit-btn"]') @@ -136,7 +137,7 @@ describe('Scenarios', () => { cy.intercept('api/v1/users/me', { fixture: 'profiles/no-permissions' }).as('profile'); cy.wait('@profile'); cy.wait('@fetchScenarioInterventions'); - cy.wait('@fetchScenarios'); + cy.wait('@scenariosNoPaginated'); cy.get('[data-testid="scenario-card"]') .first() .find('[data-testid="scenario-edit-btn"]') @@ -149,7 +150,7 @@ describe('Scenarios', () => { fixture: 'scenario/filters/by-name-results', }).as('fetchScenariosByName'); - cy.wait('@fetchScenarios'); + cy.wait('@scenariosNoPaginated'); // ? selects the "Sort by name" option and click on it cy.get('[data-testid="select-sort-scenario"]').find('button').type('{downArrow}{enter}'); diff --git a/client/cypress/support/commands.ts b/client/cypress/support/commands.ts index 3103b2b57..721cf4d9e 100644 --- a/client/cypress/support/commands.ts +++ b/client/cypress/support/commands.ts @@ -53,3 +53,196 @@ Cypress.Commands.add('logout', (): Cypress.Chainable => { return cy.wrap(signOut({ redirect: false })); }); + +Cypress.Commands.add('interceptAllRequests', (): void => { + cy.log('Intercepting requests'); + + // Indicators requests + cy.intercept('GET', '/api/v1/indicators*', { + fixture: 'indicators/index', + }).as('fetchIndicators'); + + cy.intercept('GET', '/api/v1/indicators/*', { + fixture: 'indicators/show', + }); + + // Materials + cy.intercept('GET', '/api/v1/materials/*', { + fixture: 'materials/show.json', + }); + + // Filter requests + cy.intercept('GET', '/api/v1/h3/years*', { + statusCode: 200, + fixture: 'years/index', + }); + + cy.intercept('GET', '/api/v1/business-units/trees?depth=1*', { + statusCode: 200, + fixture: 'trees/business-units', + }).as('businessUnitsTrees'); + + cy.intercept('GET', '/api/v1/materials/trees*', { + statusCode: 200, + fixture: 'trees/materials', + }).as('materialsTrees'); + + cy.intercept('GET', '/api/v1/suppliers/trees*', { + statusCode: 200, + fixture: 'trees/suppliers', + }).as('suppliersTrees'); + + cy.intercept('GET', '/api/v1/sourcing-locations/location-types*', { + statusCode: 200, + fixture: 'location-types/index', + }); + + cy.intercept('GET', '/api/v1/sourcing-locations/location-types/supported', { + fixture: 'sourcing-locations/supported', + }).as('supportedLocationTypes'); + + cy.intercept('GET', '/api/v1/admin-regions/trees*', { + statusCode: 200, + fixture: 'trees/admin-regions', + }).as('originsTrees'); + + // Scenario requests + cy.intercept('GET', '/api/v1/scenarios*', { + statusCode: 200, + fixture: 'scenario/scenarios', + }).as('scenariosList'); + + cy.intercept( + { + method: 'GET', + pathname: '/api/v1/scenarios', + query: { + disablePagination: 'true', + hasActiveInterventions: 'true', + }, + }, + { + statusCode: 200, + fixture: 'scenario/scenarios', + }, + ).as('scenariosNoPaginated'); + + cy.intercept( + { + method: 'GET', + pathname: '/api/v1/scenarios/*', + }, + { + statusCode: 200, + fixture: 'scenario/scenario-creation', + }, + ); + + cy.intercept('GET', '/api/v1/impact/compare/scenario/vs/actual?*', { + statusCode: 200, + fixture: 'scenario/scenario-vs-actual', + }).as('scenarioVsActual'); + + cy.intercept('GET', '/api/v1/impact/compare/scenario/vs/scenario?*', { + statusCode: 200, + fixture: 'scenario/scenario-vs-scenario', + }).as('scenarioVsScenario'); + + cy.intercept('POST', '/api/v1/scenarios', { + statusCode: 201, + fixture: 'scenario/scenario-creation', + }).as('scenarioCreation'); + + cy.intercept('DELETE', '/api/v1/scenarios/**', { + statusCode: 200, + }).as('deleteScenario'); + + // Intervention requests + cy.intercept('GET', '/api/v1/scenarios/**/interventions*', { + statusCode: 200, + fixture: 'scenario/scenario-interventions', + }).as('fetchScenarioInterventions'); + + cy.intercept('PATCH', '/api/v1/scenario-interventions/random-intervention-id', { + statusCode: 200, + fixture: 'intervention/intervention-creation-dto', + }).as('successfulInterventionEdition'); + + // Layer requests + cy.intercept('GET', '/api/v1/h3/map/impact*', { + fixture: 'layers/impact-layer.json', + }).as('fetchImpactMap'); + + // Contextual layer requests + cy.intercept('GET', '/api/v1/contextual-layers/categories', { + fixture: 'layers/contextual-layer-categories.json', + }).as('fetchContextualLayerCategories'); + + cy.intercept('GET', '/api/v1/contextual-layers/**/h3data*', { + fixture: 'layers/contextual-layer.json', + }).as('fetchContextualLayerH3Data'); + + cy.intercept('GET', '/api/v1/h3/map/material*', { + fixture: 'layers/material-layer.json', + }).as('fetchMaterialLayerH3Data'); + + // Impact table requests + cy.intercept('GET', '/api/v1/impact/table*', { + fixture: 'impact/table', + }).as('fetchImpactTable'); + + // Impact chart requests + cy.intercept('GET', '/api/v1/impact/ranking?*', { + fixture: 'impact/chart', + }).as('fetchChartRanking'); + + // Tasks requests + cy.intercept('GET', '/api/v1/tasks*', { + statusCode: 200, + fixture: 'tasks/index', + }); + + // Sourcing locations data requests + cy.intercept('GET', '/api/v1/sourcing-locations*', { + statusCode: 200, + fixture: 'sourcing-locations/index', + }); + + // Sourcing record years requests + cy.intercept('GET', '/api/v1/sourcing-records/years', { + statusCode: 200, + fixture: 'scenario/scenario-years', + }).as('sourcingRecordYears'); + + // Tier 1 suppliers requests + cy.intercept( + { + method: 'GET', + pathname: '/api/v1/suppliers/types', + query: { + type: 't1supplier', + }, + }, + { + statusCode: 200, + fixture: 'suppliers/types-t1supplier', + }, + ); + + cy.intercept( + { + method: 'GET', + pathname: '/api/v1/suppliers/types', + query: { + type: 'producer', + }, + }, + { + statusCode: 200, + fixture: 'suppliers/types-producer', + }, + ); + + // Profile + cy.intercept('api/v1/users/me', { fixture: 'profiles/all-permissions' }).as('profile'); +}); diff --git a/client/cypress/support/index.d.ts b/client/cypress/support/index.d.ts index a0d826ca6..279008554 100644 --- a/client/cypress/support/index.d.ts +++ b/client/cypress/support/index.d.ts @@ -11,7 +11,8 @@ declare global { */ login(credentials?: { username?: string; password?: string }): Chainable; logout(): Chainable; - createScenario(): Chainable; + createScenario(): Chainable; + interceptAllRequests(): Chainable; } } } diff --git a/client/src/containers/analysis-sidebar/component.tsx b/client/src/containers/analysis-sidebar/component.tsx index 157830106..ef60908bb 100644 --- a/client/src/containers/analysis-sidebar/component.tsx +++ b/client/src/containers/analysis-sidebar/component.tsx @@ -46,7 +46,7 @@ const ScenariosComponent: React.FC<{ scrollref?: MutableRefObject { href={`/data/scenarios/${scenario.id}/edit`} variant="white" size="xs" - disabled={canEdit} + disabled={!canEdit} > Edit diff --git a/data/Dockerfile b/data/Dockerfile index 5d7cd16c3..aba9287ce 100644 --- a/data/Dockerfile +++ b/data/Dockerfile @@ -2,20 +2,27 @@ FROM osgeo/gdal:ubuntu-full-3.2.1 LABEL maintainer="hello@vizzuality.com" ENV NODE_OPTIONS=--max_old_space_size=16384 -RUN curl -fsSL https://deb.nodesource.com/setup_16.x | sh - + +# Silence some apt-get errors +RUN echo 'debconf debconf/frontend select Noninteractive' | debconf-set-selections RUN apt-get --allow-releaseinfo-change update +RUN apt-get install -y apt-utils + +RUN curl -fsSL https://deb.nodesource.com/setup_18.x | bash - + RUN apt-get install -y --no-install-recommends pip make jq postgresql-client time build-essential zip nodejs RUN npm i -g mapshaper@0.5.66 + # install aws cli RUN curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip" \ - && unzip awscliv2.zip \ + && unzip -q awscliv2.zip \ && ./aws/install -RUN pip install --upgrade --no-cache-dir pip +RUN pip install -q --upgrade --no-cache-dir pip COPY ./requirements.txt requirements.txt -RUN pip install --no-cache-dir -r requirements.txt +RUN pip install -q --no-cache-dir -r requirements.txt WORKDIR / RUN mkdir -p data/ diff --git a/data/notebooks/Lab/QA_h3_vs_raster_calculations.ipynb b/data/notebooks/Lab/QA_h3_vs_raster_calculations.ipynb new file mode 100644 index 000000000..ee31b9b3b --- /dev/null +++ b/data/notebooks/Lab/QA_h3_vs_raster_calculations.ipynb @@ -0,0 +1,2332 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "5e06d192", + "metadata": {}, + "source": [ + "## QA of h3 calculations vs rasters calculations\n", + "\n", + "Notebook for QAing the h3 calculations performed in LG using h3 vs the values that we can obtain using the raster data.\n", + "\n", + "This notebook contains two main parts:\n", + "\n", + " 1. QA using satelligence calculations, and once we are sure of the error that we are getting between raster and h3 conversion we can:\n", + " 2. QA between raster values for indicators and h3 calculations.\n", + " \n", + "We will be using Aceh, Indonesia as sample location, calculating the impact for each supplier inside this location. \n", + "\n", + "\n", + "NOTE: Potentially, we can also explore how different geometries resolutions may affect the accuracy of teh result. \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "431a78f8", + "metadata": {}, + "outputs": [], + "source": [ + "#import libraries\n", + "\n", + "import numpy as np\n", + "import geopandas as gpd\n", + "import pandas as pd\n", + "\n", + "import h3\n", + "import h3pandas\n", + "from h3ronpy import raster\n", + "import rasterio as rio\n", + "from rasterio import mask\n", + "from rasterstats import zonal_stats #gen_zonal_stats, gen_point_query, \n", + "\n", + "from matplotlib import pyplot\n", + "%matplotlib inline\n", + "\n", + "import folium\n", + "\n", + "\n", + "import argparse\n", + "\n", + "import cv2\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8b7726a5", + "metadata": {}, + "outputs": [], + "source": [ + "FILE_DIR = \"../../datasets/raw/h3_raster_QA_calculations\"" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "36e3b28e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "palm_oil_harvest_area_ha_clip.tif.aux.xml\r\n", + "palm_oil_harvest_area_ha_clip_v2.tif\r\n", + "palm_oil_harvest_area_ha.tif.aux.xml\r\n", + "palm_oil_production_t_clip.tif\r\n", + "palm_oil_production_t_clip_v2.tif.aux.xml\r\n", + "palm_oil_production_t.tif.aux.xml\r\n" + ] + } + ], + "source": [ + "!ls $FILE_DIR/core_indicators/materials/palm_oil_harvest_area_ha_clip_v2.tif" + ] + }, + { + "cell_type": "markdown", + "id": "1bf1e22f", + "metadata": {}, + "source": [ + "### 1. QA using satelligence data - RASTER:\n", + "\n", + "Calculate deforestation and carbon impacts in mill locations in Aceh using satelligence data for raster calculations." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "638f3219", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "#open mill locations\n", + "\n", + "#gdf = gpd.read_file(f\"{FILE_DIR}/satelligence data/AcehMills_indicators.gpkg\")\n", + "#gdf.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "d53939e8", + "metadata": {}, + "outputs": [], + "source": [ + "#buffer = 50000\n", + "\n", + "def get_buffer(gdf, buffer, save=True, save_path='./'):\n", + " \n", + " if gdf.crs and gdf.crs != 'EPSG:3857':\n", + " print('Reprojecting to EPSG:3857')\n", + " #reproject\n", + " gdf_reprojected = gdf.to_crs(\"EPSG:3857\")\n", + " else:\n", + " print('Set a valid projection to the vector layer')\n", + "\n", + " gdf_buffer = gdf_reprojected.buffer(buffer)\n", + "\n", + " gdf_buffer_reprojected = gdf_buffer.to_crs('EPSG:4326')\n", + " if save:\n", + " gdf_buffer_reprojected.to_file(save_path)\n", + " return gdf_buffer_reprojected\n", + "\n", + "def get_buffer_stats(\n", + " raster_path,\n", + " vector_path,\n", + " buffer=50000,\n", + " stat_='sum',\n", + " all_touched= True,\n", + " column_name ='estimated_val'\n", + " ):\n", + " \n", + " \"\"\"\n", + " Function to obtain raster stats in abuffer geometry.\n", + " The function calculates first the buffer from the point vector file and then calculates the \n", + " raster stadistics inside the geometry.\n", + " \n", + " Inputs\n", + " ------------------------\n", + " raster_path: Raster path for retrieving the statdistics in EPSG:4326 projection.\n", + " vector_path: Vector path for calculating the stadistics. The layer should contain a point geometry\n", + " buffer: Radio distance in meters for computting the buffer geometry.\n", + " stat_: Stadistics to compute using the zonal stadistics.\n", + " all_touched: condition for the zonal stadistics. Used True as default.\n", + " \n", + " Output\n", + " -----------------------\n", + " \n", + " gdf with stadistics\n", + " \n", + " \"\"\"\n", + " gdf = gpd.read_file(f\"{vector_path}\")\n", + " \n", + " gdf_buffer = get_buffer(gdf, buffer, save=False, save_path='./')\n", + " \n", + " #if gdf.crs and gdf.crs != 'EPSG:3857':\n", + " # print('Reprojecting to EPSG:3857')\n", + " # #reproject\n", + " # gdf_reprojected = gdf.to_crs(\"EPSG:3857\")\n", + " #else:\n", + " # print('Set a valid projection to the vector layer')\n", + "\n", + " ##get buffer\n", + "\n", + " #gdf_buffer = gdf_reprojected.buffer(buffer)\n", + "\n", + " #reproject back to EPSG4326 as raster data should be provided in this projection\n", + "\n", + " #gdf_buffer_reprojected = gdf_buffer.to_crs('EPSG:4326')\n", + "\n", + " stadistics = []\n", + " for geom in gdf_buffer:\n", + " stats = zonal_stats(\n", + " geom,\n", + " raster_path,\n", + " stats = stat_,\n", + " all_touched = all_touched\n", + " )\n", + " stat_sum = stats[0]['sum']\n", + " stadistics.append(stat_sum)\n", + " #add stats in dataframe\n", + " gdf[column_name]=stadistics\n", + " return gdf\n", + "\n", + "def convert_rasterToH3(raster_path, resolution=6):\n", + " with rio.open(raster_path) as src:\n", + " gdf = raster.raster_to_geodataframe(src.read(1), src.transform, h3_resolution=resolution, nodata_value=src.profile['nodata'], compacted=False)\n", + "\n", + " gdf.plot('value')\n", + " gdf['h3index'] = gdf['h3index'].apply(hex)\n", + " return gdf\n", + " \n", + "def get_h3_vector_statistics(raster_path, vector_path, column='estimated', resolution=6):\n", + " \"\"\"\n", + " Funtion to convert raster to h3 for a given resolution. The same function will obtain the sum of \n", + " all the values for a given geometry.\n", + " \n", + " Inputs\n", + " ---------------\n", + " raster_path: Path to raster layer to convert to a given h3 resolution.\n", + " vector_path: Path to vector layer with geometris to obtain the h3 zonal stadistics.\n", + " column: name of the output column with the zonal stadistics.\n", + " resolution: H3 resolution\n", + " \n", + " Output\n", + " --------------\n", + " gdf: GeoDataFrame with zonal statidtics\n", + " \"\"\"\n", + " #with rio.open(raster_path) as src:\n", + " # gdf = raster.raster_to_geodataframe(src.read(1), src.transform, h3_resolution=resolution, nodata_value=src.profile['nodata'], compacted=False)\n", + "#\n", + " # gdf.plot('value')\n", + " # gdf['h3index'] = gdf['h3index'].apply(hex)\n", + " gdf = convert_rasterToH3(raster_path, resolution=resolution)\n", + "\n", + " gdf_vector = gpd.read_file(vector_path)\n", + " #clean_gdf = gdf_vector[['gfw_fid',column,'geometry']]\n", + " \n", + " _sum_calculated = []\n", + " for i, row in gdf_vector.iterrows():\n", + " filtered_gdf = gdf_vector[i:i+1]\n", + " #convert to h3\n", + " h3_gdf = filtered_gdf.h3.polyfill_resample(resolution)\n", + " #h3_gdf = h3_gdf.reset_index().rename(columns={'h3_polyfill':'h3index'})\n", + " h3index_list = [f'0x{h3index}' for h3index in h3_gdf.index]\n", + " #filter gdf by list and get value\n", + " _sum = gdf[gdf['h3index'].isin(h3index_list)]['value'].sum()\n", + " _sum_calculated.append(_sum)\n", + " \n", + " gdf_vector[column] = _sum_calculated\n", + " return gdf_vector\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "8f070971", + "metadata": {}, + "outputs": [], + "source": [ + "#read raster/tif file\n", + "mills = f\"{FILE_DIR}/satelligence data/AcehMills_indicators.gpkg\"\n", + "def_tif = f\"{FILE_DIR}/satelligence data/rasters_indicators/Deforestation_IDN_2021-01-01-2022-01-01.tif\"\n", + "carb_tif = f\"{FILE_DIR}/satelligence data/rasters_indicators/AboveGroundBiomass_GLO_2001-01-01-2002-01-01.tif\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "107ebfc8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
h3indexraster_areageometryh3_arearatio
0866422127ffffff85.198303POLYGON ((98.01018 8.01958, 98.01317 8.05624, ...43.4585760.510087
186642212fffffff85.198303POLYGON ((97.94605 8.02463, 97.94903 8.06129, ...43.4634170.510144
2866422147ffffff85.198303POLYGON ((97.81777 8.03470, 97.82074 8.07137, ...43.4726170.510252
386642214fffffff85.198303POLYGON ((97.75362 8.03972, 97.75658 8.07639, ...43.4769770.510303
486642216fffffff85.198303POLYGON ((97.78126 7.98220, 97.78422 8.01887, ...43.4710030.510233
\n", + "
" + ], + "text/plain": [ + " h3index raster_area \\\n", + "0 866422127ffffff 85.198303 \n", + "1 86642212fffffff 85.198303 \n", + "2 866422147ffffff 85.198303 \n", + "3 86642214fffffff 85.198303 \n", + "4 86642216fffffff 85.198303 \n", + "\n", + " geometry h3_area ratio \n", + "0 POLYGON ((98.01018 8.01958, 98.01317 8.05624, ... 43.458576 0.510087 \n", + "1 POLYGON ((97.94605 8.02463, 97.94903 8.06129, ... 43.463417 0.510144 \n", + "2 POLYGON ((97.81777 8.03470, 97.82074 8.07137, ... 43.472617 0.510252 \n", + "3 POLYGON ((97.75362 8.03972, 97.75658 8.07639, ... 43.476977 0.510303 \n", + "4 POLYGON ((97.78126 7.98220, 97.78422 8.01887, ... 43.471003 0.510233 " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD4CAYAAADFJPs2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9abhu2XqWh91j9u3XN6vfTe1ddXQQdriQDcaBY/iRgGMbA5cRdjAYSwjC5cSmBwdD4IqJibETC8sgEmRhI2xjQSDIgOgsAcEEIZBAR0d1qna3+vX13+z7mR9jrlUlkFwVLCkpnT3+VO3VfbMZ7xjv+zzP+wzRti1vx9vxdvzkHsr/ry/g7Xg73o4f//E20N+Ot+MrYLwN9Lfj7fgKGG8D/e14O74CxttAfzvejq+Aof1EfthkMmkfP378E/mRb8fb8RUzvvd7v3fVtu30R/reT2igP378mL/zd/7OT+RHvh1vx1fMEEK8+dG+9zZ1fzvejq+A8TbQ34634ytgvA30t+Pt+AoYbwP97Xg7vgLG20B/O96Or4DxNtDfjrfjK2B8YqALIb5FCLEQQvzAx742EkL8JSHEB91/hz++l/l2vB1vx/+U8Wl29G8Ffv4/9LXfBvyVtm2fA3+l+/fb8Xa8Hf9/Oj5RMNO27V8TQjz+h778C4F/rvv/Pwp8F/Bbf6wuqm1bhBD/yNfDbcQf+e1/nPHxkOnpBMsxEQJ0Q2c47zM6HGDYBiCwXBPD0lFV9Uf8jD/0G76VyckYy7No6hbdUBkdDhkfDbFcE0VRsD0Lp2dj2uaPek1/7dv/B5YXK+qqwbANpifj7jpMNE3B7Tu4AxfLMWma5ke8nu/5zu/jxfe9pqkb/JHH/GxCf9ZHN1Q0Q8cfeXgDB1VTEUL8I9fxZ//gd5KnBW3ToGoao6Mhs7Mxjm+jaiq2b+N11/Aj3ce3/s7/mv60h6ZrCAHewGV6OmF0NETTVHRTw+k5GKb+Iz7Lb/5N/wVHzw7ojT0UVcGwDMZHQybHIwzLQCiie1c//HNf/cA5f/WP/3VM2+Tw6YzJyRjTMTFMec+9sYdhGQD/yO/+mW/6C2i6iqKp6IbG6HDA/NEUb+ghANu30I0ffr1f+n9/wN/4U38L3dCZPZ5y8HiG41uYtoE7cOmN/R/1Gf0/vvHP4Q1dTNtAN3X6E5/Zown+yIe2lff5D/3OF//m+3zwvS/Ruus7eDJjMO2hqAqObz/c2/34gb/xJb73L/99NF1jfjZh/mTG7HTC/NGPKHb7/2r84yrj5m3b3nT/fwvMf7QfFEJ8A/ANAGdnZ5/4h4N1yK/+qb+Bs88fc/TOAYqqkoQJqqYynA+4fnHL9Ytb+ZIVhXgfs77ZoeoKo4MhiqqwOF+xvFhz+M6MR191gmboRNuIpmk5fDpn/mjKmy9d8eZLlyiKQpYVhOsQTVPxRx5tC3evl9y+XnD87IDj54cIRbC926MogtP3jpk/niIUwYvvf00e5ZRFSbxP0Awdp2dTlzXn71+xX+x5/FNOmZ5OqIqK5dUax7d58k88Ynw4pKkbLr98Q7SLyZKMIimwPAvLMYn3CS++/zVCETz7aU/ojXyCdUi0i5k/mnL2+VNc3+L9v/OCsihp6vbhPv2Bh1AFizcrrj684ejZnLP3jhGqwu5uj2ZoPPr8CbOzKR/83Zc0dYsQEO0Som2E03dw+w5plPHi+16jaSqf+5nPGR8OyZKcPMmZHo85fveID7/vNa+/eI6iqqRRyt2rJa1oOXg8RdN1VlcbwnXIo59ywtlXnaIZKkVaUmQFm5staZyjqgqWa1IWFRc/dMV+GfD4q8+Yno4p84rdYs9g1ufpP/mY4azH93/3D9JUNXVVs7rakMYZ05MRpm2xvdtx+2rBwZMZz3/aU+yeTZEVxPuEaJdQpDnNf9/geDYAN68W3LxacPJcvmtFCMJdjOWaPPopp8xPJ3zvX/p+mqalbRqWF2u2dztmZxP60z55mnP7aslw1uP5T3+H8eEAhOD6xR37xZ79OiQOEobTPqZjEGwiLt+/Znw45HM/4zm9iU9d1uyWe+J9ShpllFmJ23d49tOe8Gt+/6/4xwzTj8Xhp3GY6Xb072jb9qu7f+/ath187Pvbtm0/sU7/mq/5mvbTSGD/b7/92/jw+96QRimapmLer7KAoipAS7RLCFYhlmfQG/Uo84KrD27Yr0Ie/9THjA4GVGXFfhWhqILe2EfXVZqmoW1BUQR5UpCECZqp4fWch0m2WwacPD9kfDymKmtW11s0XWVyPEI3NOqqpmkaFEWhKiryJEM3DSzXIE8KXn/xgixMOfv8Cd7AJY0yVjd7nJ7N7HSMpqlUVUVTt6iaQpEWlEWF5Zhopka4DnnzxQt0Q+Pkc0folkmwjoj2CePDIf7QBaCu6odnloUJCIHtW9DA9Ytb7s7XHD2ZMX00papqNjc7NENjfDBAMzSauqZtQQhIw5Q0TLF7NrZrEW4iPvx7r1B1hedf8xzbtUiClCzJ8QYOhm3Q1jVCUeRimWSsrjYoimB0MIC25ebVgijIOX42Z3QwoK5b8jhD1VU0TaUsShRFwbB0yrzi4v0rglXA6eeO6U36pHHO+nqLP3QZHQxQhKBpGhDQNg3BOqLMCnpjH1VXWV6uufryDQfvHHL07AAhIItzAEzboC4r2qZBtwxoW+7eLLl7vWD6aML0dEpdNmzudhimzuigj6oqNI1cAGlhe7cjWEf0Zz5ezyHaxVy8f01vOuDk3SN0Q6UsKtqmRVEV0jAhTwvcnoNu6mxut7z+gQvGx2NO3ztC0zWyNKdtWgxLpy5rqrLCtHVUVWN1teL8S9f815d/iP6k92ni9Hvbtv2aH/F7/5iB/j7wz7VteyOEOAS+q23b9z7p73yaQL95ueD/9Cv+U1RNwe7ZCD6WyrcQBylZkuF0EzINM9586ZI8LXj0+RN6Y48sylnf7LBcg9HhsAvOhrquURWFqqzIsxLD1LFckzwpOP+hK9Io4+TdI/yhQxKk3L5ZYrkWh09mcjIWFXVZo+kqTd1QFjWGpaFbBlmccfn+DWVRcfx8juXIYLk7XzGY9Jg/mqBqKnlW0DYtmqFRlzVt26KbGqqmEm5ibl7eYdgG80cThBCsrjbE+4T54yn9iU9TNxRZgaqqqLpKkXXBYus0dcvd6wWbuz2zswmDaY88ybl5tcByTA6fzNBNnbqqqeoGTVUospIiL7E9C8PSCdYRr794gW7qnH3uCMPS2a9C8qRgMOvh9BzapqVpGxQhqMqaYBOhKAJ/6MkM5cMb9ouA088dyQW3qEjCFN00sF2Tpm0RCDRdpapqbl8viPcpB4+nOL5FsIlYvFnRm/ocnE1RNLmgglzosyinqmrcnv2QwV19eMf0dMzhkyktEG9jEEKm8l1GraqCFsH2ds/6Zstw3qc/8ciTguuXd1iOxeHTGYapU1cVTSs/Lw1SkijD6zuYjkmwCnj1xUvcns3jn3KCbhkUaUFTNRi2Tl01VFWNaRtomsrmbsf5l67wRy7Hzw5RdZV4n8hSbegihELTNGi6ilAV9suAmxd3uAOXX/ab/0V+wb/58z4xRru4/DEP9P8QWLdt+x8IIX4bMGrb9rd80t/5NIGehCl/4N/5VsK1TEHlaEmClKqscAYepm0SbiNef+kKVVU4e+8IwzGItzKN7488xocDFFVQFnL31VSFqqqpikq+AEMnTQuuX9xRlTVHT2dYjsl+HXJ3vsIfeRw9nqFqCnla0FQ1hqnT0tJUNZqho2oKWZyxuNrTNg2zswmKJljf7FhebpgeD5mfTlAUQRpntE2DaVvQNrRtK1+sEETbhNUiwHZNBvM+TVVz82pJHKacPJszmPSoy5o0ydFUBcPUqOsGRRGoukZbNyyudwSbiOnJCL/vEAUJFx/c4npWt3uoVEVFVZTohk7TNFRFhWEbaIZGuE+5+vAW3dQ5fDJFVeUETYKU2ckYf+DI3ykbFAXapiUNU1lv9l3qquH8y9fsVxFnnztkMOtRJAXBJsKyDfyR2y3aMpuq65rtzY4srxkfDtAtnd0i4OrFHcN5j5OnByiqIE9L2raRi3VZ09Q1hm2gKArLmx23b1aMDvrMTsc0VSPLK1VhNO+haTKDE0IBAdEmItin+AMXp2/LTeL9awxT4/FXnWDaOlVeUlYNuq5S5RVFXmB5Dnq34L364gWOb/HovWN0SyPZZ1Rlhdu3URVBXcuAVVSFcJdy/XKB5ZrMzsaoimBzt6epG0bzPqZt0DYNIFAUiPcp62WIaRkM5z3qqmZzu+dbvu/3fWKMdnH5jx/oQoj/Cgm8TYA74HcBfxr4E8AZ8Ab4pW3bbj7pQj5t6v7df/Jv853f9tcByOMCRIvlSIBst9xz82qJ41nMziaomsL6VqZUk6Mho3kfhCDPq4fdkrqlaeRkUVSFJExZXmwQqmB6NESoCuubLYvzNdOTEQePpihCkMQZTQuWZ6EKQdO0KKpAUQRZnLO53XXYQZ+2abl7s2J9u+PoyZTpyYimaYn3KWgqXs9+SD1l+QFJkLBfhViuRW/skacys8jTkidddlJkJUmQorsmjmfSNjK7URRBXbWsbzZkUc7ooI/lyhT//P1rvIHD2eeO0QyNPMqpWrAdHaEImrJBM+RkjPYxizdrNFNnejykBRZvViRhytHTucwimoaiqFFVBUURFFmBoiqYtkFVVFy8f0OwjTh995DeyCONctY3W7y+w/BoiKooDyWTAMJtTJkX+EMXTddY3Wy5+uCO8eGA42dzFEW+o1ZRsF1TLhBNi6pLIHO32LO82NCbeIzmA8qy5O71ClVTOHwyw7RNqral7RbDLMpJoxS7wz7CXczLf3COYeo8/aln2K5JlhaUVYPlGAigKip0U0fTVMKtfKambXL0dIqma7JsKCv68z6WbUiMQxEoQpBGKcvLDYapPcyNxcWGIi85fDLFHbg0TUtTy/KvzArCbYyqq/gDhzKvuPzghiIrOfvcEb/o1/0v+MIv+RmfGDf/k3f0H6vxaQP9v/vW7+a7/tT3IFSBaeq0bctmEbC92+MPXYbTHlVVc/NmSRpmHD6ZMJr2qauaLC5Akai7TPdlvSSEIIkydssA3dTkLlk33L5esr7dcfLOjMnRiKZuiHYJ0OIPXVRdfj5CcpFpkhPtEnRTwx96lEXF1YtbtsuQs+cHjLtUdb+O0HSV/shD1TWatoFWosdJnMt62LWwfYs4SHn1g5fUVcPTrz7G7zkkUUYcpDieiddzaBW5OAgBTdMQrGOKvKA/7qGbGpubHW8+uGE49Tl9doCqqUT7hKZq8Po2qqnT3k9GRZBGGdtFgG7qDCY+VVlz9fKOOEx5/O4h/bFHWVZkUYFmahi2QV3WKJqCrmuURcX1qwVxkHD4eIbTs4l2CYuLNYOxx/R4iKoqVHV336pCnhRUZYnTc1AUhdX1hosP75gcDDh4JDOfYBNBi3xupiYXNkUgBATbhO1ijz9w8YYuRVJw8cEtiiZ49PwQ2zMp84qqatBNjaqsKbLiAckPdzEvv3iJqik8+arjB8CzyKoOd9DlYq4IVFUlDlNu36zQNJXZ6QgQrG93ZEnO/HSE7zs08LB4F1lFuItRFEFv5FEVFZcv7kijjNPnBw/PuSpqNEOlBbKkQFUVbM8kz0pe/+AlSZTz5KuOGEx66LrKv/Uf/XLGB4NPjJvPXKD/kd/9J3nz5VuqsmJ7uyPaJwxmfbyeQ5rkXL5cUlc1j947xBu4lEVJtE8xDA3HtxBC7gCKotAid854n2B1QVOkJa/fvyRNax5/7oj+RO6cu2WIYeoMJh6qpnQoKyCgSAuSKMOydWzPIk9yXn7xgjytePLVZ/hDlyzJ2S4CLMdgNO+jKgp1I9P0++AqshLbNTEsg3gf8/IHLlA1lcefP8XyLKJdTLhP6A89/KEDQF03CCFom5Y4SKnrGq9no6oKy8sNl68WkoY5HaMogt06om1aBhMP3dBoWx6uIYtzgm2Eael4fYc8LXjzQ1cUFTx674j+2KXISuIgxbR0HM/q0l+BqqkPzEEa50yPRli2znYVcne1YzDzOXo0RVEU8ryABnRDoSwkFmGYOkKB1dWGm1dLRgeytGloWd/tUYRgfDjAMDTqugYklZgECdE+xnYtvJ5DHCZ8+A8uMR2LJ58/wvYsirykyEpMy0ARUBal3JF1lWiXcP7+FZqmcfxuhzusQ/KkZDD1cDyLtm27Z6SQpznb2wBFRW4IwOJiQxLlHD2dMhh5NI3EaFRVoW1bkiiVAetI5uD1l+T8evTeIcNpj7KoSOMMw9TRTZW6kECmbmqUWcnrL10SBxlPvvq0m0sFcZDiDRx+w//ll3P0ZPaJcfOZC/Q//8f/Jv/PP/JdFEXFcNLDtDT2m4jXX7rBcnROnx/geBZJmBIHGY5v4fedDo3t7kdVScOUPCuxXQPLsYiDhFc/eElTtzz63BGub5F0O5vjW4znfRRNpalqmrZFEYKyrCmLCtM2MUyNJEx580PX1HXD2fMDbM8i2iWs7/b0hi7jw4HcycqKpmlRVYWyaqhKiaqrukq4jrh8cYdh6hw9nqDqKvtVRLhLGB/06Y8lN1tVFfeTvcglGGU5JgiZCt6er5keDZgeDanrhvXtDiEEk8MBpm3Q1A1N3SBUhapqSKMM3dRxPJMsznn5g5cUWcWTrzrCG7hkcUawjXF9G3/g0K2YCEWhbmC/CimLkv7ER9dUVrc7bl4tGR/0OXo6RQhBGhfQtliOAd3ipBoaQgh2i4Dl1Zre2Gc061HkJXfnEqk/ejzBdE0JmlYVqqZRljVZnGE6JpalE+1TXv7AJUIVPP38sZwDUUaeFlLvYOoScNVUFE0jjVNu36wRtMxOx6iKyvpuR7JPmZ2N6A1d2hbqqkEogrppiXcpQgWv51BXFZcf3hFsYx69e8hwJrGSLC3QdA1dVymrGkVV0E2dsig5f/+GcJvw6N1D+mOXLC2IdgmWY+IPJZCJEKiGRpVX3LxZEm5jjp7McH05R7eLkN7IZTD1GU57fP3v/MUMJv4nxs1nLtB/27/6TQ9U2up2x/XrFYOxz+HZGFVXCDYxaVzQHzl4fbnrNfcpooA0zmkByzUlmr2NuXy5RNNVjp9MMUyN/SZmuwwZTjxG8x5CCKqiC05dlcBPVWM4JqqmEIcZ169WKKrg4GyMrqtslyGbRcBo3md6OEAIKLIOG9AV6rqhrRt020RRBOEu4fZig+kYzI4GgGB5vSUOUuanI4Ydqp7nJYoQDwAaAgzLoG1hebNjc7dnfNBnMPYp8pLb8zWqqnD0ZIJpGVRVLdNsVYGmkQyDbWJYGkmU8+b9G8qy4vF7R9iuSbRP2K8j+mOPwcgD0Uqw7yGLSGhagdt3UBTB4nLD5aslB6cjDs4m0EK0jwEhy4Rul1MUQCiE24TdJsTrOfhDV7IcH96hqIJHzw+wXZOqqCjLWlKgdUPZAYW6oRGHGa/fv0EogkfP55iWQbhPSOOc/sjFcSX92iJQunewXUdAy3DWl1TaxZpgm3D0eMJw5tPULWVRoSoC0VGtiqZiOrJEOf9wQbCJOH0+ZzSRi1LUZTmub8n5Jlo0XaLs129WhLuYw0cTvJ5NEmVs7gL8ocNo1kMgJFOBxGm2q4g0KRhNfQzbYL+OuLvcMJz4zE9HqKqgKhsGE59f//v/VXTjkyUvn7lA/3Pf9jf59m/+q6xv98yOB4znA5qmYXWzoyobJicjvJ5N28oJAQK1Q9hpwbB0hJA70PJqi+1ZTA4lSLe62hLsYqbHQyYHQxoBeVoCYBgabfMRIq4ognifsrrZoZs647nkMu8uN+xWIQdnY6YHAxogzUoEYNmSo5XgkYJABvhmscfxLAZjT9bDr5YkUcbZ8wP6Y4+6qkmzClVTME1d7sRCoGkKddOyud0RbGPG8z5uzyaNMt58cItuaDx+7xDLtSiKirKoJOgooCobdENF1VSyOOPq1ZK2bTk4HWNaOttFwHYVShBz1qMVgrqS96+qgjwpadsW2+0WmasNdxeSTZgeDqjrhs0iQDENJjMfTVOpmwY6OjQNM6IgxfEsHF9mYC++eIVQ4NlXn+L6NlkuqU7LNtBU8bAjq6pKGslrFsDhozGqrrFbBUT7lOnJiN7Ao20b6qZBIGibhnCXoAiB07Nom5arlws2i4BH7x4wmvepq4Ykq9B1BdPSuxQadF2jqmquXy7ZbyKOnkzpDV3yJGe7DLGHLqOJ/wAMCkXQ1A2buz1xkDI5HGDZBvtNzG1HqR48Hstyp5LzUiBIopQyL3F8G11X2SwCLj68Yzzvc/REAn1FKbl4XdewXYPf+o3/+k++QK/Kml/2M38385Mhvb5DmhRcv1mhqionj8dy9a9a8qxE1RV0Q6WuW0SLBDga2G8jdqsIv+/QG0khzM2bNXGUcfbOjMHIpSor0rhC0RRsz4BW0CLrWEUIoiBjv4mwXZlylXnN1esl4S7h0bMZww5YiYIUVVPwB+6D+EQokvOPgrSb6CZezyZNCl5/+YaqqHny3iG9gUOWFsRht1P0bFruAUSVpq7ZriKypGAw8bAcg3CT8OrLNziuyeN3DzBNjSQpKMsK27UeKCVFVVA7AGx5u6NtYXrYRwiF5c2WzTLg8GTEeNanbVvyokRRVDRDpakaoEU3ddqmZXmzY70IGM97jCYyi7i73KLrGvOToUTfq/oByMqzUpZMtoHp6ET7jBdfukZVBU/fO8RyDOIwo8gr3J6N2WkAFEWgqIIsKVnf7WlpmcxlprS43hJsEw7PRgzHPg1QlRWKEAhFUqBCCCzHkFTfywX7dcTp0ymjSY+yLAl3Kaap4Q6k4KhtWzRNljWL6x1xkDI9GuB6JlGQsbja4A0cDo6GMtWuaiQlL4iDlDwr8HoOhqWzWQZcvFgwGHucPp2iqQp5twlphszM6qrFsDTJFN2FXL5cMBi7HD+eoCoqcZTStuD2LACapuWf+sLn+CVf94VPFV+fqUAH+G/+8Hfx1/783+fy9QrXtzh5MsU0tW4CFRiGjmlq3cQCoSi0dcNuHZHGOb2hi+PbxEnOq/dvaIGn7x3i+RZZWpCEslb1epZMpdoGRUjFXRxmJFGO45k4rkmaFLx6saAsap68O8fv2eR5xW4TY9k6/YFMZ9umpUXSR0mUkSUFrm9h2QZRkPLywwUATz53iOuaxGFKFOZ4voXfs6BFCkmEnIDhNqEsKvyBg2ForBcB56/X9EYup08maJpKHGaURYXnWTJYmhaQLEORluzWEYqi0B+5tG3LzbUM2JMnU6bzHnXdkkYpiqpiO7oEHmlRNZW2kUzHbh0xmvr4Q5c0Kzl/cYdlm5w+mWJZOkVRUnV0XVt1KbepoRsaUZDy5st3KJbG2dOZLJm2Ui02GLo4vqQLaVqEolAWFftOfNMbuDTdNW+WIWdPpoznPnXVkqUSqTYMlbqSSjnD0KiqhuvXS/abmKOnM7kjpwXrRYDjmYymPopQaNsGgQyk/ToiiTKGEx/DMdjvUi5fL+kPPU4ej9E1qXZrGqliLLOSqqqxbANVkzvym1crhhOP48cTNE0hiXKapsFxTRQEddOgaSpCEexXEddvVjhDj8PjIUKB/SamaRqGYw9d1x5Ul0JIVP53ffO/getZnxg3n6lAX1zv+Lpf8B8xnvkcno5RVFkf11WN41oYlkojVRcoQgoUgl1CXZb4fQ/dUNmtQ15/uMSxdc7emT3sIFGQ4foWft9G3MspVYW2hSzKKIsaxzMwTJ0oSHn1QzeyjnznANsziYOU/TbG69kMJ76s6+/TMl0hSwqqosR2LHRDJdwlvP7yLYalcdqp64JtQhQkDEce/uheytqApkDTkiUFdV3jejaKgNXdnsvXa0YTj8PTEYoi2K4j6qphOPE7Dlem20JXKfOKKEjRdAXPt6nKmsuXC7abmMfvzBhOfcqiJtwl6IaGP3C6xQWEptA2LftNRBRkDMcutmsSbBPOP7zDcnSevHuIYenkaSnFR44Bikz5dUOm3HGQcvV6haZrHJwOpVBkGZJEObPDAX7foWlbqqpGNWRNHocZilBwPJOmbrh4tWC7inj0dMZ41qPssifD1HA9k6aVfKemKdRVK3f8XcL8aIDjmcRBxt3VFr/vcHAyRNVU6qp+uM8kysizEq9no2sqm2XAmxcLBkOPR89mstxJc5paAotN29K0LYauoSiCzSLk8vUSf+BwdDKSQbxNaJuG/sjFMHTqtkFRVRQFwn3K6maPZRuMph5N07K82VPXDQcnQ2zHoG5aWfZoKnlasN9E6LrGL/36L/CFX/BPfGJ8faYCHeAP/gffwesXC4JdQttAb+hgGRp1IykQoUjxShzlCFocz0JRBOtFwNX5mv7Q4fBkjKoKtptYpr5jl17PoW0l0ASgCEFeVDR1IxFxTWG3ibh6s8ayDY5OR6iq/FqwTxlPfQYjF9Gh8W0jU78iq2gA09Lkz29jrs/XuJ7F/GiIELBZhsRRzvSgT38gr6MsK0lbKQpFWdPSYnUdTYvbHYubHeNpj8lMcv6ru4CmaZkf9h8mRlXWaKpCUzWkeYWmCyxbUjznL5dEYcrpkxn9oU2elmzWEY5jMhi7D0KW+xGFGXle4fsWhqmx2ya8/uAOr2fz6J0puq6SJDllUeN6skxoG4nqq4pCHGesFgGaqjCe9YCW26sdcZhzdDaUtFTdUOQ1qiYQQqEoShRVwTJ1qqrm4tWS/S7h5PGEwcilyCs2qxDHtRgMHamNaABVSH3FMiBNS0ZjD9PS2e8Srt6s6Q0cTh7LzKfIy67mVSjyiroFw9LQVJXNKuTNiwXDkcfh6VDScfuUpgW/Z8ln27QomsRsgm3M3fUexzeZzHoyYO/2NLV8L5bz0cKrKApZXhFsYgxLw+/bFEXN9Zs1ZVFx9nSK69sSfCwrWXZVDUlWoGkqtmPgehb/7n/4tZ8qvj5Tgf7lH7zi3//t346uq0ym/oOuvK6lKq1tGoq0mxzdbra42bG62zOd9xlNPbnC3+wpaZkfDvB7shW1KGRgaapCWdayxbWToe43EYubHZ5vM575tC0srrbEcc7B4wmDoUvbtGSZrAV1Q+tqWTopK+zXEcu7AN+3GU5c6qrl9mpLnhUS3Bk41HVDkVcoikDvdhkU0HWdtmlY3+3ZLENGsx6DgUuWFdxcbBBCcPJsjuMYlKVEqFVVQQHKopJ0j6FRZAXnL5ekSc7pkyleV28uFyG9icdk1utUdR+bjGlOVVQ4rommq2yWEW9eLOj3bY4fjVENjSDIqKqa/tDBMiRY2HYKvTzN2a1jdF2lP3Coqpqr8zVRkHH6ZCIFTk1DlpRoHdhYVdXDc6xL+fPhNubwbEyvZxPHOcvbHd7IZzLzUVXJYnT9JcT7lCIv8fuOZEBWIW9eLukPHM6ez9F0lTQpaJoW25ZlSdM0GLpMoberiOvzNV7PZn44kBvFKqRRFCYTD8PSHqhaKbbK2a0jDFNjMHQpioqbiw1lUXH6fI7n2dSN1LiriqCtGpIkR9M0LEenyEpef3BHkhQ8e++A3tinrCqytMQwdDRNUOY1iiowDI0ilz8fhxnf+G2/lnc+d/iJ8fWZCvQiL/n9v/tPk8Y5ZdlQV7KJpG3bh1pQ11XKsubuekccZkwPevg9mywtuXi9RFEUTh9PcD1LqrvSElVTMS2VpgYhWlRVKpN2m5D9NqU3cPD7DmVecnm+psgrzp5M6PUdyqomS4pucdG5L8ZVVaFtINgn7HcJfs/G79vkWcnFqxVlWfPo6ZRez6aoKpIoxzA1LMuQu4QARZMTeLuOiYKU4djD7fjh1y+X6IbKk2dzLFunyCuKvMIwJKBT17L2UzWFPKu4vdpSlhXzowGmqbPbxixv9wwnHvODTvufy2YNvQOh6qbGtEwUBbbriOuLLX5fTn6AzSqkKmsmsx6Oa9K0TdfSKqjqmiTM0XQVxzUpSplFxGHG4w70zPOKOMwwLB33HvRsm66Dr2F5F5DEOdN5D9sxCHYpN1db+gP7IaMqioq2lWl6nldUZY3tyBp5vQy5eL2iP3Q4ORujqgphkMqGkb6NpspST3bZIRe9uwDbMRhNPOq6YXGfQh8PcD3rh20sZVERR7kUY7kmeV7y5sWSPC958mxOr29TVo3EjnQNRZNYg6oqGKYu1W4vFqRJzuNnc3o9mywriKMc2za6UkViM5omefmrDjg+Ph3zNT/rGb/yf/MT1NTyYzU+ber+N7/rh/j2b/ubUv5KR1Vpsh2yyCvWdwF5XTOdS3OGYJ9y8WaFYxs8ejLFtHSypCDNSmxbx7IkUCUARVEe6vo0yemNJJodRxkvP7hFKIJ3nh3gdsBdHEo1nOt+BIbcty0G+4Q0LvD6No5jEEYZr14sQMA7zw9wXZP0QVFn4rrSFINu4rVNw24Tk6Ulg4lMPXfbmFcv7nA9i8dPZx+h6nmJ45hSNdY0qIoiAay8ZL0MaZqW0dRHaIL1MuL2Zsv8oM/hkewezpICWjBtKemVZYc0mthvY+5WMhMZTXzqqubmektdtxwfD/E8i6qqKasarZPi5lkpW4gtnTwvef1qSZIWPHoypde3SZOS3TbCdU0GA/cBZBRC0NQt+21MlhYMJj66qbFbx1ycrxgMXU4fjdFUhSwraZpWzoNOG64b0odgu4m4ut7idzuyADariKZtmUw8SVE2nbZCEWRJwX6boDs6vb5Dcb+gF5W85p5NVTYURSWzvO4eVU3FsnSytODFywVZWvDs3UP8nkWaFqRJgW0Z2I7+sACqmlQDXr1ZEWU5p4+mOI5BEudsNgn9nsVg6H6EjSiCpqpZL0LCNGc2H2BaOsEuYbUM+K++4zeg6z+ygcrHx2cu0P/IH/rv+fD9mwfZphCCPCvYbWMUIeRDUgTL24Cbqy2jicvRiZwcUfRRnWk6Bi08vOymrgkDCex5HY+520S8ernEdQzOnkwxTZ0ozIjjDN+38XxLKrzuc8a2JYpyqrLC8yXott8kvHqxwHYMTs9GWJZBEKSkSUFv4OB5JghB3dFvNC1RmFHXDZ5nSbplGXD+Zs1w4HB0OkLXVfb7hLps8Ac2lm0+SFmFEFRlRbBPQECv5yCA66sNy9uAw+Mh88MBbdMQhRmKquD2JAD58Wca7BK2mwjfs+kNbLKs5PzVAhA8ejLD65mURU2elei2gaqIrpZU0DWNLCu5fLMiSwtOHk1wXYNwn7FZR/QGDpOpj1AUqk5CK4A46pgC30JTVZaLPedvVkwmPsdnY1nrRyltK2QbqkKnMFRRhFxcb292+K7FaOpTVRWLm4CmbTg6Hsk22LqhaqUqscor4jhH11UcxyTLCl59eEtRNLzzfE6v51AUJVlWSoGOrlFXFUIRGIZOluacv1yS5xWnj8e4rkUS5QRBSq9nSQUhcn4oQlBXNcvFniwpmc57GIbGfhuzWkYMRy6zgz6K0oG4qgptSxiklHmF35fA4HoVcn25YTjy+Npf8c/yL/7iHzF2/5HxmQv0//Jb/ho/+MUrAIq8IowyyX+6FnVdc325Y7UMOD4ZMZ5IR5jdNqZtW4ZDF9OS9W7d3HPaLUlSSIshV9pPrZbyYQ6GLgedbHWzicjSktHYxfdtWlqqokEoMhNI00IKSBzZJrlZR1xfbfF9k/nBEFVT2KxCsqxkPPHo+TZN01LVDYoAFEGWlrSAYxsgYHG75+52z2jsMZv3AMFmHVHXDeOJh2NL0O2h/7tqSdO801Ub1FXL1eWGzTri5GzEeOJTlRW7bYKua/QHnVINugUP4qggjjJsR+/KhJwXLxYI4J3nc9wuRc3SEtPSMXSVBrpmD5ma3t7sKcua2byPaWpsNhGrZci4uw9FUShLmXKrmszEmqaVgKWisFyGXF1sGE885gd9iZPsEgD6Awddk6WVELJGjuL8gdIc9F2yvOTifEXbtJw9nuD5FlVZUxay1EPIuSOzDo00KXh5T5O+M8H3HZIkJ4lzHNfEsXVaxMO7Lsuau5s9WVowP+w/qPFWq4jx2GM08VBAinWE1GAEe7mI9fvS9mu9Crm+2jKZ+hweD6WoK69oAV1VyIuasq6xbQNVVVgtQ87frBmNXE7PRiiKguOa/M7/4y/5VPH1mQv0b/2Wv8b3/93XFEWFZemY97XOqwVpXHD2eIo/dMiLisUiQNdVZrPeg9a5qrrUtm3J8wpFFbIurhvubndslhGTmc9o5FLWLXfrkKpqODzo47kmTdNKsE4RqELuYoqQ4hyA9TJgtQjpDx3GI4+qhbtlQFnWHB728X2LppHgn9Kh6vcIu2lqNLVEatfLkHF3HUXZcLcKaVs4OhpgdyKSspJmGbQtRVahagLTMqQjy5sVYZByejahN3JI84rlMsC2DaZTv6OeGlpAQZClxYOQxbJ0wiDlxQe3aJrK4/cOsB2DOMpJ0wLPM3Fsk7a975eW9ep2FVE3DaORJ7Oqu4DF3Z756UgGLJBlJSAwO+qsqVsMU5YJ60XI7fWOwchlOutRNy2LTYgiBPNZD8PUaOuWuhPfFFlJHMlmENc1SZOcVx8uqKqadz5/hOdJRWCWlRiGiqFr1GWDogp0Xe1wmxVFXnL6aILtmQRxTrBP6PcdBn0HaB/ETnUly6miKBmNPDRVYbWOuFtHTKYeB/MBqiIoCunuo3Y983Vd43S+eMu7gPPzNdOJz8mTMUJRSNOctpULfNtI5kfXVRQh2KxCLs839AcO89MRiioIg0xuXAOHX/X1X+Bznzv6xLj5zAX67/z3/iRZXkqNeZRxebGhaVpOT0aYpk4QpizuAjzP5PBw8ADOlWWNpstaviobVE2iukVRs1jsicKM6ayH78n66vJCNlScnY1xXJOqqsmzClVT5S7WNCA6dJyWzSpiv0sYDB16fZssKbm83NA0DY+fTHFdi6qUk07TVAxDe+j80jSVum1YLELCfcp46uG7FmlWcHG+QVUVHj0e49gmZVmRFzW6pqB2oJmi3t9LxdXFhjQpOD4d4dgmcZRxe7vD9y0ODwcoqpRd3ltVlZ1FkeUaaKrENN68XmKaOsenI0xDY7eLSZKC0cjDc02JjXROMHXdEEQZAiFLmbbl9mbP7d2e46MBBwd9mhaiKEcR4HqmlKR2LcII2G4TNuuIfs9mMHTI84rrq40ETk9HWLZUtJVl9SBHzfISw9KwTJ04Lvjwyze0CJ4+neJ5FklSkCQFrmvg2OaD4EhVFYqy4u5mT15UHBz0MXSV3S5ltQ6ZTnwmEx8EVFXTOdAI4iSXnYGeJRWEdwFXVxvm8x5HR0NZ66clCB4wgLppMAwNoSisup8fT3zmsx4ICPYZCOj3bTRNgrdCkW27+13K3d0ezzEZT2RH3HoV0bYt01kP2zIwTI2v+/ovcHo6/sS4+UwFetu2/Bff9v/ib3/PKxaLAMNQmUwkJbRahazXMnU6mPdRFUGWlVR1g2nKlLCupFZaU+TLXm5CiqJmMvExTY3dPuXNmxWOY/Dk8RTT0MjzkjQrsUwd05CKO7Xr267rhvUqJC1rRiMXyzKIopQXL2WgPH08xXZkxpGmJZalY3XgkRB09VjDZv2xv2HqBGHGq9dLXNfk0dkEy9TI8pKiqLFMHf0eVVcFiioto+7WoUyXZz1MQ2Ozjbm53TMcuBwfDVBV+TzaFoyOqWiqjww3gijj+nqHaarM530UIVitI5K0YD7r0fdtKWQpaxRFKgWzVIJ4dhf8l1dbVuuI46MBk4lPVTXs9wmaqsoyQYhud5Ri0XCfEKY5nmfjuiZJnPP6jTSJePp4im1LurAoawxdhVbKoHVDRdc14jTnzZs1TdtydjrGsjTCMCeKcwY9C9+3O+xEBlBV1uy2CRUt/b50wV0uApbLkPm8x3zeR7RQlJ08VZOAZtN2fQrA7d2em5sds5nPwcEAWgjDFKEIep710DKs3i9iQcJiEdDzHcZj6bazXIUIIZhNe1im1hlvtChCIYlzdl052uvZlGXF1fWOqmo4Ox3JrLJuqOqWnm/xG3/9z8f7yaaMS9OCb/h134pl6/R8WzYaXO/Y7RPOTseMR1IaGUU5tOD4JpraCTc6nXpR1Oz3iXwxviVth5YBl1dbJhOP40NZT0dhRlZU+H0L2zQ68YgM8KZuCIKUqm7o+bb0/tpEnF+s8T2L09MRhqERRRlZXuH6MtUVbSu9xhQJzARhRl019HpSYLLeRLx5s2Y4dDk5HqJrKnGSUxQ1bs/ENCS+IG2dZbvrdhvTNDAc2CiKwmIZcH2z5WA+4PBQ1rdJWlDT4tnmw0RU1E63H+WsViGmqTMaOTRNy83NnjQrOD4aMOy7VE1DXlYoqoLW1aiKIjqZacvNzY7tNubwsM9g4JLnJXd3e2zbZPaxhpb7IE/TgqxjPWzLIAxTPnyxwDQ0njyZ4tgGaVaS5yW2I7vUmlqWXEq3YN3c7GmahoN5D13X2G5jdvuU6cRjOOpaTO+totqGJJa8udvhMLd3ATc3O44OZdZBC3GSI1SBbRvQSNmxriuAYLUMubvbMx77MmDrhvUmRlUE46mHoWsP9mZCQBzl7HYJtm3Q69nkRcnV5ZYWODsd4zgGddtSV03XjVaTJAWaruI6BllW8vr1iiwvefZUUnVVVZOVFbqmoQqJF/y23/TPMxp5nxhfn6lAB/jm//y7+b6/f87L10uquuGdx1N6vk1eVOz2CYauMuzbqKpK3Xb6biHIi5oklaoit1MoXd3sWGxCjmcDJvfA3S6hbhrGAxfb0qnpghOoWilDFUJOBiFgsQq5utkyGbrMZxI13W5jyqphPHRxbIOGtnMMleBfnBS0gOsYCASLVcjl9Ybp2ONwPkAIwWYf01QNw+465N/osoC6JoykLNT3uk6s2y2LZcjx4YD5VNa3YZAihKDfs1G0rj1UIljEiUSHTVN7eH7nF2uyrOTp4wmDnkNRVqRJia6rD3r5e063rhtu7/aEUcZ81sNx5I58dbPFdUyOD4eYukZZ1dRtI1WCpUy/LVNH11WCIOHl6zW6rvDkTPYsBFEmxS6ejWsb1G3TuchIzny1DoGW8chHCLhbBKy3EcfzAdOJFDPlZY2igqaqFHn1oCps24ab2z23i4CjeV++8wb2QYqmKvR9+0HqK80iYbtL2Gxj+r5Nvy876q5vtuiqysnREMvSqJr2oWmnKCriJMc0dRzbIEkLXr5a0LQtz5/MJR1ZVGRFhWnJrrOiAwlNQyVNSz58eUdeVDx7MqPnS8YjTQssy8D62Hv43LuH/Opf+XM+VXx9pgL9zcWaX/2//aOYpsrp4wmWqRNFGbswxXNNRn0XVRFUTfOQYheFNIcwDA3T1CnykvOLDVGUcfJozKB7eXfLAE1TOejSqbq+R8RlmpnnJaqQwF3dNNze7lmtQmbTHuOZT1XXLFaSsz6Y9XAtU6qh6hpFyCaEPCtRhIJpydX/9nbHchUyn/YZTz2qpmW5DqGF+UNa11LVNaoicYE0LdE1BcvSqcqai8sN233M6aMJw75DWdasthGGrjEeeuj3bjhdapilOXFSYFk6riMbcz54cUulCp49nuJ7FllWEiU5tmXg2sYDbacIQVU3rNeya2489mRwhinntzt6vs2jY3mwQ55X1G2Dqas03bM0dKl3D4OUi8sNhqFxdDpCUwWbXUKWl0yGLp5ry9KiqTtMpSYMM0Dg+ya0cHW9ZRUmnBwOmU16NE1DkhaoioJlaTRVC6JF16SK7fZux2oVMZ31GI9dii6FNgyN6dh/eE4gm4+iKCcMU1zXxHMs4jTn5eUKXVd5ejbFtqUstywb+bt1S5FX6IaKaegkSc77X74BU+WdR1M81yTLK7KswLZ0mQF0vnWaJoHB84sNWV5y9ljiK0laEnRzu9+zEa1U+GqKQlVVbNYJ3/JN/8ZDKfQ/Nj5TgQ7we/+TP8fdImCziwnjnMnYY9iTzRdFUcl0S9MeEHbD1GXXUFpwdb2lKCtOj0bYlk4YZVzd7nBtg+OjIaahUT6APioKgrJuUB+80EpuFnuiKOdg1sd3TZKs4PJqKx1nT0Y4tkFVyVRXV1WZlnUvVO+6qG4XO4IgYzbt0b8H/2636JrG6bG8tnsAUdWUhwYZoSlYXU/yxdWaKMo5PRrh+fJv3C4CbEvncNaXHVtlTd31jxdlTV7U2JaGoevEccaL1wvaFp4+lulyFGWEcY7vWfR9eYDBgyECsA8SyrKm1+kM1puI86stw77D2ckITVWIU5kiO7Yu7bPrBlVXUYUgijJulwGmLoML0bJYhiRpztHBsKMcm4fn1SJ7+RUhcCydum44v9qy3kU8Oh5JVqNqCMMUXdfwPYt7O1ml67JbbyJ2+4TR0MX3LDkPbrbYlsHx4QDL0Kmamrpu0VRBVtSkWYFt6lLzEKa8eL1EVQTPn85xbKPDSypsS39wCdI0BU1TSdKc1+drmqbh7HiCY+uEcU4cp/R8G8+zHowwRaeUu1sG5HnJfNrHNFT2QcZ6GzHsu0zH3sc86yUnv9+npFnBN/zrX+AL/8zzTxVfn6lA/9vf95rf+wf+AkVZcXI4oO/Z1G1L1rmuSDRc0iG6qiBUQZwW3C1DdE1hMvJQFcGqU3uNBi7H8740MsgLqqrBMmTzSVN/1LddlBXLdURRVkzHvkSig4zzqzWeY/LodIypd4BZWWEZerdDfOSnVlYNy7Wc1LNJD9vS2YcZ51cbHFvn8ckYy9TJ84qilBmIpshFQtMUVFWlKCquFwF5UXI062OaOvsw5fpuz6BnczQfoGuSg22a5mGXqqoaw9DRdYUwzjnvDlOQ6bXKdp8ShCmTocegLwO8rqVasBXS9LJuwXEMNFVhsQx5c71mOvI5OZTquiDKaJuWvm+jd2UCSIeWJCvY7BJ0XWXUl5r+i5staVpwdjxi2Heo6oa8qNBUBV1VKIoaoSI7veqG8yuZuZwdySwsLypWmwjbMpgMXRRVebBHpm3ZRxlRktPzZQkQRCmvLzZYpsbTsymWqVGUtXw29841ZdO10aqEUcbLNysUVeHJyRjL0onjXOI2roFtGtJpp3O/zYuKm0VAWVVyodU0tkHCLkiYjDxG925HXQnXNC37MKUoawZ9W1J1m4ibRcBs7HE476MKhaI7iENTBGlWUtYNtm2gq/Jd/uHf97/+VPH1mQr0pmn5Lb/3TwESGY3SAkNXcSyjc2MVD6l2kuTsghTL1Oj7NlXdcHO3Y71NZB07kd1FUZbTtBKo0jWVppWOJPf11m6fAjDoS0vm5Sbi4nrLdORxdNDvALOCvK7xHPMBHaZTQ5VVzW6fUlU1w4GDrnag23W3E3ZnmMVpQVlXuN113NfT95NovY2p65bx0OkmRcz13Y7xyOX0UAookqKQrZOm3jnCtujdRIySgrvFHl1XmY58yXOvQ3ZBytGsx2jk0bRSI4CgYyZq6fFmGkDL3SrkdhEwHXlMJ7Kdcr2JpHHFVC6ATdvQdlhCntdEcYaha3iuSV6UvLpYkyQ57zyeMejZlGVNkOVYhoZjSgGQ0tFgEgcICKKMg1kPzzGJ05ybRYDvmhzM+w94Qdv1aadZQZ5XOLaBaejsgoQXr5c4jsHT0wmmqRHnsm/csYyP/NY1mX3FccHF9RahCI7mA0xdZRckREnBeOzguzZ0bamKkOcBbHcJdd0wGjgIRbBYRSzXAccHQ6ZTif2UlRRGPYiruoYaIRTulnsur7cczPoczfvduywRLQ/eCk0tqTpFCNZbmUn1ezb/ztf9PH7Oz/jkXf0zFegAf+vvveI//S+/G88xOkBMPHC6LRCnOWlW4lgGjq2T5t3kygqenoy7OrZhs0/QVYXhQDY3tNybO8g20ziRCjPPkRzs1e2O203A8XTAfCxRzl2QUtcw7tsfHeDQWQnVVUOYZAgh8F2LlpbbxZ6r5Z6DUY+jWaf4ChPqumXo2xid7v5eilpWNUGUoQghQTfgZrGTHPXBgIOpRIujOKMBfNdC63ZxoUghTJIVrHcJpq4y6Duyn/t2RxClPD4eMx5IBDnJuu4xQ6P6WCMFbctiFbDeJYyHLsO+Q56XXC/26IrK0cEA2+zS36aV6XrVkBUSxHNMnbQoef/FHWVd8+xsSt+zSbOCfZTh2ia+ZwJyfZSsRstyG5GmBZORh2loBGHC+fWOQc/m7FCWCUVn1Klrnclm1WCZmmRBgphX5ysc2+TR0RBD09hHKVXV0O/ZHVXaPLjQpFnBYh0hBExHnhS3bEKCKONo2mfYl+3DVSMX4BaJ0rdN2/UpwNXdnrtlwMnBgMOpdOfJ8goUsLrMpGlaDEN2Rd4s91wt9hyMfGaTnvS1jzpu3bfls2jlMxVCsA0SbhZ7XNtgPvE5GPf5Hf/Wz//JWaP/jj/wHSSJlJvK43vkBElTmXq7to6uaTL1Ol+BqfD4eIRrmURpznob49oG06FUNtV1001Q0XUalZgdoFKUFedXW7ZZyqOjEUPfliq1tQTu5mMfS5e98FV3pFNbt6R5iaYKrI6Wu7jesooTjqZ9xp1B/2IboQjBdOjK1s6mlQ0pQqGua+KkQFMVXFuKdc5vtqzjhLPDAeO+S1W3bIMEVVEYDxw0RaHpXGCEkGleFGdYhoZrW+Rlyeu7LXFa8OR4xKjndllRLnfczmDy/gCI+/o2iDKGAxfPM4iygtdXa0xD5+nxGNvSpRdd3aBrKjRQVlLMo2saaVrw6nJNKRoeH41wLJ0wKdiFKX3XYtRhK7UsP6WxRZRSFjV9z0Y3VFZBzOvrDaOew6NDSTkmWSldWkz9gUbTNWn6EAQJl9c7LN/kYOqjdAGSFzXToYtrS+eae5S8LGt2QYoiRKcVaLha79kGKWcHQyYDl6aFvChRFUkvFt0RUJYp39vl7ZabbcDpwZD52JeMR5yhqgo9x4RW6g5URQbkahuzWAYMxy6jbqFd7iJUoTAb3lN1H/UAJGnBehtj6hr9oUPdNtwsAqqm4Vt+z7/GfPwTcPbaj9X4tIH+x77je/hb3//qgRfPyxposQz9YdW7XuwlKDXtoSoKm33CNoiZDD3GfVmnF1VF04CmSSvfum4wNA1NU8jykvPbLUVRc3IwwLUMwiTjehHg2Don8wFGRx1VlUz7WmQtrGkKhia/d3m3I4xzjqd9fM8kyUpulgGmrnI8H2AZGmXdPKjbAIqyRlcV+ffLmtfXa6K04OxgSN+zyIqS21WIberMJ14HPDYfZSOdasw0NGxTJ8lKPjxfUlY175xO6LkWSVayj1IcS5c7B1KPTSdo2YcJaV7R8yzsTm344nKNbWq8czbF0jWSoqQs6gdAqm4kmKUq8vldLuTxQofTPoahst0nbPYx44HHtDvzrKql/5xQZDdaXUsQT1EUFpuQi462PJlLg44wzmmalp5nfsxNVroJRUnOYhNiGjrjgfQHuFkFZHnJ6cEA35W+A1WH5LdtS5IWCEVIGq9qeHOzZRMkPDkayUynQ/I1VcG2pJMM8NDeersKWG0jDsY+o4FL8cB4qEyHnmx3vkfekLv1NpAoes+1yIuSi7sdqhCcHUoQVirq5H2VlSx9dE3Fc0zyouLNzYY0K3jndMo//VMf8XW/+Gehdaf7/I+Nz1yg/+5v/gusd9IuSWjKw02u9wnrXUzPsxj1bOq64Xq5J04Ljmd9xv3OHKKoadsGy9Af0nVNky4oUZqz2EQIYDb2URWFbRBztdgz7rsczwboqkJWdIq7bhepG4nMa6pKXlbcrCSKejDtYRkG+zDh4m6L71o8PpDdZ/c7oaFJTXNZ11IIoUnjwMu7LWlecjof4JgG+zjlehnQcy1O5vI6irLudjNpmZQ3dQcEqg90UNvC46MxlqkRxjnbIGHg24z7jrQZbpquQUQQpYU8oNAx0VWF9T7mxeWKgS93U0NTiVIp4PFdE7MTiQhFpr9FWbHcRgBM+i5Cgbt1xHIbcjTtM+886bOiRhGgd33nDS1m52S63EZc3u2YDj0Oxj5NC6tdhBCCycDF+pgwBQFpUbILUkxDp9d5DLy52ZDmJU9PpgxcSwJ9ZYmmqLJvvRP/mLpkQd7cbNiFcgcf9x2yomIbJjimwcC3uG9PVDprseUuYhemjAcuvmuSpiUXt1sc2+Bk1sfUdOqmlvoLIUiLgjgrJQ5hGyRJwQcXCxRF4fnZDM82ZNNNXctyqYG8yxDvVZEfnC/Iipp3TiaMfIe8kr0S3/Tb/5VPFV+fvUD/w3+BTRBLfrWq2ewTkrRg2HdwO4HCq+s1dQPvHI3o+TZFXRNlBZoicG0T0d2W0qVSSVayDRJ0TWXoOzRtw+0yYLGNOJ72mU+l9jnOCuq6xbUk6vlxfjkrK7a7hLaFYd9BUwTLXczl3Y7ZyONoLo/aTbL7EsOQdk11051bppDnJYtNRN20zIauPAhhF3O12DEd+hwf9OUJnrnsxbYMDVp5WouuqaiqQpwUXC12qIrCwcRHU1XWu5htmDAde0wG0u4qL2WwqZ2YqGlbHFNmRatdxMXtjr5ncTyTRxKv9wllWzPuO7iWQdNAQ4sKFFXzgCX0upNNLu62rHcJp/MBs4lP07bEWYEiBK6p03RtvZqm0raw3sUstxGjnsOo71CUNberPa0mOJn2sQ2Jctdt85A+J1n5AMZmRcWHF7Jl9NnZlL5vk1UlSVpgGjqOKRuBQEhjjfqjjOto2pOZTl5yswvwbZPZ0JM7d7eoKK1gH6fEaYHvWriWzj7KeHm1xrUNicwbOkVVUXXvo+loVtPQ5SKZ5HxwvgTg+dlU6hiKgqyocEwDQ1MlHanIa8zymldXEl96fDSi79kkWcEuTXEtky/8tHf4N/+ln/mp4uszFehFWfF//W++mze3W7ZhSt02DD0bXVXZhgkvrmR6+fRogm0apGlOkGbYlkHfteQOJk2TAUGSF8Sp5Exd2yAval7frAnijCdHIyY9l7Ju2EcZiiIYePfNB+0DcJSXVVePqfRci7qRmcTtOuBkNuBgJE/R2MUZAui5ste67fAFoQiKsmLb6aUHnkR1b9YhN6s9x9MBRx1QIxkC8LpDH9quzlQUSSMudzG6pjLpS2fX61XANog5nQ2ZDj3qtiEvpE2W0QlZGloMTe0CPOZ2EzLwLKYD2Uhxt42oqobjSQ/HkQFe1zL9vQ9eVQipH6jl7rgJUx4fDJn0XcqqYR9n6JpC37NQhPw9teOEd2HCLsroOxa+a5LlJa9u1qhC4enRGMcxKatanmLaqdXyssZQVQxTJc1KPrxcSSXZyRjfkaVJkGR4tol/fxBjS3cMVs3dNiLJSmYDD6tT410sdgx9m5PZQNqJdd5uqqKQFpI2dSxD0mZhwoeXKxxT59nJFEtXSboszzL0h01I12WWF6cFL6/XtE3Dk6MRlmkQxTlxVtD3LIkbIG3JVVUh67LCLC85nPSwDZ0wyVjuYoa+zXQoVYFf/fSQX/0L/5lPFV+fqUAPk4zf+I1/hrLbERFws424XGyZDFyOxn1UVbCPMpKsYOjb9JyP6BAAgSDNC8qqxjZ1TEMnyApeXHWS2qMJnm2Q5iWrfYxj6kwHLpra0Tgd7VVWNWleYuiyFi7Kmld3G/ZJxtl8yNhzKOuadRCjKSrjgYPVpXT3bY9l2RCnObqm4tomRVNzfrdltU94fDBgOvCllVSYoimCQc/uQLd7RxwJuu2iFFPX6Hk2eV3z5nbDPs54djRm3HOp6pqoqzU96/7kEtC6rGQbJGyCBN+3GPgOeVlxcbejbVseHQzxbZOqrilKecS0gsQ4VEXBNKRG4OXtmn2c8eRwLLGEvGK1i7BNg9lAKhbvd3GQNXWSFbiuiW3rhFHOly8XqIrCVz2a45g6eVGRd7qEBxpMVaXDTFHy8nZLXpU8ORxjGxpBkrMJEka+I4E+Ot6665YL4oy8KOn1pJfceh/z+nbLqGfzeD5CV1WyoqRpW0xNAmJVVWN2n7+LUl7cbrBMnUcHQ0xVJUxyiqqi79odMCuRfFVVSLOSq+WeRhEcjj10VWUTpuzjjNnAY+h93Mpbeh5ug5Siqhn0bOlhEKRcLXdMBx7HkwGaKlujARzL5Lf+8p/HdPCTTOuelxX/8X/73VzcbrlY7NkEMYeTHpOeR1nXLDYRVdtwMPTxu6N4yqoGVUjxQVnTNPLFaarCLky5uNuhaSqn065dMcpY72MGviPTN0VIGuee2y1rylpKO3VNJc0KXl5vyIuKx4cjeo5JlBXcrkMcS+dw3JOtrE3nbNJN2LyoMTQF05AT+tX1migreHwwYuCaZGXNchthGRqzoY+mS8Cr7bT7WVGSZCWWoeNYOllW8sHlirQoeX48YeB1+v8Oee+7NkL2Z3DvU7SPMsI4o+9akpXIcj64WKJrGs9PJl2W85EuW1OV7jAF0FWVvKy5uNsSZyWn0wGubRClOdergL5nczSSDS1lXdOKtuO5parMtXR0Q2MfZrx/cYdrmjw9GmEbBlGWkxcVnm0+yIWFkDtyXlTcrkOquuZg1EPXFFa7mHWQMBm4zId+h3k0oMhbTbOSupabgyIEi03Ey7sN077Lo9lQug91xiGua0rTiLZFU5QuwDMuFztsQ2c+6qEqsAlS8qpiNvCkTPi+J0IIirJkHWTQNox60rb7bhOyDVOOJr2HwCyrGqEKFIQsC5sGz5KU8d0m5GKxZzZwODsYoQpBWlRA2x00KRf73/i1X+D5yfQT4+vHLdCFEL8e+Hok+/UPgF/Vtm32o/38pwn0F9cr/nff9GdIspyTaR/XNomzgovFDk1VeTQb4Fpy98nKCk2RYF3dpcm6Kt/8Lkq520U4psG0372IbcguTjkc9bqvCfKia+vUVFohDQ8MTfqSxVnO1WpP28DxVApndlHKzSZk5NscjSTiX1SdSk2Vfet1VXeqN5Ukzzlf7CjrhtPpAMfUCZOcm21IzzE5GvUe0kiJaitdGltjGhqmphJlBR9eLWlaeHo4xrV0wrRgF6X4tsnId36YhBIBUZKTVzWeZWAZGrso5cPrNYau8vxogmXoJLmsHV1T/kzTLTCKkAvfYheRFyXzUQ9DU9mECVergFHP4XTS7+69M5tUBVXnpmMaGpqisA1TXt9tcEyd0+mge34ZWVky8iQOIDOPewS6YhNltE3D0JfWzrebkLtdyPG4z0GXzmZFJd+1rlDVkkYzOzffxS7mYrll0nM5HMtyaBtltLQMPQfzXjAlFBQBcV6w2EWYmsaoswO/2YQkecnppE/f7Vp367rj1luitABaPFsajFysZIb2aDZgPpRNN2nRKTk1larL8AxNhe6erlZ7uYN31ximOdCVbEKhaSWuczLp81u+9udK85FPjscf+0AXQhwDfwP4fNu2qRDiTwB/rm3bb/3RfufTgnG/649+J3e7kE2QcLHc4XkWj2eyUyotSrKiwjI0LE17oDZURdbV2ygliDN6rkXPscjLivPFlqDIeedwwshzqOqKpChRWoFjGYhW0CD5bVVRiLKc1T7GUFVGPSlrvNmELHcR80mPo7Evz9HKO/WTqXcnvsgeZVURJFnJ7SYEAfOBj6YqrPcRV/uQad/jeNRHVSAvZOeX2d3LvfOIpsgd6GK5QwDH08FDsK3jmEnPY9p3uxS7cztRJOhW1TW2YaBrCpsw4dXtBtvUOZsPMQ2VbZSSFxUDz5Zp/gMeIY0Y9nFG07T0XQtVUbjbhlyu9kzHLqeTAYpQiPMCGgnu0d27piqoQmEfp1ytAmxTe9h974KIOC85Gvr0XRkgTSdMqZuGOCsQSBqsbVoulztuNiGnhwMOh70OK8hRxMdKk7ZFU6WR4zq4xx5sJn1P4ii7AEUIDkc+tvGxgy46zGQf5xiaSs+RDrZvFjv2ecazQ4l613VNVtQPkt177ONeGHO+2LLcxzyaSy6+ahqCJEdXFXq2TNnb7rm0bcsqSLjdBIx8h2nfpW5blmEs+9Z7LqYuy777Bqk4LVgHMf/5b/plD/PwE2Lyxy3Q/xbwTwIB8KeBb2zb9i/+aL/zaQP9zWLLL/o938rxuM/RqIdQhaR8qpqebWLqurQ4EuJBNbeNU/KilHWUoRHEOR9cS/Tz3aMJPdcmK0qCJJe1rmtJwK6VjgVCtMR5QRAX2IaK71rkRcXFcsc6THg6HzHr6ukwzRGKwLcNWU9/DJlPipJtmKCqCkNPdmjdrANudxFnkwEHI3mwQZyVtLS4pmyFbbo0ElWmeHebEF1VmA182rblbhuyCROORn3mI0lh5VV37riuUdXy7DPTUBFCYR0kXC139DyLed9HEbAMEvKiYj708G0ZLPf93G3bEOXSV8/tjCivljuutwEnoz6Hox4tEMQZQkjAUVUUuRsjJ2aY5Sz3Ebahy0CpWi5WO9Ki4Mlc1vV13VJ03uf30l9FkRZbdd3y5m7DMow5mwyZ+g5127ILpf/dwLNRhULLfQ96yy7N2AQJPceib1ukVcnFYgcInhyM8Cydqm4oqhpDk+f0JUWBrqvYhi6R/KslcVHy/GDCuOeQVzVRkmOZOrahP/jC3Z+Qe7GUJeXxpM/Is8mrhtU+xDZNxr4j+yg6uS5tyzZJ2YQpfcek71gUZc3VOkAIOJ0NcAzZLXl/VHdR1+wi2Vb7i3/WV/NLf/b/7NPG5I9b6v5vA/8+kAJ/sW3bf0R9L4T4BuAbAM7Ozn76mzdvPvHv/qpv/BPoqkLVtGxC6fw69h3J6d5rkJFNA7LuavDc7rSWIOH1cotr6jyayiwgTHOCNJcP2rYeGg7uFWZJWpCVFbZtdAKUgg+ulxR1wzsHYwauRVZUbKIEU9cZexIwqx/AP8iLijDNMU0NzzLJq5o3yw3bKOPpfMik51LVDUGSoSoKfcfqzgHrqB1FBvguSbEMnb5jUtYN58sdQZLxeCYZgvvdT1UEtiFVY9xLKBXBJk5Y7GP6jsnYl595ud5TVjVn0wE926Ru5CKhfYw2VITANjXqFs4XW1ZRwklX4pR1w3Ifo6sqk57U8jdtKzvIut09jDNMS6PnyGf18nZNVtU8PxwzcKX3eVIUGKqKqcmFSaBg6LL77WKzZRfnHI/7DFyLNK+424fYhs7hwJdtm/fGIAKiVLIpjqM/YA8f3qwRAt49nODbJnlZk1cVhqo+lFiGKrsUs7Lgw9uOiz8Y0XMs0rxkH2e4lkHfth5EMPdHfy3DmH2SMet7eB1WcbUJcE2Dk0kfQ1U7gZD8nTgriFLZsurZJnGW8+HNSnLrhxM8y3hYhPSuEy/Jy24R0sjLmjfLLX/593zDp43HH5cdfQj8SeBrgR3w3wLf3rbtH/vRfufT7uj/w/tv+B3f9p04hsbhyEfX9K7vu3mQGGbd2daWLvXnd9uI213IyHM4GLi0QrAKYpK8ZNZ3Gbg2DTI1bhFSOVdKPtQyNXRFoqsvFxsELU/mYyxdI0hz1mFMzzGZ9jzZslhLv3Cl+xv3qPG9muzD6xV5WfHOwVhOoKJkuY9xLJ1Jp9pruw48oUBWlMRZid01fWRFxQfXS7Ky4tnhhGEHugWpPCxh4FidnFRSd4KWfZyxT3J826BnWyRFyau7NVXV8Px4Ss+WFFZclpiaiqFqH+1Umkpd11xtAnaRxDD63XVfrfY4lsHxqIehq1TNR3LiotO7m1qn0MsLvny1oqxrmUU5FmlREKYFjqXjmp3evUu567rmdhsSZQXzgSfViWnOm8WWnm1yOh1g6hpF3dA0DZqikpclRVU/PO99kvH+1RJdVXl2MMazDZK8JC0rbFPD1rvDJxWBrkghzcVqR5qXnEz6uKZBkOYsg5iRazPpuw8WYtJMrmUf5yR5wcC1sA2dbZTy6m6DZxm8czjG0DSKupb9+N0hDEVVY+kaZjeHvnwls8vPnUzxTIO0qEjrCkvTHsw7VEVgaBp5KRfKMM35z37tL+Jrnp1+2pj8cQn0fwX4+W3bfl33718B/My2bX/dj/Y7nzbQv/Y//jaGjhT8F9VH6jLRmSJoqgTgqrrhdhuwjTMOhj4926KoKi43AXVdczbp07Olgi6vaokkd7sJSNWW0gF3V9sAx9CZDTxURWG1j9lECfO+x7TvdUhr12Chq1R1/QDc6apKmOW8Xm5pm5ZHU9kDvY8zlvuIoWszH3ioikrZ1F2aLshKOSHsTmwR5zkf3Kypqprnh1M8yyDOC9ZhSs/RGbuOPHOsabnvAAjTnKys8CwTx9DZJxlfvl6iKILPHU3xLJMkL0mKAtswpKikbR+6rKq64XYXEOcl876Pa+rskozXiw09y+TJfIypaeRVSdU0coFoG8qqxtA0TF2ChR/crqnrmmcHExxLJ0oL9nFK37EZujat+OGnxa6DlLwsGfUcDFVlE8vgGTo2T+YjDE0lLaVk9v7cvaquMXUNXVXYJzkvbtdoquDxbITd3XuSFQxcG98yuD9VTnSqxGUQU5QSRddUhU2QcL0NmPXuMROZNretdHdNi4qikmClrklN/oe3awaOzdP5EFPTSYuCompwLV2aTdYSlNVVhTAreHG7pm1bns5HOKbMApK8pGebOJbRofhy0yi77CtMM07GfXxTHtjxTV//L3/amPxxCfSfAXwL8E8hU/dvBf5O27Z/4Ef7nU8b6N/21/8ef/7734e2xTZ0FKHIo2cVpdtFaxb7iLyqmfVc+ZLjjA9WKyxd49l8gmMZFGVNmhfomoqt6w9psqoIaKXAZRMluKbByHMom4bL/Z59nPJ4MmTiS8Ak6xocbF2HrntN01RUAUGHoOuqwqzvoaqCRRizimLmfZ/DvkSK826RMDrdet1I3b2uCoKk4M1qiyqkQszQNbZxwiZKGXsOU/9eN17TtgJVgbSQ56+5lpSy7uKUD2/XGKbC0/lEZiNJSlJU9BwT35Tmgvcagbpp2EYpRVkx9BwMTWUVxrxcbxk6Fk/nY/ROSFI2DY6u/7AjgFUhiPOC8+UeIeB40sPQNdZRwi5OmfoeY89BEVDWTUcGSKylbhpcy0RTFBb7kFd3W0ZDlyeTAZqqEmU5Vd3iW8bDQZCqIpWFUZpzud6jqQoHIwlyLsOYKC04GHgMHYmSf7wnPEgymral78iy7XYb8Ga342TY52QsTTKzvKQBLE1mOnUjeXZFCNZhzKvFFt8zOZtIafIukQdw9G1L8vHtR4xFkpdcbvYAHI18dF1jE8UEac7Edxm6didNbh/YklWQkBYlE9+Rxp9pyuV6z9h3+D//a/88X3168Gli8setRv/dyNS9Av4e8PVt2+Y/2s9/mkAv65pf83//Uw9BLS+vRXQHy2/jBEUoDB1b9lvvQ14tt4w9h8dTuRNEWbfLmQaWoX90vYo892sb5yR5Ts+2cE2DJC/48HZNUVW8dzhj4NrkVUmcy24m3zY7EQhdY4ogSjPWcYqj6Qw92Qt/sd6xjVMeT0fM+rKDLSlKeXBEV083yP5xoQiCNOd2G2LqKjNfHghws4/YxglHwz7zvtepxORCo6sKZdPQtPcafIVtmPBmtcW1TE6G0i13E6fEWcGs59LvLJvqWoJDNQ1RJtkCv6Nyrjd73qx3zHsejyZDFCEI05y6bejZZidhlaIURZUT+W4foiCY9z1o4XYfsolTTkYDZj2HBskhA2hCJW8q2k7Sex9s5+sds57H0UAe+LBLUpqmZejamF3HoCJAqJLFWIYxmiIY+7Kn4XobEGY5p6M+I9+lbRvKzhpMCMi6AyRsU0cAl+s9l9s9J4MeR6M+AFFWgADfMh9UlZoiQd5tnHC1DnBMg8OBlEivw5iybpn1XFxT0oNN50uQlxXrMKGlZeK5IOB2G7BLcg4HPrOeiwCK7r5QIM5KyqrGt4xu4Yt5vd4ycm2ezkacjgf85n/h5+CYxqeJx8+OYKZuGn7fn/1u3qy3Dy2qeVWRlhJUkcYFNefrPYsw5njY46AnX8I2lq6tQ9fCMWRLZkvzsHpGRUFV13iWiaGpbOOMD25lfff8YILTBf0+zXANowPueFC5AUR5QZwXOKaOZ5qkRcmLuzVJWfJsPmbkykMZgzRD01T6lvlRP33HEoRZxjbJsDWJJJdVw/l6S5AVPJkMmfgOTd2SlJKLva8zW2RfNkKwiVLughDfMpn6clG53gVkZcXJqMfAtqmblrKR/K+CnIgoAtvQaFu43gVcbwMO+r5cVFpYRzEgmPoOhqZBe3+4gdQcbDMJJg4d2Uhysd2ziVMej4fMejIDSovOe0/XH5SGhi455Lsg4mYbMPEdpj2Pumm5C2STzFHff0C5HxDosmKf5dJO2jYp65rXqy37NOfpZMS0J2mte8zG7LoKBdLBtmlbrrZ7bnYhx8Mes56k3lZRgqYoTDyn07tLJF8IyWmvoliyB55NVcu/UVQ1Z+MBPduSirr7luOmIcxyFCHwOn/5y82eRRDzaDLgoCeZEwl6ypKxLGtqwDKkndltEPFmtWXiOZyOB2iKBDkNTeObfuUvxP3JFuhBmvF/+DN/mSgtKKqKorN+MjWVtKh4tdgQZjmPp0OGtk1W1dztA1RFlXypLg+gr+4NB9qWtKjlMUimhiJkuni+2tF3bU6GfXRVYRMnRFnBqOcwcDqrpeYjBDXJigcBiqFJJP/96wUA7x5McC2TOC/YJRmurTNync6HrXu+rRRnxHmJa+q4pk6cy0UiKyvenY8ZuA55XRHkBaaq4FvWPfD7kN3sk5RNJ5QZdAj36+WGoqp552DCwLUo64asLNFUtUOCa4QQGF0Dx/UuYBlEHPR8Jr5LXtfc7AJUReFo1JPPsGmoPyYFTooSXVVxTZ2yqni52LJNU55NR0x8l6JpCLKOlzbN7q7bjg6DVZiwjiTgNXAs8rLmfL1DEYJHsyGuaVDVUpF4fyZ5kpcYqoJtGORVxYe3K/ZZxrvzKWNPdneFRY6pafim1JLT0llOtSyCiFUYM+t5DGybrCy53oUYmsrxuC/T9PajRSW7Z040Fc+WLaMv7lYUTcOz2Vguys3HvAKFkNgPkluv6prXyy3LKObxaMi871G1LVGRy8ywywDaVrr7CCFYBBFXmz1D1+agLw992EYxjSIYew7vzqf85l/ws9HVn2SHLO7TjN/xp/4iQZph6hqqIoiygvPtnrZpOR70cAydXZpxtQ3wLIOzYf8BnS2qSmqlO4mkUASmpsqjf4KIRRAx8V3GnkPTNNwGEWlRcTzsMXAs2gaKpjP3/5jyy+o6x7ZJyuvlFlPXOB31MVWVbZqxjTNGrsXU80BA3X5k2J+VEtRxDB1T09hnOV++7TqcZhN8Wxo+bJMM39QZel17ads+BHqQ5SRFiW8aD2DXD90uEQjeO5ziWyZ5WRLlBbahSzzhY2Kipmm5DSL2Scqs79MzDaK84NVqi6VrPJ2MsLve+Qe6h5a8rDBUDUtXScuKDxdr4rzgndmYnmWSlRXrOMExdCaeK2vOB9ANgiwjygp6likR7izng9sVhq7x7nyMaxrkVS0/R1OlOUgt8RhDU8nKig/uVqRlxTvTET3LJClK1nGKZ+qMHz6zeaAr11FMmJcMXQvPMAnznFfLDaau8850hGPoFLVs/5Wgbk1W1piaiqXrREXBBzdL8rrmvfmEgWOTlxVJWWLqGramU9Mg2q5Lrmm42OxZhTGnoz5j1yGrKtZRgqVrTDz3gY7tSCP2acYiTPBNnZHrUjU1N7uQhpajfg+vO1r70WTI//5f+LmfKr4+U4G+iRN+35//bnZpRpjmLAMpTxz3XVoBd/uQuyBm3vM4HvTQFIW0LCnrGkuT0st7+kdTu8Pygogwy5kNfHzLJC4KXq02gODpZCRTwqomqypUoTwsDAK6XnjBNkq5DUJcx2Dme9I2ah8RZDnHgx4TV2YBeSWNFox7aWwLpq6iCpVdIutpw9I5GfQxNIVNnLJPcyae85AFlE1NV8JJ84e6xjEMTE1jE6e8v1xiGwZPJ0McQyfMcuIOyfUMmeK1Hf3XNA3rMCWrSkaug2VobJKUF8sNnmnwzmyMrWkfPUNdR+3YDV1VpIy3KDhf7cjKkrOZDJQgzbgLY4aOxWHPR3QAH0j6OclL8rKT1+ryM99frLANneezMY6hkxQlWfczhqJ2jjCgqip5UXK+2ZMXJSdTKSrZJSl3YcTIcTjoefI67/UQCKIsJy1L+paJYehs05T3b1c4hsa78ymOrstFt66xda1z3pX3qasyVf7wbk3eyh3ctwzCrCDIMnqm1GDcmwXe22Lf7UKCLGc29PBNizDPuNqFeKbBybCP0Rl23IOgsjTMcXUN17FIy5KXyw0tyIXMNKnblrLrVVcR/Lv/q5/Lk8nwE+PrMxXoHyxW/K4/+1fYpxmeYeBZJllVcr7es0tTHo8HzHyfppGgUkOLb5mdiKN5sEkqq5p1nFLXjQR3NEnhfLBY4xo6z2ZjHMMgK0viosTSNZwOMBOifdgdtknKLsno2RYD2yKrKl6vtiRFwTvTMWPPpmqkqk5TFFlPd/ptTVERArZJyl0gFWPzbpG42YeEWcHxwGfsuoAUsQiQxwR1hxOahoYqBOs44XyzxzV0ToZ9NKGwThLirGDiOwxsi7ZDxWWa3xJmBVXT4FvmAzr9YrGWwOV4iK6qRHlOWTd4piEXuHvqTSjkVcVtEFHVDQd9D11RWUUxN0HE1HM4GfYfdPFtK809yqqhbBpsXS66mzjhxXKDYxg8mQw7aiwjqyqGto1rdq4uykdGm4swpqxrpp6H0V335W7P3Pc4GQ9QuafB5GcWleSwbUNHUxRWUcKLpXzP70zHHUBbkFcVvmVh6urDbq4IySxcbvdUdcPxsIela2yTjFUUM/Fcpp7z0UJ2z9gkKUleMuw62nZJyoeLNX3b5ulkJC2777OG7vy8rCyxdF32LxQlX7q+AwTvHUzoWRZFXZHk8meMrlFIUxV+1c/66fzsZ48/Mb4+U4EO8O99x1/iptuFv7xYUjctz2dj+pZFXlWsoxRDUxk7DnonN7zvHS+ahjDPUIWKZ0rE/WYfcr6RCO9Jv4+hqezTjKys6FsmrnEv5GgQikJDyy5N5fdtC1uXO9iXlysAPjeTqXJaVERFjqVpeKY0u7hv0EDALk3ZJim+ZdG3TIqq4vVmR5wXPJuOZMpW1WRFiVAVnE4Y1Cpdcw6CTSIzCd80mHkeNS03+4CsLDnu9xk6TueTXoOQp7+mddfiqEtu9/7+J77L6UCeeLqOE+qmZeK62Lr20NYqBBRNwyZOEaJl6DjycIQw5HIXcDoccNKXWv+4KAG635f+8LqmIhTBLkk53+7xTIPDno/SwjJJSIuKA9+jZ1m07Uc4QE3LPs1ogV6HgF/v91xs95wO+5wM+rK/oCgfaNe2balpMVQF0S0qb9ZbXNPkpMv21nFKUVVMXImS0+n6hSIzp0UU0zQNU99DEbAIYm6CkKN+j6Oe30lSZSmnCoWkKqiaFsfQ0FWVZRDx4WpD37Z4ZzJ64NarpsHWpMlH2cre+nu9xQerNVVd83w6loBuXhIWOZ5u4JmSW0eRdlauofP7fuH/UgKjnzA+c4H+PeeX/Jo//qexDZ2z0QBDVdhnOes0YWDbzFxHOpF2gJGK9IRLyxJdU3F0nbJuuFhvWUQxJ8MBc9+hbmEZxVQ0zFyvc0FpHxBXWrkzN22LYxjStjmO+XCxxjUNnoyH2IZOUOSEWYFvmQxMiao3D8+xJcgK0qLEMw1cU6q9vrxc0TQt783G9B2HrC6lBbKu4xuyBbLtjBMAtnHCNsnoWzJlzKqK1+steVXxbD5hYFtUdUtWSQrQ6BR7CuLhgMXbXchtEDL1PWa+bPO9DSJapeWw18Mz5HFIdXfmWV03hEWBKiRwVLUNr1dbFlHEk9GQeV+6yAS5RJh7lik7ujosQtDVnlGMo2tMXZeyabjehzLtHw8Y2FaXmnZgKS1JWaG04BjyaKuL9ZarMORsMOCoLxta9rl0t+lb1gOLoXaegrsk4zaIsHWNuefR0HK9D8ibmuN+n36HhH/URNMSZJ1JiG3StHC53XOzCzgdDTge9mXra1GCEJiqLOWa5iNrsWUQ8XK9Yeg4nA578pTaPKdsGga29QB8ql2GmeYlr7ey//+438fWNXZZxjbLGDk24w4Abhqp86ibhmWUEOU5/9kv/Zf4qoPZJ8bNZy7Qf/Ef+bZuZWu5DWUdfNTzGbsyhZK1r6ytmpYH6aHWOXecb/ckRcHpsE/PNEnKkstdgKYonA76HyG8HTJ/n6YKIXcnENyFEZe7gKFtcdSXrYTrJCUuCmaey8A2aVtB3XZ1qRAkRfGQBuuqyi5J+fJqjalqvDMZYus6YV4QpBk9y6Rv211Di6QAQYJucVHQt6TcMsxyfmixRBFCZhKmSVZVRHmGpeu4xr1lk8QTmrblLozYpRkTz2FgWSRlyeuNNCh8OpIKrapuKJoaXZWpaF7VaEp3SkxV83q7Y5MkPBkNGTkORVWxShIMVWPidpnUx7T+UVGyzyRl2LMtsrLi1XpDVlU8n4wZOhKxTssSXZHKsaqWpZbRHSl9uQ1YRBGnAwlolXXDIoowFFXSfar2w8xF4qJgk6bYus7Alp2Kb7Y7CdyNhwxd2YGWV3WXpgvSe12/rlG3LeebHbdhxKPhgIOe9LH/+EL2cHKqIqm3TZJytQ8eMhVaWMYxRVVz0PNxDUP63regKpBVNas4oW1bJq6DIhSWUcwyjjnwXOY9H7UDjhEtQiiEnQ6kZ5v89JNjfsPP/Wc/VXx95gL9r37wgt/6330nRV3zbDzuOGFJ8ciXZEhHGUDvxA1pUXITRFSi4bDnY6gq2zjl9XZL37J4Mh5hqRpZXVJ0COt9o4QiFNlL3jQswohlGjP1PIa25Iov9wFFXXE26DOwbZqmlcZ9ioL2cNLGR0qqVZxwHuxxdI2Tfl8expBI+m7mugwcGwUouh5nAcSdTZFnSLnlOkv4YLnGVFWeTcYPoFtUlPimTs+0oaOThJALzjZOScqSoefIHSPNeH+xxNF13ptNcXSNrKopqgpT09CEbBzSVIGmqBSVDJSgyDkb9ulbFmFRcL2TE/uk30NXtU6h9xGjkJYltq5hGzpRWfJDiwVV0/C56ZS+ZT3gILYmtfxtI4UJWqcpvwkjNnnKge8z6GjK8/0eW9M5G/SxdP2jz+z06nFRYmkSV4mrgi8vV2Rlyefncwa2RdFRgqaqPohv7inGuml4s9uxjGNOB30mruxYW0YxpqYy81w0RX1gPQSCMM9ZxwmWoTO0Lcqm5nIfUtQVjwYyU2nalqqS/Rh120oxDuDbpsxUdntugpBHgwHH/R4CQVZ+lDUUVUXVtFiaiqaqLNOYD1Ybvuff/rW4xk8yHh3gn/5P/iBPhiNc0yArCoKiwNJUes59j6+spQUSld4kCYaiMXTsB6DrcrfnqN/jdCANEuJut3UNeU7bR6ekdHrvICQtK6aei2dIGujFeo2qKDyfTPBNg7KWk0czVKxuwisCNFUaOK7imEUYMXBsJo5D1TTcBCFJWXHa70l5ZtOQN/JIYk1RyauKtm2xNA1VKCyjiNfbHT3L4nTQl4BWkhLlOVPXoW/Le6y7Z9A2LWGWUzUNPctE6wCzD1YrBpbFOxPZdBEXBXlZ4ZkmpqE+tFGqCPK65joIKYqSg34PS1PZJhnnuz0jx+ZsIMunrK5paDBUVdJwdYWt6Q+15/uLFW3b8mwqn1eU5+zTjIFt4zsfO8ABaf+0jGPivGTiujhdKvtyvaFnWrwzHmHqKnlVU9GgKzJ7y8sKU5MdcHFe8KW7JXXb8O5UAlpxURBmOa5h0Ot82oCHM+Jug5B9mnHQ8/FNkzjPudiHOIZcVExVo2waWtGgdm3HUV5g6ZKrT4qSF+sNRd3w7nTMwDblOXy1tAFXhUJWSWMMuxMMvdnuuI0iHg0GHPZ8mrYhyktUReBZnWKy49YVRbCKYt6sd7imwW/6wv+cf/mnfv5TxddnLtD/2N/9Pr79B36AuCgZWBa9ruvpXnwigKQsScoSW5Ppa1bVvNxu2KcZT4ZDpp48R32XZjS0jCwbQ5VupK1oO3qkZptl1E3LwLa6mjzhw/Ua3zR5ZzzC1nSSsiApK2xdx9U0Gmni8uAEsklS9nnG0LI7nrfg5XZH3TS8Mx4xsGRmkJQluqpgdo0hIDrQDVZxwm0UMbBMpq5UmF0HIXlVcdrv07dMKSutGwQylUxKCYa5ui6dS8KQ15stU8/jpN+TBxukGWVdM7JtHF3aX7etDPKqaVjHCQ0wsmSb720Uc7HbMfc8Hg0HEoAqJW4hwSV5tLSuyEkdFjlvtlL4ctoBnZskZZdlzFyXUVeeVE3TqQsFQZZT1BU9Sz7zVRTzYrORC9N4hKF2dF9TY+sGSqfz17ssLM4KXu3k8308kiXRPsvYpikj22Zsd2egtdJk4v/D3Z8HXb+1+V3QZ631m3973vf0TGd8++10G0KAABIIQ8eqRqYkIOJQoEGJUmhiRWbFqFSEhEIJBRqpiELQImVIQCkDJRASBBNmEuju9+1z3nPOM97TnvdvXoN/rLX3c16t9HsEUl2n7/NHV3c/z7PvvffvWuu6vtNlrWPdNDTDwDyAq9um5fP1mlGS8GPL5dlBpq0/VLTz+EemvLus6nt+9v6BwRp+2eUls8wn0Fb9QB7H5JEfBYTwEVzaWl5tt9wfK15MJ1yMRp4Jqmtv9y2LICYKiklg33W8OxzIIo81OAf7ruVf/G//Td+ovr5VhX7oOv7q3/vPcFmWTJIEB8GH7GOLm0FjjH8A4shznz//uGKwlk8XC8ZZSm0G7o5HMhVxMxqRRr51M86eTQRVkGn6mcrxbn/g1X7HdVnybDZFSMmu8Zlh8zz3rdMZmfZz27Zt6bRmmmVkkb+Rfu7+gTSK+O7lBWUa05xELHHMKE4CC8uZAlvVDdumZZ7nTNKEVmu+WG/oMXy6WDDPvY6+0ZpISFIlGaxPEz2Dbvsjt8cjF2XBVTlCO8ttdUBby7PJhHGSvle64cUlVT8ghGAUewDszW7P692OZ7PJua3ctx4Fn6a+UzDO33IieNDvjkeUFFyVXrTiW/CaZ+MJVyOfmdYH7CMSilZrjHPkse9ebg9HvtxsWOQ5Hy5mKCnZtS06AFrpiVsPnVczDLw7HHAOrkYlsfQj0UNTcTMacz0aIb72vIhgvNHGUKYpsfTz8WerFbMy49PlMhwqvtv7IeOOCodK3/PZasVgLN9ZLhilCYe+Z9s2TLKMeerXaJ1sy8Y67o8eI7kejXwXMPR8td9SJikvJhOSEErpk3L9gb1rWtJIMckyBmP4arul1j2fLJb8bf/FP59f++mnP7K+vlWF7pzjH/yjf5Sfe3igNwYlvEJtCF+eX4Yg2bYNr7Y7kiji6XhMIiWbtuP2sGdRFDwdj4mV8j7hcEo75+isJRKCNMx9L7dbVnXN08mYy9LroG+PR6xzPBl7cMVZyxBafYCq7306TJKghOChqvls/cg0yfhoNve8atNQa800TZlk751jJ4R+07a0umea5RRR7A+Jh3siIfmJq6uvgW6dt5eebgw87WKc5f5YsWkaLouCSZbSDJqvtluEEHwymzHOMrQNbWVwVrVhKUCexGhr+Wq94b6u+GAy5aos0c7xWNcoITyPHdxjhFGp0ZpNUxNLxSzPGYzm5XbHpmn4dLnkKnQjTdDpZ1GEtkHvHqzGt4cDr3d7LoqCm3AgPFQVxjluxmPyKMJ+7fPqjWHVVCgks9wn/r7Z77k7Hj0yP5n4pRHGL4xMlaK33iGYxZGPwzpW/GC9YpHlfDjzLrld23qUPMtIQ5iGFOLcLb3e7dDO8mw8Jo1i1nXDuqm5LEsuS29Q0V9TL27ahmbQzLKMPIrYtC2fr1aUoWvIYi8fPoVSaueoh977+YNo6ecfVxz6jp+8vGJRFORxzP/i1/5aLopfpCip/zQ/36TQ3+z3/I//5T+EgHATe0Q6Vl7Mse0aHuuacZKyzHO0tbw9HFi3Dc/HE25GfnleM/hI30x5/vG0FOAUXvDyuKfue55PpoyShKrv+Wq/I5GKj+dzyjhmMCYcDDLomn2RpHGEA+6OB97s9yyLgptRQGCbilZrbsqR13w7/9oCrwmt+h7tfIRUrBSruuaz9YpRkvDxfE6uIvZdR601k9Qr3VxIkfHLCS2PdUNtB5Z5QRH7B+r7j49kUcSPX1xSxjGdNrTah0LEUp0jiuMA+rw67Nm2DS+mM6ZZSj1oXu92FEnM8/HEjxcn+jIUW9X3pElEEcW0WvPZes2h7/juYsmyKILevfXa89C9ONx5vn6sK+7rmkWescwLemN4td8Djg+mU0Zx6um+AJAaZ6m6HqUkZZKgreGL7ZbHuubj2Yyb0diblQa/NGIUe9koAuKgZbivK97u98zynJsyHCp1xWAt1+WI0VngFBxo2kt6nRQs89wfTMcjd9WRZ+MJT0ajc9wTQCQEVa/RxlBkMbGMeGwqvv/4yDTL+c5iQRZFtHqgN9ZjMUH9GAm/2qvWA997fKQeen784pJZ0Ivs+45JkvIP//R/mWeTX2K71w5dx//sD/+rrJraWxSFDDNWTaM10zQ7F+bn6zWt0XxnsWCZ+8V0h97bDidJetZdSyFRAppBc19XWOe4LEYkSrBqGr7YbJilGR/PF6SRojOazmhSpYjV+xzvU/t6dzyybhoui5J5ntFpw6v9DmMtH05nTNPML1IwAZmXkk6H9cTB035fVbza7ZinGU8nfp5e1TWNHrganQ4JdxaUODz1pq1lknov92Nd8fOrFbM855PZnCyKOA59sOjGZFF8zrPzclHLu8OBRmtuRiOyKGbX+vc/SVI+WS5JlNf3D86HTFhr6a0lVT6Vph4Gvr96pBkGfnx5wSRNqQZPc42SlEWen6W3pw2g27Zl33VM04xxklINHZ+t10gh+LHFknGa0htDZzRxCJj0dJ8gVV5h9sV2w6pp+GQ256Io6K1h3TSkKmKeZ6iwNOK0mWfbtDzUFZM0ZZ7lDOFQMdbw4XTGOPPc+mDNGWE/BFrtNM682u54c9jz8WzuuwZ8R+OEo1AR2vlYs1T61ODH6sjnmw3jJOWj+YxEem69t4ZJlpKFZ+kUQtpqzZfbLa0e+HA2o4wTDn3HY1UzzVIuioLr0Zj/ya/5S5iGrvAX+vlWFTrAP/+9n+UP/tzPYK3lMPgs7lGSEEnFumn4+fUjiVL82NybIup+YBs43EWeBxGHB90Evl3ddS2RVMwyT4O82e94fdjzdDzhxWSKEoJD1zNYwzhJgxzUhkMiqKiqinoYuCpL8ijm0Hd87/GBVEV89+KSUZzQm2Cpjb6WjSYhln6v+N3xyENTc5EXLHOPzL/Z7+mt4YPJlGnqf7/eamSIJG4CfVdEJ9Btz8vDnmWW82I6QwpY1zWD9aDjKE3eO+9CjPKm87PvIsuJlOS+qvjBZs1lOeLjqZem1v2AdpY8joOwxKCUIpGSqh/4crdhMJYPp1PyOGHXNtxXFYu84Lr0N51xBoIq4Dj0NHpgFKcBAGv42dUDsZT85MUVZZAgN1qTxxGpitDhM0+kpDOGL7cbDn3HB9MZ0zSlGgbeBqXg09EkmEUsLnjCj13PrusYJTHjxM/H31+vMMaeb8tBG1oTTDRC0BqNEoo0rEv6crflvjry0WzOdTnCGMu2bYmUZJZ567K171cdb5uGV/sdozTlyeh919ANmpvRmHGSYrFYx9m0c18dGazloihJlGRVN7w97LkqS56OPduijeZyNOJ3/tqf/sWLe/5P8/NNC/33/+x/zO/7T/6knyWjkAlXVbze75hn3kQRScm6a9i3HcssZ1mUCESQgoJE0pnA8UYxWRTRGcMXmzXrtuWjxZTLws+Tj5WP3L3Ii/MteFqFpK1l14aEkjTz4QDVkc/2K2ZpxqfzJZnyqGyjB8okIVfx12yavm1+qCsOfc+yKBjHMdUw8PPbR4QQ/PjignGSMlhvrImkIpEeuRVwForcHg/cVUcuipKrskDjb2jjHM9GAXQ7yUrxxpZjH5Jdg8z3zX7Hq8Oe63HJh9OZV7N13fn9eXPJyTMgaYeB2+MRB9yUI6QU3DVHbo8HnozGPBt54K63GhzEUtEZv0ywiBMiKcLhvCJLlP+8ooh919JowzRJKeMkcNbBp2AMt8cjzTCEziNi0zV8td+yyAs+ms6IhWIwOuwW9zRlqz0zkkURh67jZx8eMNLwE8srZlnu2ROtyZUfP0x4zVMs2avdlnXb8Gw6ZpEXNFrzUFUeBS9K4tDh+OfLc+uPTUMeRQE0Nbyq9nR64KPpnGnq6VQdxh/rHIe+wzkYJ8kZr/jysOHpaMyH0/n5psc5EhUxSVP+0Z/+q8740C/0860r9N/+b/3rfLZZMRjDu+ORdVNzXY6DgMXwtvKc94vxhHmgUjoTHjSlGKxGW0umIiIVcexaPt96+einsznjNKMaet4dD+RxzLPRmCSK0GE18QkRP+qBCEER5s03hz0vDxue5GOejUMqStvQW8M8zSiT96uQBGCFp/c6MzDLclIVsalrfm79SBHF/PjFJUUU0xhN0/fkURxMMb7Q/B4xy11VsWlrrorRWen31W4LwHcWS8ZxyuC8ECaSPgevNSE8U3l//lfbLbf1gRfjKdeF18w/1DUCuCq+dsA5v1G0GwY2XYNEMg+5e28Oe94dD76VHfv457rvQYgAoPlWNpbebrpqar7abinjhOeTidcJBAzjuhwxTlLAYSxnq+m6azDGMQtRU7fHI1/utlyXIz6a+UCGVmsfba0UVrigjIyIA2r//fUjwvnPZpSkXrLcd0ySjGmacIp3lcq7197VBw5dx005pow9///lbsM4TflwMjuzNqcFF60ZOPY9qfQeh2bo+Xzjw0d+fHnBIi8DCOqZklj539kJyCNvH3612/HVccuL0ZQXE6/jP4butUwSf2lZy09/8h1+46/4c75RfX3rCv33f+8/5nf/h/82rdahTU449h3fXz/6NJj5kkm4AZsAkGXKGzO8Ws7LHXd9y7vjwW8dLbxabtXWvD0eWGY5z8dTEuljjgZjSUJ71Gu/2jaNvDDk1WHHY33k+XjKMi8ZrOGu8rfc03JMEZ9SUc7BoRz7HiSMkgQJ3NUVn61XXJQlH05mxEqFW00zSzOKKAFOdkaJdpZVU9MZzSLLyeOYTdvwvfUjZZzw3fkFZRzTaE1rNJnyXcBgLQqf7Kqdv6U2Xcuz0YR5llPrgTfHPYlUvJhMyJVH33XI5BuMpTIDsfAAWG99+/zY1Hw69a3s4CyHzocpTJKw4BBQQgKOXd9xWx0p45jLvMRieX3Y02rNi/GMeZZjnT1LkIWDauhxEB5yeHPc8XK/50k54oPJDCkFh77HOss4Tr2/wQUHmpQc+56X+y1SSJ6PJ8RSsWpqtl3LdVGyyHLg6155x6ZrabU/hLMoYtXUfLZdM0tSPp1fkCnfnRhrzx1WZzRZHJGoiGro+bnVA63R/MTyknma0xkfhpFFMeW5a3i/b/3NYce744Gn4wlXRYl1sGorpJAss4JEKAwnabbvbn73T//6s/34F/r51hX63/B/+2e9GUBI7usDX+y2HiybLchVRKUHKt1RRDGjOA3zuEXhwxIOXcema8mVb6mMtbw+BjpmMuXpeOK16UOPwVGo00xqwy4uL2t9dfSa+Wdjj8wf+54vdmtSFfHxbE4ZJwzW0BuvE1dC0oc0l0wprIO3xz3vqgNXRcl16Rcv3FdHtHNBK+BBoZM91INCXqAySVOUCKPCdsU8K/hk5hf/HYeexgyMk4w8tPZexCPQoc2vQ+ubRzG7ruUH2w1lFPOd5YIs8uELvTX+gHPi/D48Sqz5bLvm0HV8Opszz3JarXloarJYcVWMiMTXsu2FP9y2bUsRx0yTlNZovthtqYee784vmGcZ2tkwE0sSqc4y4CQc1G+Oe94e9zwd+UJwwLqusBKu8tKPFvg72bMrPfd1TSQEF4XfMPuuOrKqKz6YzsK/4RiclwtHQlBr7QMqYx88elcd+Hy7ZpkXfDKdE0cRte4ZjKGM0zNeEUnl/flDz2fbNb0xfDqbM4pT/947H4axyAr/G4ZD22J5qGvWAZuZZjmd1rw+7Iil4vlkEi6L0DXgO7JN06CE5G//8/4ifu2Hv8R4dIDf970/wT/6H/xb3NZHnpcTnpYTEIJt29AZwyLLz9rfU3Sxc7AfOpqhZxSnlAGZ/2y74jj0/Njsgsu8RDvLrm2QUpxnbr8eWxCFtuy+rgHHMi+IpOShrvlit2KRFXwyXZCqiEYP9M6QqZg4FJeSglh6H/G7ylN+T0YjZklOozUvD1sE8OFkziTM053x6LIk2EsFFMrbS98e93x12HKVjXgx9o6qVV0zOMdFnofZFk6LKLS1rLsaax2z1INuD1XF5+F3/zT87rUeGKymiP1CQm09BRZJSaM1X+7XNL2fM8s4Yd+3vDkemKUZz0q/UFJbH6qhhKDWA7UeKMPocex7fnZ1x+AcPzm/ZJ4VtHrgMHTkcUJxZgO8kMbieHvc89hUXBcjFnlOO2jeHvfEKuL5aOJNKNadR6veGHZdRyIk4yyhN5avdhtWbc2nsyXX5RhnLY3R54N3sBasT+IVQnBbHfhyv2GZFbwYT1FCsu1aBmtYZkVId7UITqDowJvqwGA0z0cTEhWz6Rru6yOX+Yjr3GfCn+g6h2PXttRmYJJk58/ys82KWCq+O18yin1nqp09K+WOvc82KOOEi7zgf/OX/pXfqL6+VYVuneNX/J9/Fx+OZ8xCK3RbHRBC8LScnNsh7bwlE7wc1lhHEUckUrHpWn5+94BSik8nC8ZxSqV7HtuaIoq5zMKKX/t1/tSw6z0yP018Jvjbasfr454nxZgPJlNkkHwO1jCOvcjifYS0b3vvqmNA5keUccR2aPl86x1s351fUEYJvTG0ZiBWEYmQIQ45GC6c1wXc10eeTMZcZH4187vmgHWO56MpZeTBK30KmbBwHDrAU0MAr487Xh43PBtNeTGaIqVg37Vo55gkKan84YjiRvvP2VrL9XjsVWRNxdvjgcu85PloEoA2fZ7De2MYrCGL4jOV9P39Azj47mxJmaQc+4790DGOEiZJ7q/icNMZZ3loKvZtz0VeeH287vh8uyKLYr4zXVBECYOzPoRB+nCRptfEkSSPYjqj+Wy3Yts158N8sIZ93xFLxThOT94fIulpyse65t1xz6IsuMwL7/irfZf1pBgxitMzXiGEOFN5zjqWpefW3x333DYVT4sxz0bToDXQ/nWEpNYDnTGMouQ8Mn5v+0CqFD+xuKaMY9pAKWZSocJzIAOl2BnD55sVm6HmX/oNv5FPp8sfWV/fqkIH+N1/8o/zf//Bz/LlfsM0yfhwMiP/Wqvp22TB8DVUWgCPbc3r444ySng28ptO103Nuq25yEuuihIppF/xS5iFrfEbM2REHtxdX+zXrNuGD8dzrooS4yyrtsY5uMxLMhVhg/JeINDOsOtanINJEpD5+ni+ST+ZzMNMN9BZTRklHkgK4I4SXnd+Wx/Y9x3XxcgfTkPH59u130IyW/pR4fQZCL/MsTMGhTg7tF4dt9zVFU/LMdf5yC/yawJqXozJotNaK+9B741h23lv9izNfDpstefVYcuL8YwX41lQxHkB0kkvb5wjDsacXdfy5d7bYF+MZqQqYt3V7LqWZV6wzMIec+c4DfS73qfMzNIs/PmG720eKVXEjy+uyMP40FlDHlyBOoiXYqXo9MBnuzXHoefT6YJpklHrgcemoowTLvOS0/ZTEejWXdey7homSco0yWj1wJeHLdZaPp0tmcQhxsl50xEWjtqzFuMg5nl52PHmuOOjycIzDsI7D0+dmMWzHonyxbtuaz7brclUxMeTeaBlWxqjmcRpYJX8Txy+j68OG3Z9xwejKX/5hz/O/+BX/gXfqL6+VYV+Wx/4Nf/c7+ZpMeb5eEYkpG+TjSWP/I1tnAPhbxXjLI9tzaqtmac589TLPt/UBw5dywejGZe5j2/qtHdfZScACk2qYmIpqfTAF7sVzTDw8XR57gJeH7cUccqLYkIanYArc14wWOmgmQ8U0cvDlrf1gSf5iKelP2w2bcNgDfO0oIjeL5IQ8n273RvDPM3JVMRjV/Hzm0dGUcJ355cUcUKrBxozkKuYREbhNodYRQxG8+a4Zzu0PC0nzJKMWve8Onql3wej+Tm9ZrDeRmlxVNq3iP7/5/hiv+a+qfhoPOOm8CETu77zh0CS+5BJ5/++EIJD33FXH4mE5Lrwa7Buqz2btuH5yM/HOOjDAgclBLUJB0YUexS+rfj+5oF5lvPJOMQ+9R2NMcySlERGwWknUAG9fl3t6IzmaTGhiCP2fc+b445FVvK0GAfswHvCpRAcdUcdPrtRnHLoO35uc4cDfmJxzTTJfJelBxLl0fveGaTzwaLaOb7crblrjnzwQ5+NPyDnSX6OHjstj9x0La+PO++3KHyHtGprqqHnMi+ZJvkPPwfOcN8EnUbudRq73v8b/8Hf8JvP4qNf6OdbVegAf/+/86/wc9t7dl2HwzFNsjOXfAJhjHWsWq8kW2S+gA59x2e7FdoaftniglnmuU0vkVRnU4kLWmOJ4DB03NZHBP7Gi6Ri1Va8qfbM05QPx3MS5VtWj8x7vXYXgKs0WDZfHnfe0FFOuEgLBudvaKTjaT4J2exgnDk/FIehB+cYJT7W+bb2nOpFVvLR2CPzh76htYZJnJJF8SnY1SOy1nFXH2j0wHUxIlMRu77ls+2KUZzwY/ML8rAXrDM+zshz3oZYSJKgOvvBfs22a/h4smCR+XHpvjmQqIjrfHQW+/gxB+pBs+tbEqWYJj5e+svDhk1b8+ls4ek76404UgpSGZ9TcdMgSX5oKr46bpknOc9GU6SAx/ZAby1XWUkZ2ueT422wlsemRlvDRVaEQ+LI6+Oe66Lgg/H8LE21OGIZeQmz0RRR4rPqupbvbR8RwHdnl4yThEb3VLqnUKnvVkI9RMKzFq+PO9Zdw7NywizN6IzhrtmRyoibwu+N9ws7QxiGHnhsKxKpWGR+LHhb7f2lM/GsjbN+9BT4A3PXdwzGMEkyb9RpKj7brZgnGX/Xr/rL+Os+/eXfqL6+VYX+M+s7/tY/+gdIpeKqGHuUNbSaJ9rpOPgDYBylKCl5aI58tlsxilM+mSwo4oR66Nn3LXmUMEszfGiRB1Y4IcR9Q6YUs9Qj828qj5B/MJ7xtPQPX60HjLMUUYxEYpwhEt7Z1Fntkfmh59loShmnHLuWLw9rMhXzyXRJEcUMznu3I6mQQGsGpJDkKsbgeFPteFftuSnG3OQTHI7HpkI7x3VRkisfNWUJn4G1bLsGh/OjgpDcN0d+sF+zzAo+GS+Igyurd4Yiis/Wy0iIIDAZeHncUeue5+WUUZinXx63jOOMD0ZTksgXi8WFQEZLY3pSFXv+Xw98f/dAFcDOZTZiMJr90JKqiFGUQGibo2AqWnc1t/WBWZpzmRUM1vG2CuaRcsosydDOhT3hfqY+DH75zygOop/jjlfHHc9GE16MZgFj6DEOysgnBOlAiSkp2fctn+/XRELw0djLnHd9y6HvmKU5s/T97Srx+XX3zZHj0HGRlYyihH3f8eVhTRklfDz1IikddPmRlPTWcBw6Ehn5+Vtrvjps2HQNPza75DIrsc7SBcVjfMoiwPsxpBDc1gc+D9/hx2Nv1x3HCf/YX/wbvlF9fasKvTOav+uP/Yvs++6H+F3r3JmWyQNq+7ba8q7Zc5mNeFJOfFpqU1OZnoukYJqefMmnedoDd43RFFHs43/NwGfbB/a649PxkotijLGWfd8CME+LoKP24J8Mc/FDU2Gd5SIg86u25vPdI8us5OPJklQpGu2jhbNzmoufi5OwbPH1cc92qLnJRyyyIqC6O5SQPB/NKKMU+7VlFM5BrXtEEPGA4/Vxy5tmx002DjejZNc1GOcPgVydBDg+CqnTmoemYnDaH6RCsupqvtyvWWYlH00WJELRnkC3wP8OxpCoiEQpqqHn53f3dFbznekl0ySjGjrWXU2hEi6yktPOdSFCamrfsu1bpknKJE1phoEvDiu0tXxncsk0zdHGz+SRVCgEbYi99t+35VW15W2953kx5Uk5xjnBtq/BwTwrPIIfWBiJ4Kh73lZ7Iim4KcZIBPdtxa5veFJMWGZ+tDDOBNGu1170xrsOYxXx2FZ8tn1gkuR8d3ZBquL3XgDplyq0xlOUqYpobc/Pre+ojOa7k4uz7uLQ98QqdJXWs0SnLIL75sirasM8zXla+GTdTVejneMqG/F3/9k/xS9f/CLuXvv/9+ebtu7/yuvv80/87B8nk379kHaWONyivTG8rnbs+pYnxZh5mtMbzZt6j7aWF+WUSTihB+tzuDxt5u2qRRQTScWhb/n53SPGWr4zu2QcJVR64KE5kkcxV/nIo+BYH9SAoreafaA+xrFXwb2utrw+7nhaBnRbSA59i3GOcZIQS3Vut0/g111zoB56rssJhYrZ9Q0/OKzJVcx3phdBxGJoA8cthaS3GoUkixSD9QV+3x55Wky4zLwH/b4+IATcFBOy6CQgOoVsOLZ9g0AEkYvgbe2Vfk/LiW99CTO0tRRxctZ0RyEy66h7vjpscM6dQbdt13LfHlmmBTf5GCE96GYJxTZ0tMYDkHkUse87fnZ9h1KSHw+HRGO83j2LorNrTgpPVWpneXXY8tjVPMvHLLOSzhru6wORkjwpJiQywoX/ZKD7Nl1DJCTzIEN9We3Y9g0fjRZc5iUAnTFI4YiEojH63LkpIbmtD/zgsGaW5HwyWZBIRaUHeqMZB9/FyaASKY8j/WC/ptEDH40XTGKfi7Bua8ooYZkVZ3Dw1KlsuoaH5sgoSrnIS4w1vKt9jsDT0ZRJ5OXBf9ef9VM8K6c/sm6+dYX+D/+JP8yfXN2ek2C8gGDgvj2ijeGyGJPJiG3f8oPDI4mI+O7sklKlDM6bSiIlSWWExp/WkfBquU3f8Pq4JYtinuRjr6DqGh7aAxdpwU0xQQnPhZsQYTRYQ2s1qYzJVOTVYoc1j92RD8sFl9kI6yyPrdfMX6alF4DA+YvV1rDuG5zzmEMkFQ/Ngc8PjyySkk8mF6RSUeuB3mpy5S2PBvs1T77hTbVn37c8K6cBme95edyQKMVHo/d0lAcM/W1amwElJEWQw355XHPb7PmwXPCkmGAdbLsahGCe+A7FCR9ucSqcu3aPQnKRj5BOcNfuuWuOPMknPC2nwXHW40JqTmc8N5wrn+++6Rp+fv9ILCSfTjzNeOhbKjMwiTPKKAF5ek0/ot01B/Z9y00xoVAJx6Hjq6Nvnz8czcmiJCQBe3BUO0s19MRSUkYpvR34fLdi0zf82OSCq2LMYCyN9jFOuUoCe+KBXYHgoT3y8rhhGmc8K/1YsO1qBmtZpGVAyX13J4Sgs5p39YFODzwpp6RKsus73lZ7FmnB0/xkvHl/EB2Hlt3QM4oTxnFKrXu+PKwZrOHT8QWztMAE0HeWFfwDf+5fwTj5Jehe+8f+k/8X//7qJQJBowd2Q0skpEcqcdxWB15WG27Kkg9G/rSt9UBrenKVkClvhMGFdUQONp1H5sdJyiIuGJzhbb3nYGqeFTOu8zHAmSf2N4vDWL/v+qSI+uKwph56Pp4smKYZjel5U+/IVMyzYkomw+zm3kcLV9pHKHv+G15XW17VG55mMz4IFtVd36CtZZp4TfwpWcUHL1gemgOdNlwUJZmKWbcNPzg8Ms9TPhkvyWRMZ7VXugkfznFSunnQTfPFfs2mb/hwNOciz/3N2ByIpeI6m/iI4q/xx63W4bP3oJu2Xi340FV8OvWfmXPQ6KB3l17j4Nx7GfKma/jysCGPYp6VMxIp2Oraz7/piGmS4dx7/MQ4y6bzm2XmaRmot4rP9ivmWcKnk0tS6Q/bwZpz+9wZTSy8lbY1mu9tHjiaju9OLllkOb3TAZOJmMY5OM/zebOIYNXW3DZHJnHKZTbCOM1Df2CwlqeFP1StDVhRCELZtA3GWeaJv63vmyPvug1X2ZgX5dwHh1qPcURC0ZnBG29UTKpiDrrjZ9e3WAE/Ob9klvik3Nb0xDIilhGZjPgH/7y/mmmS/8i6+dYV+u/6j/8w//bDS1qryVR05tC/PK5ZdRUflHOuMp+ptR38hz2Lc3/aOi84P/G2u6E5c5ZFlFDrns92D/TO8J3xBfO08JtWTIdAMI79IgbjvA1RCUGle26bPc7BTegC1n3N6+OWeVbwQXFC5g2D0yQi8vPwGZmPGKzm5XHLqqt4Uc5YpiMG5wtNCsF1NvaourUYAdL5keUwtB50i32e+V2z56vjhstsxIejBbFUVIP3PI9iH5dk7Pt94r3WvKk96Pa08OEO+77lVbVhFKV8MJp7e6i1Xp0V/n6je+Lg8uqM5geHFZuu5tPJBRfpCO0M+95vVp3GWYjoeh+LvOtb7poDuYo9vekc75o9x6HjeTlnkeY4R0CfT4i1d9GdZKcPzdF3PGnBx6MlsVTUxrfPozghEioEirw38nx1XNPong9HC0ZRylF33LcHJnHGVTb220+dPXsSDkPHbmgZxSnj2Mt2vzys0M7yyXjJNPFArXYGiX9vtT5l9fmliW+qLa/rHU+LKc/LEzg4YJ0lj7yASVtDIn13cxhavr9/wFnHp5MLxnFGZXqOfUcZbvlTrPWfMX/Kb/0zfuob1defzv3oM+D3AL/cf2z8zc65//ef6s9/00L/LX/s93MYOiIpOQ4tX1ZrOjPwUblkHIQOt/WOWEXc5FO/9M7as+sLB5XpsdY7gbyltebnt3ekKuI7kytf9Mbrk/Mo+SEu9JSx3piBzVCRCuUth87xrtrxptnxvJifW7ta95gw/4sQgKCEn2s7a3jTbDj0DS/KOaPYA1dfHf1M/kG5II+Tc6vm5zcRkHnhOW6sf5iqLc+LGU+Kqd8E09UY55gnQcRzQo6DGeJx8OuULrKSSChW3ZEvjysWacnH4wtioWiNZxUSFYGFIeAhiVI0tufz/SOV7vh0cskkzmlNz31zDApDz1n/UNa67tgONUWUMEkyeu0PiVp3fDq5YpmVWGtpwjgRy4jBmjP6jIDbaserZscyKXheTBFCsu29FmGRFuQqOVtxT1TnfbenN8Zz1kKx7ire1jsushHPivl5vbHBEgtJbQYaPVDEEbmK2fct39vfY63lJ+Y3TOKC3gy0VhNLRSp9OqxEnLGbN9WWt/WWp8WMm3wK+AQkhNcdvAcHvSiq0j2vG78O/HkxJQ3j56avWaYFs6T0dlb8M+ico7eG3/uX/CKHQwoh/ing33DO/R4hRAIUzrntn+rPf9PMuH/85/4I/+bd57xrDl6MkY2JlOe3b5s9kyjjxWgeKA5N7wyxOHHEGoEI7TvcNQdeVxtmScHTws+S675mP7RcJD78QeJvT/APaxMeglTFFCr2p/xxxaav+WR0wWU2xvB1ZD47P/AiSEpbo3lojhjnuMhGHt3ua76q1kyjjI8nF6QyojMDmlMXINHWhyAkQZv98rBm1dW8GM2ZpyWD0dw2B6SAp8X03MVYDAKP7O+HFolgnPj1xW+rHS+rDU+LGS9K/9BXQ4sTllKlIdTQhg5G0eieV9WOwWqeFzOyKGHb17yr98zD5xhL7x6z+EOt0T2N8W1pHsUch57v7+5p7cAvm9wwTwt6oznojjxSFNHJg8454eWhOXLbHFikJRdZ6XP2uyPGWW6yydkfcJp1hxPN6GCa5gjgXb3nTbPjSTbmxWiBkoI+iHROnctgDYmKSYRkN3T83PbWp91MrhiFmfkwdEyShFGUno07sfQ5+O/qPauu4jofM08Keme4qw9ICc9KP74ZHFiHkPL8LEhgmZYgJPfNjse24kk54zob++/A6fAMSo5DR617fvNP/mX8l57+sm9aj//5F7oQYgr8h8An7hv+I9+k0Fsz8F/9w/8EqYqYJF7l9rbZ8dgeeRZOTil8MWrrTSUnJZQMIQLGWm6bA7uhZpmO/JdhDe+aHa0ZeFbMmCcFDhisz/6KEXTOnH3ssYq8BPXwQG81n4wuGScZjR547A6kKuYqGxMJhcOG5YwwGMN+aJBCMUn8Npd3zZY39ZabfMLzcLtUukc7QxH5TaJfj6vqjOZd49vtJ7nXth90x1fHFUWU8mHp3WfaGH8DS78vrjPesluomMFaXlVr7rsjL4o5V9kYi2PT10HNVZDIE/Xmgzpa0/PYVYBjmY5QUnLfHHjb7LjOxuebsTMaiz0rE082zlhFHIeWn9/fY53jO5NLyshLeXdDSxmlzJP8HJB5Wue07it2fcssyZgkOY0e+KpaA/DxaMko8tFcwwlgxLvWfDCJj316XW14FzqtJ8XUW4V1BzjGsRckGVwAZSWHvuGrak0sFU+LGamM2A0Nu75hkZbM4uK8RUeGQ3zdHTnonkVSUMYple748rAiUREfjZaUKkU7E9Jy/TN51B0S+T6eqtpw3x74oJjzJJ9CMFIBpEJ5zYXT5NKzQ4M1/B/+wr/pF08ZJ4T4lcA/AfwM8GcC/x7wW5xz1f/Xn/tNwG8C+OCDD/6cr7766hf8d62z/CM/86/x762+4rP9PZqOj8srFpnXnO8DRTSOc6/YsuFBDRr2x77yHu60JFcxh6Hly+oWieTT8RWTuPDIvBlQSFIVhxPbAyYyKJXeNBuUUDwrxmRKsekb7pods6TkJp+e6RXt7Jkjb4wmkYpMxQzW8MXhkfVQ89FoxlU6wgjHtqtxwDwZhXx3jzQL4eOqVl2FCQhvJCSrruJV88AsLvhodEEiI1rrM89TGSGFv/kjIYhDh/Cq3rLrGz4op8yTgtYO3NZbkijmOpuSBm79lKfXG8Nh6FBCMI79brTX9YaHdsuLcsaTfA7Ct+U4gnfebyPxwZl+7nxZbZBC8KKckknFZqhZdzXLtOQiHYe/Y09PBoeh9VbbOCNTMYeh4fPDOySCH58+Dci5pjGaVPqQy96a0PKH7PRqw0N35MNyyjLzgQ+brkJJxSIpPXPxNRVarXvu2yNKSC7SEUI4Hrsdu77mJp+F39OPMCfs4Dj0dEYzilMSFbHtKj4/3no6dHJDEYxKvdXEMvLpRvYUz+3Vh19VKzbDng/KC67Ssd/kotuQUZeB88Ebp2dw2zd8eVwTCcnv+FV/Lb/66hfJpiqE+FXAHwP+QufcHxdC/C5g75z7+/5Uf+eb3OgvqxX/tT/yu4mE5IPRBYWKqUzHqqsoooSL1OuGjXu/c9o4w35og/kgQyB5bA98fnxgFuV8NLkkVzG16amGjjxKPJ0TkNeTbn3fN6z7mlzFzJMC6+Bds2XVHv0cVkzDzfe+FTxFNyXKP3zNMPBV9Ug19HwwWjKOczrTc9ceSJTiJvXbQCzuvOLYBLWfElDGPs74bb3lVb3mJpvxovQt6HHwzrlRnAXNf+gCAhbwrt7S6p4n5YxMJuyHhpfVijJK+Wh08UOtayx9J9JoH8iYKQ94/uDwwFbXfFT4EUU7w7arUVIyi0siFcIbnEApTxU9tEciobjIRn5cqrdshpan+ZTLbPxDI5WS/gbT1lIof2tt+orvH+7IRcwnkyvKKOU4tLRWU36NRXkf+2R423he/Ek+YZLk1Lrntt6SRglPsxlZiMc+rUfuzMB+aImFYhR7BuFNtWHVV3xQLs8MQms1UkAiYnoXvmcZoaRi3R357HDPSKZ8OL4gUwm1boNRKT0f3FII4qB9eFmt2XUNz8r5ubNcdUcSGXGRjcIc7w8VKSVH3XLX7ImE4jId8dH4kt/2Z/66b1qTf1oK/Qb4Y865j8L//muAv9s596c0z35TMO63/Ud/gDf1lsfuwH5oWKYjLtPx2W1mwi1qglouUZJUxmgsb6sNd82Om2LKdTbxQE5X0TnNPC4potOKZBfaIcehb6ltT6kSyjj1rWO9otItHxUXXOQTjDVU2ifMjlQKePHDKSCjNT3vmh3GGm7yKYmK2fYVb5stkyjnebkMKSWGwRkiJA5BZwdiGQrNGl7XG1bdgWfFnIt07Omm3jdJy2T0Q4sGZSigbV/jcGcw56E78qpasUxHfFAuPehm/aiTyhgBQdnlnWDNMPBl9Uhtej4cXTCJMmozcN/uKVTCVTY+G2kQ/pZrdc/B+MKZxDmD07yqN2z7ig/LCy7TCdZZWjsg8Hp3Gw7FNKDkm6HmZfVIoVKeFTMiGbHtaxrTs0hKRlF29iacgkFWw5FW9yyyEbmM2Q0NX1aPlCrlk/ElifRiI+0sERKNpTcDkVTkUUJn/Hvd9jWfjC5Zpt7hV+nOU6Aq/aFILK+9qHhVrylVwtN8jpJekdcazTwpffiJdbhg3NHOct/sqUzHVRo0ALrlTbOhjDKeF3NiEQUxVthhZwYOuiFCMk58QOjbesNuaPgX/tL/ERfZ+JvU5J82MO7fAP67zrnvCSH+50DpnPs7/lR//psU+h9//Jy/5z/4v9Jq/9AtkxKHpbMDDkEqvRBFW4+eqtDOvarWHE3H03zKNPZriW+bHQDPiwmjOD+32n6xoVeBGWfJlVew7YaGzw/3OOf4dHzFOKDMh+FIIuNQSPKMigqgMZpNX6HwmnkQ3DY73jVbrrMJz4oFkRT0pmNwjkx5zfxw0sx/7eSvTMezbMY4yWnMwLtqQxIlfJBPSFWCwcthlfC69cp0KARFFFR69YbbdsdNNuNpMQvUYI11jlGUEcno3EUoIWnMwG2zZ7Ca62xKpmK2Q83bess0yng+mvsCd+asAhtCQowfURIa0/PF8YHj0PHJ6JJFOkJbzVHXxDJiFGXnmTwSfuf7tq+5a/cUUeIPBBz37d7r7osxk6T8WtQ1OCc46A4dcgCUUDx2B35weGCeFnxUXpCpmM76hQyZ9OyHZxAksfDjzueHe3+YlRdM45zOatZdRRkpFukIQdjJhwAh2A0ND92RXMUsE++AvG13NHrgeTFhmhTvc/vDe9wPLb01TOPcpxZ3R76qVoyjjE/Hp99z8PoM6SOjWzMQCRX89Yavqkc2fcXH5SV/xfNfwW/89C/+pvX4p63QfyWeXkuAHwC/0Tm3+VP9+W96o//mf+f/hHPQ2YFq6EiUpIwzRAgQ8Go5SWM6HroD1lkuswkJiq1ueHl8IFcpH5ZXFHGKtt4HfkpX7UOSSyq9AWLTHXldr8mjhCf5nFgodrph21dM44KLdBTAlffqps74VJVURV6NZjRfVY+s+mOYw6ZYHIehRQjHOMrPwJ0Iv39rex47n1hylU+JUWyHmlfVI+M458PyikTFaDvQO00c+PneaJRUvhU3hpf1ilV/4EW2ZJmN0M6x6Y4gBBehC3DO4oLKsLcDm96n6MySEuHgoTvwpt5wmY15Xl74WCzrueBU+M0p2p24YEWtW744eL37x6MrisiLh9bdkSJKuUxHnHbTEV73oD3YVSgfQtEazavjI63t+Wh0xTQpcc56ue+ZngxLKJVPTb1vtnzVPLKMRzzLF0QqYt83GCyTOCOR0XnphMcfBt62G5qh52nu1XTHoeW23TGJC66zadiwGmKqBQF1b8hUzDjO6MzAy2pFo3s+GF2xSEdYZxiCQUUFMcxpP50Mv+cX1SPzeMSHowsSGdMYf1jlURIyCE54Q0RvB7443rPXLR8Wl8zTkt4ajNP8k3/B3/pN6/HbJZj5d1ef8zt/5p9nFGVM4mBMgTM40piOfd8Qy4hJ7NVy992Od82Gi2TEs3LpT3HT01lNJuNgtXzPaVrnWPUV6/bALMuZJ34p432746AbbtK5P+WFp2fAWxc76w0NmfS+8Fp3fL6/RQvNh+Ulk8jfFJv+SCwjFunoDBr6Q8rPi7uhQTrBJPE59PfdlrfNhst0zPPCF1pregZnyGWMFCoELwgi6dc/v6nXHIeWF+MF41Bo75otqYp4ki9IRYzhh2/javChjoVKAcubZs1du+V5seQ68yETlfbuwFK9v41lCLqoh543zQbnLM9Kf+PvhpqHds88KbnKZueMNYdH82vd0VhvBc1UQqVbvqzvGKzhO6MbpnFBbzW16YmlIpdJWHXkiKTX7N+3O+6aHZf5iGU6ARyrQL1dpGNy5Ten+pFMMljNqquw1rDIfb7dujvytl2zSMb+kJA+MtqPYL4zbHXvE3NUQqNbvjje0dmB74xvmMYl2hpq0xHL6Ifst7H09tv7ds+7ZsUiG3OTee/DfmjQ1jCNi7Pi8rTJtjWaN82GWne8KOcUUUpjeu6bHaM447/ywa/mr/vgz/9G9fWtK/S/49//p9HOeGcRBiHCHKNPhZuGXeeal8dHtrrig+KCRTI6t1zWGSZRETzcFiGDBdFZPwfqnnFcBOCn42UVaLTxNdO4wFhH63okgkzGOOGNojEKEYQ8b+o1zjmelQsSkXAwHpkfRxlPivlZuWWcJZZ+T1ete2IhySP/ML+qHnnsDjzNF1xlnhY66AaLYxoXxEJhsaiwoKA1hsduz2ANF+mEWEbs+oqX1SOztORF4ZH5wWoGZ0iVxDmCTVaSBNDtq+MDW13xIr9imZaekx48Gu3R6jhoyMPhqnvWfY1E+C4AwV2746HdcZPPuMlPfnBfOH4ZpGGwllTGxMqbfX7+6BmQj8pLRnFOpTuOuqWQCeMkR4iTdNkbP1btkU1fMY1LZklBZwbetlucszwvlpRR5md/a4kib8I5Gs8OlJFfs/2u3fImAJvPimVY2uC7lSxKgJPdNArmnZYfHO6xOD4sPbfemJ59X1NGGeM4R+AC2+NdhavuyGN3YJoUzOMRxnoRj8VxnU0poxTnvMlKCv/ZrPuKXhsWqf+8N/2Rt82aaVzwLF96cdf4CX/rd3/6G9XXt67Qf//Lf4s/fPcnAqKsMC7s5ZYRSiiOQ8PL+gHtLB+UF5Qqo7UDD+2OWEZcZ7MzR+zD8z1tV+sOJ6BQCUoodkPFD463pCrmo+KaIkppTU9lOlIZU0YZwgksoPzYRqVbVv2RGMUyACQP3Y7Hbs9lOuUmm4fWXvsABOHnYotHumMZ0dmBl8d7KtvxLF8yjUoGp3ns9kQy4iKdkAiPzJ+AqMFpDkMDCC+HRXDfbnnbbrhIxjwrLlBC0RrPz6cqQTmJFQZF2DlnBt40KxrT8TRfMIpyatNz127IVMJNOvfdByf/v3/d49B6n3WUop3lTe0PpxfFBVfZDIej1l3Qu5/2oFuU8JtQDrrhdfWIkopn+SLgITX7oWaejJnFJSDOnD7AYaipbc8kyslUSqUbvqjuUELycXlNGeVoa+jMcKa0BjecE2Wtc7xt1ty3W26yBdfZ1Hvbtbe1juL3tlYVRE617rjtNlhjuc5nJCrhMNRs+iPTuGSZeEDY4LsNnONoWg66ZRRllCqltQOv60ess3xQXDKOi6ABsOEZ8q9jcZTKuwgfuh2vmxWLZMyL4oIotPLGWkZRzm/9iV/HTTb/kXXzrSv03/Yn/mmO4cMQDlQwLuyHJhSD4iL1LrNtf+Su2bBIcp7kSx+tZDXaGt/2gV9vFDhz5xwP3Y537YZJVPAkPwlYairdMo1LRlF+ni/PPnbTc9QdRZRQqIzeDryqH9n2Rz4sr7jM/EbPSrcQADJx5poFUiga03Pbbhis4TqbkquU/VBz224YqYRn+ZIkStBWh1RQ/yC2tvcW1QDIva3X3Hc7nuQLrtMpDsdR1z6tJirep/GE2biz/hDR1rBMfcjjpq9426xYxjnPysswJ/oY5FMya3eWf3oA6avqgf1Q82F5xSIp0VazH2oiqZjE5VlYcnJ2Vbrjsd+TiIh54lca37U7dkPFs2zKIvPWSx3a/BNAqJ0hV0lA4Y/84HhLIiI+Gd9QqJTOdLSuJ5Opb58DOBoLhXaG23bDuj9ync2ZBQPTut2ipOIi8YyIOykhhaSzA+v+iEAwi0uEgMfuwGO35yYbc5UtgqxY/9Dv2dmBXCWkMuagG35wvMPh+LHRtddrWE1nB5SMiEXE4Ixfdx2ew7t2y5t2zWUy4SabE0lBrVu0s4ziHIWf33/Lj/86nuSLH1k337pC/0e+9wd4Uz167TmO/VBTm45cxoziAm0175oN637Ps/yCyzAXtqbHOJ8Jd7ohVEjYtM5w3+7YdkeW+YRp5NHhh35HbzTX2ZxJXOBwZ1HHaSuHV+AlpCryX+j+HQOaT8onTOKS3g7s+4pYxUzjHBUknSL819qebXiQ5uH2WvUHP8ulY54Vl8RCeTT2a4EGp2L3rbg/WPZDxbP8gmlc0jvDY7tDScVVNiERCQ4TVHqCwRkOg2+3R7GXiN63O97UKy6zaegCPChorCGXCUJ6GW4kotAF9Lys7mlNz/PikjLKqG3Hqt1TRCkXyTQsojRn6q3RHUfTkoqIUZJ7Y03zyG6o+LC8ZplOfNS19Uq+RESha3MkIkJJwaY/8rJ6IJcJz4tLIhVxGGpaOzCNcwqV403A7xNlV92eamhYpBMKlVKbltf1I6mKeVFckqkUYw0aj1lYa6lMhzw7Cx1v60fu2z3PiiXX2RwhoLUDOLy4Khhc0mBQ2Q8NXxxvkQg+LG8o4ox6aGltRx6lFMrvHYCQsoPlvtnx0O1YJGMW6RgHrLsjDssynZCp01ZYx02+4Ld89zcQhWfiF/r5VhV6bwZ+1/f/OR7aHZVp0caSRylZFFHphq+qOzoz8PHoiQdHnOGog1ouys+3oM9V82ERq36PdgPzZBzAoIbX9QNSSD4orhhFOdr5fDElJTGKwRks+AdPSHZDxbv2gUgqbrIFmUw46IbtcKBUOct0ghIR1pn3ijOrqXRLLCKf3+0Mt82Kx37H02zJZWjHat3hsBTKA3Pv20lJpzXv2g2GnqtsTiYTjrrhXbuiUBlPc6+Z1wELOJk3WuuVf0WUoJ3hXfPIY7/nJltwlc5wwFH7OKpxVJzxBCnkeYHAfbcBYblIJiQyZjscuWs3zOIRN/nyjBz7qClPGTZmIBUxeRTR2Z4vqlsa3fJR+YRZMjp/X7GIKKKwN96eREuCXV/x2G/IVcpl6m/8dX+gsR2X6YxxVOCsw4r3xo/dUDNYwzTJSaRiOxz58nhHGWd8WNyQq4TOanRQrgk8Gu/TfhIGO/CmvWfbH3lWXLJMJkG+6ldSjaL3sl2FREhJNdTcdisUiuvc4zEHXXPULdOoYBqPQHAGB511rPsjlamZJgWlyuntwLvWS32fZUuKyKsSbcgV1M7Rm4Hf8St/01n/8Qv9fKsKvdEdv/1nfi+16YLRQ7DtK940DyQq5mm2PBfrpj+Sq5RFMiFWPrrInYvs/QFQRn6t7qrb87K+ZxIXPA8nfGd6WtOTSE+TWTiHHwDshppVvyeTCYvU70Bf9Xu2/ZGrbMYynQQziQZhUCJCWy+HTGRMImNa2/OyuqMyLc/zK2axf+A3/ZFISubx6KxUA99O9kazGY7gHNNkhESw7g+8bR5ZJBOe5hchZ923un4PvE8TjYQiForeGV7XDxx0zZNsySweMTjNqt2jlOIinoSADHtGyHs7sBtqhBBMogIc3Hc77to1V9mMJ/lFALN6BJZE+Vgv7w2PUVLR6M6j6mbgwzBPN6Zj2x8pooxpPEIJAdgQOeU46obdUFOolHF0ygt4pHMDz/JLprHnrAerUdIhAx5hHWTKL6J4bPe8bu4ZRyXPi8szK6KdT7iJw4EokURC0TvfaRyHhifZgklS0pqBTX8gkRHLxI85p87BMz49694n387iMU44Htsde11zlU5ZJBM/wqDPnVWlOzo7UMiUVCUcdc1X9R3CCT4ePWEUZWchVaxOB+2Ac/BT138Wv+75r/lG9fWtKvRat/yeH/wL3Hdr1t2e7XBgHBXM4zEWWA97Dn3FIpkyT7zBRTsPdiXhFOxsTyTCTOsst+2a+3bNdbJgmc28qWGo6ezAJCrJoyx8KZYQysJhqKh0Sxnl4fTtedM8UOmWF+U183gSlHkehEplghD+oFFBCFOblrftI9ponuRLcpVT6ZaH7nRjLYhVHKgoP8trZ6hNixLKU0bOctuuuGs33ORLrtJFEPt0WGfIVY6SETjPPcvAf993a1rTc50tyGQauoBHcum7gET6m946c87ka6xXh2UyxTjDm/qB9bDjaX7JRTrHnTEIKKMcJUI0En7zajO03HZrhICLZEaiYnbdkfVwYBqNuchmSHwXIITvWhrd0tqBLErJg6T0ZX1LbwY+Gj1lEo/pjZ91IyGJZQJ4ZD8WfqPNut9x26wYRwXX+RLhBPvB5+JNYk+9gefJ/U2pWXU7Wt1xkc1IpL843jYPlCrnSX5JrBKM1efvpXeaWntK12M0mtt2xbY/8Ky4Zhl73URvNUJA9jWsKA0H4H6o+OL4hkTFvCieUCpPibamJ1UJqfSjlxAEtsWx6nb8o3/2336m736hn29Vob9tHvlf/ez/kToAY4XKqE3Hu+YBbTue5dfMkvEZpBLgEXbAWEOsorOA4V37SKVbrrNFAEcM626FEIJlMv+hVkkIiXDCjwvOkKuUWPpx4cvqHdZZPi6feJ+yHTgODbGKGKkcTiCUkEigNh2rfo8Ugnky8Rxuf2DdPjKPJ1znF96M4nxOWSwUBsdgNZGMSETE4DRvmgd2w5En2SWLxIs09sMREMySCXFA5sHPxoPVbIcjFutvTSSb4chdc8s0GfMsvyaSEUPoAmIZ4cLfi4Qill7f/bq652hqnuVXTOMC7QZ2/REllH/dk1HEhTgl07MZjkghmMYedHvoduz6NRfpgqts4dtl5xcpRnhgarAhV19EVKbli+otzjk+Lq4p45zODBx1TS5Tijj37zR0Ww7Hdjiy7vdMopJpPMI4w6bfMFjNVbakiHx24Ck22jqPuhtnGEUFSig2w57X1T3zOOdFeeM/AzMwYEiE71a8WCl8Pnbg5fGWo234qLhilniZcqUbIpS/NMJIcdqfvh8q3jaPRCieFj4hp9IVtekYR4XHGwLdIMPotR72bPsDs2TEX/P0L+Evf/Kjlzh8qwod4H//+e/nTXPLtjvwqr4lkTEfFE/Io5zBDtSm/aEZD/yDroQX06z7HcZZlsmUSMYch5q3zT2ZTHleXpMFO+FghjNYN1i/bSMRcRgXDrxp7slEyk1xQSoTatNw0BWlypnEoxBU4QWxEkFrW6pwAJRRgTGGu27FY7fjSX7BVeaR0870fpGE9HHInsNVxNL7um/bRxrdcZ0vKaPCKwCbFVmccZUuSIJQw7qTHFbTmDaMKT4g465dcd+tuUzm3OQXCCFpTYdxhlxlAcvwyiwlJZ0euO0eaYee62JJrjIa3XLbrCjj3L+u8vnuJtzigzW0pvE6cuUXKL6tH9j0O57mV1xmCxw+GgkcmfJzprGn1cpwHBre1A8oobjOlyQiprKeehtHBbPYm2Icpy2ocNQVR1MzUgVFlNPqntf1LU7Ai+KGMsp/SGHnmYfery1WfkXTfbvmtntgFs14ml+ipKTRbQiIzM4AnzpZh3XPq+aexrQ8z64o44LO9uyGI6lKmUajs6/e40NQ6YZVv/Py6WiMEJJ1v6PSDct0xizxjj7rgioP2A9HWtNRxgW59MzDb/vlv0SVcV8e3/B3/ke/k0U65SJZIKWk1h55L1XOKCo9OGIdQpxmp47GNEQyolReLbfqt9x3K+bRhJv8kkh6gGiwmkTEQRTiNXdREKbshh2bfs8oypknnnvd9Dtq07JMpkxi/4XpQLV4mWXvZ7AoIZYxne15Xb2jti3P8xum8QTjDEft1+OOogKJOhtrRDC3bIct1jnmYTbc9gfuuzWTuOQmuyISkafeMEQoTx2GwypVXpN+2zyw7rc8ya5YJBMssNdHACbR+LyM4cQIDHZgq3fBGjsNlOWeu27FNBpzk3te90T5ee7Zy5NjEYWYrJ6X1S21qXle3DCNvevtMFREUjGKPMZw2hTq59aG7bAjQjJPvSJv0+/Z6yPLZM489htv9dfQ/Fp3DHagjDMSGXPUFV/VbxFO8NHoGaXK6exAbz23Hgs/nnhKy7/vVb/hoVszjycs0wXg2OsK5xyTaHTGHHybLwJWsqE3A4t0FkBYDxiOVMFltiQKrAH+b9GajtrUxCKijD3Qe9c8UpmGm+ySeTIBh6fbBEg83jCYgSL2z9BRV3xZvSGSEf/L/8Jv5jvjD39k3XzrCv3v+5P/yJm3XA87tDMs4hmzEJD3/kP1mvPeeeArlQmdHXhT3XGwFTfpJcszwlz7IL84J5LvN3KcTu5Nv6c2LdN4TK4yOtvztr6nt5pnxTWTeATOYukBiGQcEkgtsYhRUlINDa+aO6+WK67JZEpjW7bDnkxmXKbjMytwAne8EKZGoSgDvffQbrjv11wkc26yi+BuahFCk8oUERZJSKGIhD+83jV+TLnJLygjj+g+dhsioXiSL3wksnPBgOH//nHwXUARXGIP7Zrb7pGrdMl1eN3OdAjh1YguhDd6D3pEazreNJ56e5Zfkaucxnas+y25yrhKp2FDqD0DU43pOeqaRMQUUREOp0d2w4Fn+TWLdArOhc9ZEAkfNWWwJOI06x75sn5HTMSL4oYsSql1S2M7JlFCpvIQCeaZF2MNq37HbjgyS6YhJsqwGjY4J7hK5165hlc/CvwBsx8qLI5xNEIg2AwHbtsH5smUm+yCVCg0g1cuEvanu+F8iXS259Xxltq1PMv8ezPO0pqOVAoS6XUR1vLehz4cedXcERPxvLjhx8Yf8Rs//mt/8YIn/tP8fNNC/0+23+N3fu9/SywjnuZPyFWGcYbBDkgEsYzRznhJqvA7rmvT8ra+RVvN0+KGIsroTM+63xLLmHnsQReHwVmHkD559Kh9BHOufATzYah43bwlEhEviqfkgQZpbUcs1Ln9BH9I+Jy0mlW/JhIRi2SGFIrdsGc77JlGY5bJIhwoOshZfWhF53piFKlKGdzAbXvPdjjwJL1kns6xzlJpH1Qxjspz1+FvRT9urPpNSCKdkoiYgz5y2z5QRgU32RWxTDDO8/MquLN65/PaUpminea2uWerD1ylFyzTGdYFAQ6OUTTyGEJQyp20Bdthi7GWeTolFhF7feSxWzOJx1wkS0/XYcLiC4nB0JmeVMYkMqGzPW+ad1Sm4Xn+5Nz1NKb1SzpCV0YAN4WAg664bx5JVcJFugw68iONaZjGE9/p4TFywv886CONbpnEYzKZUJuWN+2tDxXJbsijPKTk+M5IOEFj2yCw8sGOD92K++6RZbLgKn1/8DocaVACnsaoSMa02r9Ga1qeFU8YRSW9GahMRSwTSlWcgUwRAMLjUPHQr4lFxDJd+DAPfaSzPf/Qr/j7zr/LL/TzrSv03/of/r0s4gWRjOlMR2d7UpUGQQiAQyJD6knNut8RyYhZ7IGvg96x7taM4zEX6YU/GKxGO4MSCucEgxsQQpCGf3Pdb7nrHphGGdfZJUrEVLqitR1FlFOoEeGlCU8TtWk46ppUJoziEmM1q/6e/XDgKr1ikfhklt72ASX2cULaeiBMicij+fUtnet5ml14hJ+BbRcOqGROdJbDnnaueRuon8kLBCK0pHcs0xlX6SVKRHS28zFP6qTSCw+j8BLL2/aBytQ8zRaMgvBn3W2JpGKRLMLva98bRYzhaCqkEJSqCDFQW1b9Pct0wVV2gRQRvekxzpBIH29tAvAXiYjGtLxu3tGbgRfl9ZnR2PUHsihhHE3PIZ2hZ6fWLbthTypTJrHP0F8PDzS64SK5ZJr4NVbm7JeXtLYLQqeUSETshwPv2lfEIuZF+ZxUZgx2oLc9kUiIgrZfIr2d1xkeuhWrfstVMmGRzHHCcdQVzsE4HhEFsO5UrJ3teejWHgxMp2QqpTYN635NoQoWycJ3dOEoOo2ch+FILCLG4b1t9YrjUHGZXvDnL/9c/pqnP/1L80b/ow//Jn/o9v+JcZaRKslUFhBXe37DR13TmIZMZhRRHtxKK7bDnqvsgkWyCJbMHoMlFfG5ZZVCnndtP3ZrdoH+mSWeItkOO3rTs0hmlFHJyRXlZ3JoTUdvBzKVkQb74ev6Db3teZY/Pd9OlakDTZafb5pIyPAgtjz23gW2SBZEQnHUFat+TakKLsMBZZwJ5hKFc5bO9EEtl2Ix3DZ3bPSOy/iCZRDgVEODw1JGxdm1J4QMh0TPqt8yhJkzlSlHXXHXPpDLjJvimkR87XVDAkrn/OumMsE4E7qALdfhQPObZVsEjjLKkUKdt6BKoehMx333iHOWZbIgVgmVrtj0O8ZRySKZe0Whfb/rrbU9jWlJZEKuMnrb8669o9YNL4qnTKIJBt/pieA7N85TlbGMEQh2w5537S2ZyLjJfYfTmIbe9uQqI5MZNrTrp5y3db/hoI/Mkxkj5X0I636DQHCRLEij9GtuRC/h3esDzjnGsfe17/Weh/aRaTzhOrvy7kOncVgUEdqdusT4rOe4be84DhVPixsWyRzrHOO45G/7zt/yjerrW1Xoxhn+nj/xP2UWL0hU4rPN8FQOCHrXYM4ndUxjG15Xbxhsz7PiGePw5de6BgRlVCKFOsc4+wSQgU2/oTM98/Cwt7bjrr0DBzf5DaUq/bgQABMlPC8q8DeVFJJKV7xt34GFp8UTUpXRmpbDcCRTKeNo4h94HCIAb4PtOOgDSkSMoxLrYN2vWXUr5umCq/Qy5MD16DCXnoQwcbCoaqu5bW85DhXX+RWjaIx2A9t+hxSKeTwjVp4LJ3QB2hoqc+DUjuNgN+y5bW+ZJVOusxt/07sBE3wCAnl+3VjGDHbgbf2OxjVcJZeM4zGD0+x7b8aZRBOiIBP1ICNo27HXB69cjMcIJ9gMG9bdmnmy5CJbIlFoN2CdX7jhU4QGUhn7Vti0vKxeMdiBF+VzRtEoZMnVRCImj/xChvNBKuAwHHjsVuRRxjxeIIDdcKC3HdPYH+B+X7u/Wx2Ow7CjNS3TZEIiUhpT8655RyQTnmQ3ZFGOsea8y877KGok0l9GzvLQrXjsfZt/mV2F/Lge61wYHT2NesrA60zHm/Ydta55mj1lkkzQ1tCYGiUjSjXir3/x6/mo/CUIxv3B13+AH1SfeRWUiIIXewgbQJLATR64be+IiLnKL8/A137YM4oSJvE0SFJtmIU8DeVnTyhV4Wfpfs/b9i2ZzHlWPKVQCdoNdLYjljGxSM5L+KRQ+FDDI6tuTaJSFvEMISR7faAyRxbJiGk8RaACaOhfu7cDrelIZEIi/Ux+1z6w1zuu02vm8Ryw9M7P5IXKES4cEkKgUHS257Ff0RvNMluQipRKVzx0j+Qq50l+EYIqTJBRqjP44x9GTzvddg9shhXL+IKL7AIFdLYOlF9xvsXFKVRBDzz0j/SmY5ktSWVGYxoe2xV5lHOTL3wbi+W0jHJwhkYH4U9wmt03D2z0lsvkksvsAoFjcF6Ak8j0DBYq4TPa6qHhbfMOh+M6uyZTGa1tOegD4yhjEo0BGag3EZJfa/b6SC4zyshLpB+6R4bTaBSNw+uYQF0LGtNirCVTGUpE7Ps9r9s3pDLjRfE8CK86BqeJiJDhsJVCEQvPdty3D2yGNcv4inkyQ0jojGc7clWivrarzaPsHbftA53tuE4vyaOC3vZshx3jOGYcTVEolIz59c9+Ay+K5z+ybr5VhX4Y9vzvPv/HkXhk1+LFLAof4bQbtqGYSybxNMT37DiaA7No7gs8GDNOgQLaagbn43r83Gh57Fes+xWzeM5F4nnmxtQMtidXBanMOEXanB8ic+SojxSqYBSNGNzAqnukNjWX6RXT2GuzBzuclVvGabTTxDINCHnLu+Ytneu4SZ9QRiWD1Rz0HiUU03h2Dgw8zZu97anM0dsro1E46HY8dA9MoglX2bWX3rr+7NoTSA8wCUUkYwaneejuOegDF8kF03jqQzX1HgFMoxnxKf4ZQAjvTtP70JJ6xmA/7Lnv7r72ujHG9UF6GwOOwQ5BgJMwuJ537S2VPnKd3vjXxXAcvACnjMrzweJBRkVrGtb9Cikks2SOQnHQe/Z6zziaME+8m8wYAzLM5ENDR+cdbaGzum3fMbiBJ9kzxtE4ALr9ma0w7r3CTgjBbthy192Ry4Lr7IpIJP6ZcAO5ygNG5M6HvnGaVb/iqI/MkznjaIx2mu2w9b79eO6R9a+l0OpAoxpnmCZT4gCgrvtHRtGYZXxBpPzY44SjVCV/44f/LYqo/JH19a0q9N72/F9e/tNs+y3gAQvrLHvt264yGpGrlMG03He3dKbjOnvKJJ54zbXz9FcsEqzwajn/sHsH2H33QKt3LJNLRvEE4zS7YYvDMouXpCoLpgnLaZVubWp601NEBamMaU3Fu/YNg9E8K14wiiYMbqALaG0mc9xZHur/a2zLY/eAdJplekksY2pTse7W5KpgmV6eAaH3ueDm/W0cAhbW3S2rfs1FcsEyvTwfUNZZMnW6jd93AYMbeOwfaYJCMJcZjWlZ9Y/EMuEiuSJWaTDj2MAOOBpTI4UikxkOy7a/56F7ZJkuuUiugta8xWJIZR7wD4/sK6HoXc9de8dgjlxl1+RqRGc7tv2aVGXM4gVKvN+CekryOWp/AIyiArCs+xXbfs1FesU8ucAnyg6AQ4kYjfaKSOlXNNWm5l39JU7A0+wZZTQKSUMNsUx9VwNnhR3AXu9Z92tGUcYsmiEQ7PWe3vZM4xm5Ks+RWAKBxbIf9jSmZRbQ/NY23DW3xDLhKrshVVnYDGNQ+M6sNn6c9JiNY9eveOjumcVzLvMbfykZjcEQyRhrHU44/uaP/xYWyfJH1te3qtDX/SO/7+U/g3adtzIaH8KfqgyJ4jDsue08/XWTPTur5VrToISiUD56yt/mHvjqbM9mWGOtYZbMiWVCbWrum1tSlXKZXvsCdxYdbn6/KXOAMFtJITnoA+/at0REXGdPyFRGZ1oqU5GqjFKN8Ev73ncCrW05DAcioSijMQJYD2t2w5ZZNGeZXgRlXh+SRz14pglWUeEz4+66W476yFV6xTjcxsdhjxAwjmfE4rSMIYwp4Ta2zjCKJ0REHPSeu/YdZTTmJn9CLBIG22PCvjgnPBshUT5N1Rnu2zv2estFcsUsmeOc5aiPAXken6OeBCdrrGbbr/2NFfu006M5suofKWTJZXoVDrRANTqBwdLZjkhEnmq0A7ftLQe940n2lFm8wBKeBQGZDK43Z1Che2lMzV13i3CCy+yaRCQ0tuaoD5RyxCgeByDXL3P0oREVR30gjwoK6TGZx/6BwfRcpteM4jGOsK0VP4Q11mNEJ4/BYdjztnlNIlKeFS9IlacsT1ZfiWBgQCLPt/tj98B6eGSRXLCML87PiXOWVKaefg2j14fFR/z653/DN6qvb1mhr/h9L/8pWuMBq1M7uenXbPpHRmrEPL1EhdO7MRW5KinVBM63qAsnf0etjygZUUQlzjp2/YbH/o5xNOUye+KFL2agdz2xTMIto5EIVHiID3rHul9RqJJpPEciOeg9takZRxPG8RSE7zwIFtPednTm/S0yuIH79h2HYc9V9oRZvMAJ6HTgY5VPkBWYc+DgYHse+jt607NMLslUTmtbVu09qcpYJIEnx/gd7sF331mfRJPLHARsukd/cyQLLpJrlFR0pmVwmjTMpTgTePIIbQceu3taWzOP/Vw72I51vw405pI4oP4nt6BzmjrMpIXySxVPn/U0XnCZ3QSQccBgiAOt6VxPJONANXbcNm9oTcNNuI19ws2BSEaMoilCiHPqjgRa27Dt1yihmEQnvGRHNeyZJHMm8QIRMuykwPPkpmagJ5c5sUxCm/8abTVP8g88uGkN2g3hu4iwDCEbzus2dsOGu+YtRTTiMrkmVimNaRjsQCqz8L2EjL9QuKvugf2wZRYvmCQ+mefQ70EIRtEkaB4s0Wkhie3ZDhv+3p/8HSjxS8yPDvAvvfuDfFl9FtDxNY2pmcZzClX6GahfY2mZx5eU0QjrHAavllMoetszuIFYpiQBLX5o7ziYHRfJtQdLBDS6xjhNpkpimZwDAk6e8IPeU+kjo2hMocJM3t/Tm57r7JJR5MeF06ynAjCjrSZR/tDoTMvb5hXaaa7Tp4ziEusGjnqPEhFlFHzsvF/u2NuBo955eiXy6rKj3vPQ3TONSy7SJ14Oe7o5gjlF28EDRDLBOM1j98BuWLOIL5nGc4Rw1GaPD36cEMnkawpBj+xvhw3aDEySGYlIqEzFffOOMkq4yp55NN/69lKeZLi29zeWSrDW8tjdsxnWXKSXLBKPeLe2xuLIRYkIVKFAhsyAjsf+Hm0HFsklmcxobM1+eCCTBfPkAhUOfIdFON+lNaYmkjG5LDDOsB4e/EGaXjALre5gfbCnEjHaDWGraYKSEY2peFO/xDl4WnxAoXIG29LZllgmpNK3+adUGYD9sGfdP5Cr0mMFSCqzQ7ueUTQhk2U4wNz5OdoNG2pTM4mn5KqgN30YnRzL5DoAkWAIo5M1HI1PN/7pm1/Hn7P41d+ovr51hf7vb/5N/pXbP+gfyGiEIqYyR+67N0QkXOXPKVQe0kIGRPAXW+ewWKIQFtGahvv2HZ3ruE6fkquSwfUchi1KRkyiWSjwIH0M8VG1OaJtcDjJmEZXvG38vvYn+UfkUYm1HpmPpCIWPvQf57y6CkGrKx77ewSCeXJJIlNqXbHXa4pozCSa+Tns9PAKD561pkIJRaYKDI5N98CqW7FIlyyTq7AKucNgSFSK4n2b5+f6gVV3T6UrlsklRQANN/0KJRSL5CJw8PZrri5LY7z3PY9KzwP3G+77W0o54Tp/FqKmvLc7EWkIYjDvbzw3cN/ecjQHLpJrRtEU7TQHvUMJyfj/B+yTaNNztFusdYxjvwXHF9I943jGRXbtpaXu1LEoLIbedMQiIlEpg+25bd5Q2yOX6XOm8RwwQTIsSGWGEISIrChgGkfu21sfhJleE4uY1jbU+kgZjSgjnwV4Eig55w/Io96TqZJSnUC3FdoO/sKJRz+07NIBjTminaZQOZFMqIaKu+4VysU8KT4gUznWeSurlP4gGaw3AHnFneCo9/ztv+x3fKP6+tYV+j/5xf8aY2sclt2wZtW9YxLPWcTXRCqmNz29bYlEQhrAFWcdUnqpZK0rKr1GOMEkWaJERGMObIYHcjVinlwFVZO/fX2LDp3rggEiQwKHYcOqf0cqC3/yqozONHS2IZEZmSx9igg+tAGgMjWHYUsmI8axb8/2w5qj3jGJF0xjzxsPboCzeMLvVY9ETKIijO157G85Djsu0ieMoxDAaI7n21iFmZzQ5mkzsB02IIZQVAm1Pp5//4v0CYlMgwfdU0PWnR4sSa4SHJZNf8e6f2CeePALJK2psU6TqRFSRN7vKQRK+qSWzbDCuJpZfEEqczrbsO7viWXKMrkmCkzHCezTzrvecMKvoMKx6R/Y9A/M4guW6XVgG3zyTiT8VtgTv3/qlB67l/Su5zp7RiZHaNdTmT2RSCijKaeFDAKBkILGNGz7DZnyB49ActAbKn1gEi/C/81jBgIBzgOxnWspVUYqMzrb8NC9Q7uBq/Q5ZTTxz5Hzc7gI44nFEos05BFuuWtfkamcy/Q5qUzpXc8QVHleo2AQQhAJn2e31w+sunum8YK/4ul/k18x+yVoU/331n+Ef/n2n6U2B2bRZSiY0007UEZTcpVBkIWe7IutbWhNTSJTfyM6w6Z/ZDesWMRXzNNLBJLBdlj8YgJQGDQSFaSP/nDZ6zWjaMo4CmozvQ+o/4RSjc43oW+2PZjS24ZEZKQqZ3A9j90ttT5wmT1lEnmnVGdbcN6y6ThppKPQwrY8drf0rmMRX5NHJb1p2fYrEpUyS5aBwgq74JFYDLWpwHm+VgjJrl+xGm4ZqZlv82XMEG7jlBghpW8TA4VpnGHd33PUO2bxBeNo6t1neoMAJvHShyKEgwXnlzlU5oC1miL2nG+ld9x3b8nliOv8efAkaJztUdILf3rrFXaxTDDW8NC942C2LJNrpvECi6PRFQIooiJ0C+9lpr3tWA+PWGeYRUs/G+sju2FFpkrmsXfbWWdwAqTzFtXGVkGF5kMtN/09B73jIr1hGi8BP4KJ8wh2ip5KiUKb/7b5CiHgKn1OocaYwLQoEZGFLsm3+RECOOgdq+6OVOYs0isUEa2tGWxHpsozqAicu8mD3nDQW0bRjFJNGMVT/hsf/JZfmhLYf+hn/nuM4hnJ6XZo74lVzDy5JpF+L5W/lU6xSy0GTRJAkM7U3Lev6W3LZfacMpphnKEzfkdZpkYoEYPTnLamGKfZ92s61zCKZmSqZHAdm+4e6wzz5Al55Nszg0YAkZAMrsMYQxyUeq2teFd9iROWq+wD8miMtj21PhLJmEz5yGBC2+utoi17vfF8dTRHyYhK71l3d5TRhHm4FX1aqt8443D0tkPh5bC+WO/Y6xXT6IJZcgUIWn3EYP17ljHC+ZvDS1QHtnpFq2tmib+NW9uw7m6JRMwieUIS5VircfjxwGHpdI2QkkRkgGDbP7Dqb5nGSxbpNVLEdKbBoklEHuTGXkeupLe1rtpbWntkkdyQRyMG27MfNkQyZhItUTIBjFcUSklvOmqzx6sdJ3jv9pZtf884XjBPb87fowt2Wi+P7YlFRCwzetdx37yiMRVX2XNG0RyLpbcNAkkic0RQovtiFTSm4rF9gxCSZXpDLHM6W1ObI5ksKdQk6B0MImDztT5wGNakUcFITXFCsB9W9KZjGi/Jo4nHg4QHfZ2DSu/oXUuuRiTC/66b/g6A//53/gEW6c2PrJtvXaH/scc/xB97/H+wH95SRlOW6VOUTNB2QNsh3IDxWXkWBR17rQ889n5BwCIcCsbVHPWGWGaM1QIZVvaAO8cK1fqIc5Y8GqGEL7L79jWZlFznH5LIIqxF6lAiIhL+9AaQRAHYq1j1tygRMU+uQlLJgUrv/FwXLZAiwgUt9sl91poKKRS5KjHOsRse2A1eQjlLrhCo0MIaolBY9jyTe4XWur+lNkd/G8dTrOs56g1CCEZqQRwOx8D5BVecp94KNUbJmOOw46F7Q6kyrvLnRDJFmwHNgCJGBIGIcJJInZiQe3bDillyyTSaI4Wj1nuscxTRmEim79NwhUS7gf2wZjA942RBLFJac2Q3vCGVBYvkKVEA+5yziBCO0dkWKRSJ9BTour9nM9xzmVwyT6/xdmXf5icBQDu1+VIoetNx3/mD/yp7TqFKDC3VsCeSCYXyaP37xZuCzjTshzVSKMaRF+g0ZkOtd5TRnHHsU3N+2Ide057GOlUEpuIOYysW6TNG0TRcFKegCd+hGKtJAvvRmCN37SuU09yUH/NR+Sv4tdf/9aDK/IV/vlWF3pqa3/lzfyPz6IZpssS3e43nemUW5rVTHLNCYMMJuiFRGaWaAYLK7DgOG8bJgkm0DK3Re2modRZtG6SISAKHvu0f2ep3FGLBPL327jldo+lJZE5yarUCTeMf7AMHvSVRBaWaYB3sh0dae2QSLZnEy1BcOrTpCmM12vXEMvYFZXvum9e0HJhHTxknS5yztLYCZ8nV2M/GGEARScFgenb6kcH0TJIlschpzJF1944sylkkTz0F5vz+Lhm02TpQb6f3su0fWQ/vGKsF84Dm97ZBu4FE5mcs42QEGuzAbnigGo5MkwW5mqJtz14/IpFM40v/eeJCdrqfeivjTR95NEKgAv7xhkxMuC6ee4WdHdBOE0lvybSuDwerlyWv2rdUdss8fkIZzUE4Gn1ECPxnRMRJw6CkH9G2wz3GasaxB0RbW7HrH8jUiGl8dTY3nXbqDaalsUeUi8njEdYaNsMDR71lkdwwiZeernODb9OJGFyPth2pyIhUQmtqbpsvsWgu0w8YxTOsNfTOR0v7Z9gLlGIRBZvqnofeA3UX2XNSldPbFoflv/PJ7/il2br/63e/l6+qP0ltdkghKeScSL2ngggNVq13WNeQqTGJzBhsz7p7y+Aa5vFTRvHCP9yuwznnQSHABg29l0H27IZ7Kr1lEl9SRrOAvG/9jRfNSWXxXsHFCYWtsK4hkcX5S9l0b+ldwzL144JzMNgOhPNdgHPnmTwSisE1rLo3aNczj5+QqhLteo7DikimjKLle/VYcKD5zuKAs5YsGiNRHPWGzfCWXE5Yps9C99Nj3EAkEgg6fylU2ACj2Q0PHPSKSbRkFHkqqtI7HIYimhGLUKz428o6TaVXaNsxiv1t3JiK9fCaiISL7ANimWGcxnwN4OxtRySEZzeAXX/PenjHLL5kGl97Z5ttsE6TyAL5tZk8kgptezbdOwYapvG1H6lsx0GvUCJmEl2igp3WPxle9NNpv0m3iMYIJEezZtffM4rmTJMbT7fZwTMegbkYnE8DTkTK4HpW3Wtqs2cZP2eSLLE4Buu1+ZH0gaI2SH+VkHT2yGP3CmstF/kLUlEwuI7WHIOeYozf8eKQzptvWrNn198Tq5Rx5G2+jdnT2ZpCTvju9FfzF13+9d+ovr5Vhb7qXvNP/eDvJFMjJtElsYpx4TaUQuAQ9LYFHJHMkPgP5rF7CQgu0xdkyru5OlMRS0Eiw0pcXOBuvRhhr1cMtmMcLUlkTu9qtv0dAskieUKqCpwzWDQ+FU7Qux5rDYnyVkxP1XyJEIKL5ANyNULbntYeSYQiUV/LPEMGqWfLQa9wwDheolDU5uB5YzViGl8Ty/C+A1/tQwpbhFAkgc7b9Xfshgcm8QXT+CrYQWsEPbEsQwF4uuckqd0OD7TmyDi+IJcjBtey6x8DDXhDorKQpHOiiSytrXEOUlkghOQ4bHjsX1FEE5bJM2KZMpge51qUTFFEGGHAyfcAZ3/P0ayZRBeU0QKHodY7HI5RNCWWfsc4EoTzs/bRbAL4Ogu68yPr7o0H3ZJnwd3o8QMRPqPBtWHe9vbTbX/HbrhnGl8zS66RyFCsmlhmEFSEKqD5g+147F7RW39g5+FZavSBWEoKOQWpzn55iaRzDbvBU6mT6AIpYlqzD2PbxIusgkRY+IGeztQ05ujdd2ocZN6PNPrILLliHHsG4CJ9zk/d/BK0qTrn+ENvfxdHvWYIs2kcrJr+oZfIgDwf9Yb9cEcqSybxFVJEdKaiNjsyOSGPZkQhRN/hJZra9bR6D0jyaBwCJHas+9ekcswifRFoqAFjO5SIPZXFgP9ifdZ8rbfshjsikTCJr4lEQmuPNGZPJsfhtU9rgz0Bp11La44oIjLlQwb2wz374YFJfMU0eRLUY50H3USCgAA8RigZY9zApntLbfZM4+tzB1INW5BQRotg3PEzuQgzfW22aDtQRFNv7zVH1t0rIpGxzD4glrmXpQbfuZ8/vdgklv523/d37PQ9pZoxiW+C3v2IdZo0Gp1NHzgf/2yM5mhWtPbIKFqSypLBtWzbW69jiJ+QqDwQWjb8ro7e+gy3TBW+zdePrLs3FNGMefKcSCaeOXGDV6oF5kSgiIT/jLbDOyq9YRo/oVQ+NKLRHszLowmRiMIIKELx9+yHWwyacXRBLDM640U7iSqZxNdhK+77DDttW2p7QDhJEU0AP7Ydh0fG8TWT5DIcQAMCiyBCuw7tOiQxSRDobPu3NPrAMn1BGS1914lfFJnKgp968puYJ09/ZH19qwod4G39Pf7V23+MRJahlTMhOEFhreaoN7T2SKEm4TQcOOhHetMwSa7IlU8p0VbjQTcPJA2uQxGfZ9dN/47aPDCOrpjE3gfe6horehIxQonkFHJyBmtqs6PWO1JVUqgxDsNRr2j1kUl8TRHNzzMcznlJqRvQtkeJJIg8Otb9Gxq9Zpl+4NFfB52tAEhVGW5xLxKRoWXfDfcMrmUSXZLInMHWbHvvl54lT4hF7mklDASEvDd+G8v723jFuv+KQk5ZZM9RImVwLdr0ARDynDf4vDaD4TA8UOmNp3yiBRbDcVjjsIyjJbEqQs6bp+wslsYc0LYnVx6Ua/SOVfclsci4yD4mUdl5JldByKJdH8RPSdAf3LMb7hhHcybRdUhx8Zx+KktU+B69u1EFT/4dvauZRAtyNUHTse8fkDJmoi6JVIYLzjCJf83GnADEiTcgmTWb7h1lNGOaPiciDjO5AfwBMdgWSUSsMqzTbPt3HPQ9i+Qpk/gaApvihPNjkHNoNxCLxKfw2IZV/5LeHLjIPqZQno9vbYVEkYZEI0nMX3r9N3OR/SL70YUQCvh3gTfOub/qF/qz37TQ/8jd7+Gx+zLcShAJF/LEdlhnSdX43Mqtuq889ZF8SK5GgVLxoEcsUxwaaw0q6Kk73bLt39C5mnn8lExNMGhqswGgkIsAzrkg1vAodWMPDLYjlSNP+5mG9fAaYwcusg/I1CSYYjpwgkilEKge/yBHdLZm1b7CopnHz0jVCO06jsOaWKWU0QJFhDutDhbe8tmYPZYwbzpFrbeshzfkasIifU4kTrlwXg/gD7YehQjFYNkN9xz0HYVaMo2vvZHCHDFuOGMcp2dBSYG1hoNe05uaIp6TyJLeNOyGdwCh8/GjjQnzvxTufLAksvAKO71i3X1FrmYssudEImWwDdr2JCJDyQTvLZDIkFC77e+p9IqxuqCI51gMld4CllG09B1G6FiUBG0MldlibEcRLVChY9n0r0lEziJ7ERgYfQZjwTDYBuEUscq9I62/Z6ffMVZXzNKn5xHPulObL7CuD8rL2M/x7Ws6t2MWPaOIFjhhaPQRKSWZHHOKBFcIhFT0pmHTv0PbnlnylEQV9LahMVtimVGqebjcfIcziRf81M3/8AxQ/oha/NNa6L8V+FXA5D+vQv+Tmz/E9w7/mr/VsBjr5644IMVH/cBueEsqR8yS08PT0ruaSKQk0i8yPG0R8T7glqN+wFrLKL5AyYROH9nrd8QiZ5o8C2DSSTkmsU5gXePRUen3ujV2x7r7CknEIg3Um+voTEUkUxLpT+LzBhMh6U3FUT/gnGCULFEktHrH0TySqQnj6Aop4x9iBYwzGNuEAys/t84HfcsoumQSPwkimya0sAHIClpwjyZr9sM9jd4xTi7J1BhjNZV5DB7zK2JZ4s6qNZ8rp+0Bg/G3pohpjL+NE1m8f8+2Q7seJROki4LoiBBA4TgOD+yHO4poxjj2SrfOHjCuJ1XTAPb5Hx8FramGFYNrKKI5iSwYbMtueBfQ/GfEssBhz7e4vyW9Rdd3LIrj8MhmeEUupyyyD1DiPTCpRBKAN42SIrT5ml3/joN+YJY8pYyW4KCzfulhJicIEYc2X6IQGNezH97R24ZJfEMqPehW6UcimVKoC6ITQBhMP4Pracwaax1lNEPKiNbsOAz3ZGrqO5bwDJyDUuyApeWvef73U0T/2dYm/+g9L7/wP/wc+CuB3w781v8s/9bXfw7DSyLAOj8jJ6r0rWv/jtqsGUcX3KQ/iY8P3tJxRyZnTOMFzhGQVEIIZEtnjkgXM4lvwgKAe/atv90u0x8LVssObXcokQSb4IASwt9aOI7Dmt1wSypHXKXfRYqI1uyp9YZRNGISWvYT9edpQW+TVCTMkqfnmbw2a0bqkpv8O6F97LC2RYkECRjXoERMGk18UEH3mtpumMRPeJr/ChyWRm9Q0pCrGVL4lc1OOOLQwh6GR7RtKaIF4/iCTlfc1t8jVgmXyXPioBy0zreK3mLqvfyZGuF11iu2wytSMeUm+4kwGze05p5Y5D6p1f1/2PvzYM+yLa8P+6y99/lNdx5ynqoya2hEQ7ea0RESli2ENWAjbAeBZaAVEmpbNgqhwBJDG4RBYhIGYUtWCEsgcIBtWQbLgVEwhGWE7ADE1Op+r997VZWVc97Mm3e+v/HsvZf/WOv8btaLflWlfu91V3bXiXjxsjLv73fP2Wevtb7ru75rbYVQSfSoWjjP+4zzMaO0ydXh91A0c9a+oGp2fcGmoSUxglNVmdYzSs2MmnUCu0zzCU9nP0qkz6XhXfphgNKSyykxNH4EsTn/QVxBVTlt9znNz1iJu1wffq87wTGZY3qy6vp+QwE912QcL54yLaes9y6z0fw8MgtO5s/oRWElXSKJ9eKjxUqkdeHIoWU1XbLGmHzG3vxr9Fhld3DdDbxQdbYU7czKlCDCWtr1bsh9TmZ7jMIO1wbvECRRtKXqnIBVlzJToiTurfxDn8vIP+v6tiK6iPwnwO8H1oD/1U8U0UXkh4AfArh9+/YvePjw4Wd+73/54v/A8eKheTWdc573yWXBam+HJgydtd4DYD1dp59WfFifESWBSK5zKy+FgddhpxzOHrPgjI10k5Vmx8s/5rn7YYUgPdDuoEMTa0zLIdNyyiht0A82qGJc7Hio1XSZQdwEoGr72u+eGXSWAU3ok+uUo8UT5nrGZrrFqNkxZVuxnLwXR56TF4fAdv9n7R7zMmajd82gc51y1r4gxR6r6aqlJnpx+qap5c6ptdKPq66zPuSofUSPNbYGt2hkaIRQnRHpk2LPpZ9C9Mg1ya84a18yjFsW4SQwK8dkXTAKW/TiyDv9XH+MMi3HBvPTBikMacuEo8VjRISt3h16cRXVTK4LQkiI2ru10uOQAIzzAcftQ3qysURYpqGY08jwmzQUDUpm3O5zng9ZSduM4jZVKtN8SKUwijt2r34EsU3CLczKEbnOGaVNkgyY1TNO2qdE6bPR3KIXh1ZtUSP4FKXVCSg0cUQAztt9TtqnDMImm31DDkXnVM2GHCRQdOEEYY+qLSeLZ4zrPmvxGqvNZa/ATIxwDva+OkTWpV9n7Qt+3b0/83nt8TsP3UXkVwL/pKr+L0TkH+FbGPrr1+eF7n/z5b/H3uxrzOs5opF+WiUozOsBJ4tH9OMGG80tYhhQtSXXGSE0RLHzr1XU1FxEZvWc4/kTmtCy3twgyQpFZ0zLIUEahukCZmmFEAy+TsspuS4YxHV6sUcuZxwvHoLAZu9t+sFKIkXngNjvxqB3pEcIkVkec7R4RBNaNppb9ruZM81HpNBjEHdcLecoQALFo4b62KgoiWk+4iw/oxfX7Lml7xGg9QqEiUMgkIL1AJwu9pjXZwzjNmvpGiKReT13mL9KE+zoJsQKh6VWJuXIIlyzTj+sOX+wZ6Rbc4MmrC5Lb3iHVlu71GZECoF5OeJofp8Uhmz13qIJKxeORfoE6bs6UIihMbS0eMW8PqcfNlhtXLpbTii6YBC3DLIvHYudczfJhyzKmNVmnV5YodUpZ+0zADaamzRh1cSsmrE0TmirHeLRCyskCUzzAcftA3qyytbgLZIMyLpwfqOHkCi0QCAGu++TxQtm5Qmr6TKr6apJsOuESksjqwTpOaIM7rAzJ4sXFH3FWnOVftxEtTB1TmiYdohyoRERn494nveZ5wn/3Ru/ldsrv/jz2uR3xdB/P/DrgQwMgHXgz6nqr/tWn/nc/ehPfovlUdKjej40ya9Yba6wki4jEpiXMapWLzZpKB5RBeuRPmeSD4nSMIzbiARm+Zhx2acvG6z2rrinzRSyNfYrPqxQaMIAOwbokOPFAzeym6QwJNcZbR2TwoBGLg4NEJcpLuo547xPILKSLrk88oRpPaAfNlmJl7y/2hjyTrXX1onVycPIZaovOWufsZIus9Zc99KbiUuSDF1MU1xiatWJcX7JrBwxirsM4qY1vWQbs7zSXPI8tyu92X3Py5kpu7xHfV7OOZzfJ0piu3+XJqzYOuncyb4GOxZYSX6AwSQfcto+oRdWWW+uE6ShrWNanRp0jit0BysYZK/MyhGzekw/GFqqZMb5pUHj5ir9uA5YX4MI3ofuziqaTmBeTjmcf4SQ2B284/fakuucGBpXQZqxRzFCa5z3OW2fMogbrDXXidKwKGOKzukFM9Zubp7xRIVx+5JpOWIUdxikTVQr03JA1coo7RqP8tqknaKZaTkk1ymDtEUjQ9o65XTxlCg91nrXl5yDdohMiz9fphfXTI9A5lfe+t9/Xpv87pbXvpMRvWrm77z6D9if/Riniye0ZcZ674Z76JZJfgUIo7hL44cIaDffTWFRzslMSQzoxRWHP8+ZlkPWm5tmeOIdbFpIfsSRRcfoNfPCefuCaXnFIGwxiruIRGb12F5c3KQf191c/OUCbZ0wL2ck6dOPayb6aF8wLQespuus9i47yWK67OhlJNUFwev1RRecLJ4wLUesNzcZpm2f536KSmUQDW5Wn0wrQdCSGZcDis4Ypi2iGHQ+a58iBNb7t+mH1aVTs5NjA0VtfFETBohExu0rTtqH9MIqG73bHuFmtHVKlIFBWrqKgEFa03/v0w/rDKNNzZnlA3KdMUyXbJ3UylnirmVRzmjr1KonYcCijDmePwBgq/82vbhOrYXC3GXODVVtpFgQG+s1LUcczT+mH1ZZ790mhT6LMqXqzFOmESrdxB9TF47bfablgH7cYBRNDTjJhxQWjOIuvbjymjYfai3M6xFtnRiBGFZo65Tz1k59Xe/f8nV1gZEI4ulg1ULP23qn7THH7X0SQ7YH90hhSNWWoi1BkvURdIo7GSDAeX7FcfuAUdjiv339d3J99BPa7zfb4XeHjPtuXIs65tH4r4PCenMTaSKzesLB4sfp02e9d4sUR9SaqXWKhOBM6pzqzQF9WaWtY/ZnX6Voy2bvLbZ6t4GWRTkAhF7cQF5rvUzSd+LoGW0dM0q7rMSfQ2HGeX6G1DkrzTXW+7ueF7fY2V6mtCp1QYojVpsr5DrlYP4BrU7YbN5iq38TyCzqMajQxFUgLccwhbBCrnOOFw/IOmclXWGjd5tcJ5zPP7LGi+YaSYY2vonFMp+bLxtytnxTHXLQfkATVtgZ3KGRkSOQI6I0NiTDm4H6YUgFpuWAs9ag85XB93pH4CGt7tOPm6ymLQz+emusKLNyxLye0w9rbDV3KSw4WTxCdMJa7zb95ipVFdWZrZMmWmZozTRhxCBuMCvH7E2+Tgo9tvt3zdDqhEV5aY4lmCNHMlEsJZmWI87bPZqwypXBz/WKyhGTdko/bDFMW44bjCVXqUzLIQu/1530LlnnnLaPEZ2x2tykn676O10QRECDwfya6cc1hmmbWTnlxfRHEBKXBnavpWZyOSOE5E7a9O/9aKekTvMBJ+0jemGNy4OfSwp9Sp2wKPskGZrCURSo9MIIUCcz9+iHTa4Nvo/13k2uDX/g27arL5xgpmrhb+//EY7m9zl3yL6SrrLSu2ZTMuvcaplhQNCEStcJZIfUzfIxZ+0zohhhFcKAtp4zLYf0wgrDtGseXour5QKlZtp6QtVCP66bhDEfc9J+TNA+G4O7FxHRZahR+nRzxKKf/zbPZ5y0D81J9W57fjpllo9o4oBB3EaWh0kAIuQ6Z16OrEc9bRmvkI85bR/Tixts9G4TQ8+bYlpvbhGKzk1cEvo26LB9wbg8pSfbrDbXCaGhrWdUbUlhhSaMjD1GlqWpWTlglo8ZpA16YcOgf3lBrQtWm+v04prrCQoXY666PH9ECgNm+ZTj+Ycowlb/HQZp3Wr6deZqPs/JVQnSWBdYe8hpfkKSIWuNNbQs6jltHdOLq/SCtX5aemFjpxblhFk5ohfX6IV1196/INcZq811BmnDKi6aIQREoa1jq9fHEVH6zMsZx4uPUIXtwbv0wzpKXjY3BS+3gXM8ITArR5wsPiay4shhQC4TChfIwXCd7QOoTNpXnOeX9MM6o+YyEJiXE6rO6MdNIya5GCCqtTKvR0zzIf24ST9uUjVbakDmn7r9J5ek76ddb5Qy7mj+Df7qk99EZcZ6c4de2DCFVz0FoBfWnfD45nzvmFxPaeIqvbDmJah9FvWEQbzEKF1CsJFHKgXR5DX6KeIKJ6hM8kvO2icM4w6rzQ2CNOQ6JeuMJENSGDoKMOcCMC+nzMtLgvQZJZvKMq/HzPIhg7jFIF4ihIS6gAYxWWRbJ0sppMlUXzBunzFKV8xYSWSdeXPKwCCs6+5twkxmWl4wK4cM4g7DuIOdR36ATYTZtTo5XcnRxD/zekouE4YdQ17HHM/vE4Kw3rxthkShulKtI6VU1WS5EpjnY87yA4L0WW9uO3cxpa3nRBnSC6uoD6kIDvNn+YR52aeJIwZxF4vQr2jrmGG8zCBtgorXyd2xlHOH+avOwk84XTxAyaz33qYfNrCxWAuH3D1qXVDdWENILMoRx4v7pNBnvblDCiM7kKGOSTIgyQpV7DQdiN52fMysPCeFFUbJUq5FPaWtEwZxy/eYTZXF13VRzlhUc0b9aM5okl9SdM5KukovbAAsn09VWdQz2jpjkFZJYu/ibPEElcJ6c5tro/8WP2/7n0d8Zt2nXW+UoQP8l3v/a2b5iKznTPIrmjBkGK/Q+DAC7RouVJnXc0pt6UWTrC7KhNP2IUXnbPTeZhC3UUxYAXYiCN1sL02E0FDqgvP2OfN6xDBcZuATRyb5CCQzCNs+pdXmwlnbKSzqGbmObWPHNUpdcLZ4TuaMlXSNUbrsUXtKEiXQ+DG52VBA6BuMnD9moUeshJsMml3AIlgVZRA2aXwaLTgC0cwsH7CoE4ZphyQrtHXCefuUEAKr6daynCW0IAFVoVSbw55kRAiJaXvESfsRUYasN2/Ri6sUndHWCb3QkGTkXWHu1ESYtUec5z2aMDIDkMi8HtOWc/pxm0HcNOLMh3V2JUxzACv0wqoJThaPyTplvX+HQdwGrV6SVHMsusCOI+4TQsO8GHIQEdabe7beOifXCUEaP4Wm40ysH2GaTzhvn5HCgJXmKtbbf8ainNGPm97ZJkvhjlZlXs9Y1BNSWHHkUJjkF7Q6ZSVdZZC2/Xit1isBwZHDnOQoZ1GnnC4eULRlq3+XnjPtpS5IgYvn00yQAVEa5vWMo/kHBAmsN3fppw3bJ6HHP3L9j3wu+3rjDP1k/jH/76e/nmG8wrC5uozElZZAcu33zKfD9J2FP+R08cDaO5s7pGBltEU+JYa+w0HrXwdDAkUXTMtLcpkzbHZpZERbJ4zbJ4SQWEm3jMVFQa2ppVPZVW2JYkP/FvWc08V9KgvWm3tL6JXVTjxNsurjrqwl0oY4zBjnp+Q6Y6W5TiMG8yftHjH0GaVrRBm4oRXfkNXgeC30vEd9lg85yw+IDFnv3SWFEVUXXs7qLWG/okR63jl1wHn7hF5YY+QM+bycUHRKI+v0wtryfpHg1YhT5uXYS3Nr2Hjn5+Q6YZRu0I/b4KoxcRyQdUalJTIghj5tPedk/gFIZb15h17cMIZcJ/5eRwSpfoCFHZI4LyeM28eE0GMlXSfKgFbPWJRTUlijHzeBgLx2AOeinjHLh8QwcEdfmOaXtPWMUbpm9yoB9aYdI0gnZJ3SyIgYhuQ64ax9SNEZa40FjA454GtZyV437xtyyKccLz4giLDeu0cT1qm6MOQm5jgRUyEmGgjCPJ8wzo+AyFpzixiGlDplXk5pwgo3Vn8FP2frWxayPnG9cYb+/332G4EGsDzLDs9b8UYNa380KFyY5gOmZd9zmx3bYPWQtpzQi9v0wg4SvIsM6yKrumBRzxCJNGIqsFk54Lx9xIAR64O7RBlSdG4lJWkQ6bvB2Ohgcy7HnLWPCdKwnq77EIkJ83JECiv04zbidXJ1J1HqnJnXUPvRcvJ5OWTWPqAXtljt30boo7SUmu05Ca/V662UOM17nOen9MM2a801kpezis5IYYXACJaDK6ND+kNm5ZBeWKcftlAKue6Ry4xhc5Umbrm4pC4TI6s9z0gyIoYBbZlw2n5M1Anr/Xdp4ha1dtxFIIidKKNabXQVkXk55Sw/AA1s9G5Zp1ydsKgnRBnRC1tmeMaaYFHylFk5IEifQdxBUNrygkU5oR8vM3C0VLU4yjLnn3XiDnhEqVPO2kdQT1jr36Ufd6m1Uph7h13fA0hx5JBYlDNOFvdRClvNW/S8aaqt54j0SJ3EWa1ZCgksyhnn+QlCYCXdIEof1VMW5YQY1pZO0M/j9XU9Y1peISQGccenBe2zyCf04w69uAMhcqn/fby//Rs/l329cYa+N/5r/Oir/y0pDuiHLYQE0g2CtCEIi3pALlP6cYsoI6rOGOdnFJ0xam6aJ1eotC6XSO6BFwQuIt24fcy87DNM1xikq96yeL4ksZY5uZNYVh46ZlZekcKIfrApOLOyT1tPGcRd+mnXUgsKSiVooNIuYWb0ZpBJ+4xxfs5KusZKcwMkUly7HmW4zOshumotM8l7zMsB/bBLP+6goszzPqqFQdolhdVlQ46V0ZRFPSbrhEbWSXGFXCacLR5QaVnv36UXrC5srZEBCQnVhTfk9BFJLMox5+19VIW13j2asErRKYt8SooDmrBOt5lFAnZk9SnT/IIoPfqxG4t1yKIc0Y87DNIlujZafGpP1omlQ2FgqKwuGLdPWJRjVnt3GKRLoBgZKRAw1ZmS/V4bsiOHSsta7x0XqSxo69gIQln1Ql+18hZCW84ZlycAjOJ1QhhS9JxFOSKxSt+nFKEV62KArGPm5QAhmWECi3LIvBwyiLsMm8tARL3KYYhnSq7nBOmRwprxLPk5s3zASnODofcFVLVjp1JY5ft2f7s992dcb5yh//Unv54oI4IPX7BN6+OfdIxopQmrTgodcdZ+RKBhrfcOTVyj1JbCBCESw4rpwCkELBLXOuW8fURhwjDeoBc3qbpg1u6DwCBeJsWRkVg+6dWUVSfUek4K68uIcd4+JuuYlXSHYXMZXarlMEkt1XTzJGLoGWRvH7KoJ6zE2/S8Tr6oxwD0whbBZ813s9aqZublBaVO6ccdotjvHmfbmCvNHZq45sjBUwwiWaeotsucfJ6POG0/RIisN+/SS+sm161TQugRxc4760YkIdDWYybtU4L0GcarhNCjrSfM8zH9uEUTt60ByKkpwEtTx0Tp0wSD55P2GYt6bE44GRNdfZ1EGqouzMG5Ey517Gz+jNXmHv20g2pLrmO7u7BqiKVWgp+FnssZ4/wIVWUl3STFEa2OmecDkqzQT9aKvNzzImQvd0FkmHZAA7OyzywfMEiXGKarvveyu7FI1TlFTwnSNyJPWybtU2b1gJV0i2FzxZ6vLrwd1oRflZaoiRgGFJ1xNv+YlmNW0tv2Ga3kOgNRogx9NSPfd+m3s9Lc+ky7eeMM/f7xn+bF5D/HzsnqoQKqLUIyxl0zk/yCWXlOI1sMm2vWNljOKTqhF1do4hp2ZrZdIoFcpszKK1Rh0Owg2rAoJ0zKY5qwwijdpolD1EtZ4gMYcp2a92dADPaZs/YDi27NO/SSDWRsyxlNbIiyglHOxv2aFHLCpH1K1pZRMlVU1jHjxR5NGrKSri5bSrvzwapW2nqK1kqT1hAsJx+X+whDNnrvEMMKWhdUuhJRb6kE6+Sxs3zAOD8iyYhR0/Wgn5PLmYtWLBobZAKDlqfM8xEhGKoyJdgLFuWUld51hrGbhbfwSphp/CtzogyJYUCuE04XH1P0nNXmHoO4Y+lCmRIjROmcafF3m1jUM84XD6hUVptbpLBKqTNm+YAmrjBM23STb8DGMbVlaqiGwLC5BBqYlwNmZZ9+3FkScYqVznB+JtdzhL7zMC3jxVNmdZ+VdJtRc9V4EZ37u+87ImwRcbm1zjiZf0TVM0bpbQbpEkqh1Akh4I6zc0bWqtyWCWeLj6k6YaV528qa0tKWU2II9MImnb4ehJXmFv/Azm/1suqnX2+UoVdt+Vt7/3MCdhZ5N9Ory62n+TlFzxnESzRxg6qZWX5BpWUQL9PEDfuc5+TiNeeiY4SGFFaAyjQ/Z5qfMYhXGDU3EWkodW4dRNL3Ep5Fx4iV8xb1kGl+QpQVhukaQXq09YxcjRjqha1ljRq6GW9T2noEGujFTVPYlX1m+RlN2GLU3LaOJTrtesI24tQQiVjZb1ZeMMlP6IUthukmQSzqFZ0RZUSS0YVCUCLG3B9ZOSus0ws7IMos71N0TD9eoYlbhla8qcUMfExlStQhKa7YFN32IUXHrKS79NOuN3yYkitIH5OptoRlnnvKJH9MrS0rvbs0YY2qcxZdlJeu0++1CbF1zKy8RFTop8sIibYeMysv6IVtBslIWTwdssktM0N4NG6sBoPn+SXDdJNhuura+IXLTE2HbulbQwx9Sp1xtviYrCesNG/Tj1b1aOs5JoVecadbEIk2SKRMmOSHFGaspFuksGHPVw4R6dEL28sGIUNXYj0O7R6qLYPmClEG5HrOrOzZforXHMn5oEqEQkuuZ/zSa/8RKYw+077eKENXLXz14A8yab3LzaPGohxjOcu6aYDLMeN8n0CPUXOPxid0KAtUxOASLbVmQui7GGLKuH1ILQespLdoktVy23KKdRBtIr5xFVwnXViUQxb1hCas0ZMNBIPSuY7ppyv04iXEJ71aXbVx5zIjSI8oQ1RbJvkJbXnGKN5i0FwDLNKrZksxnGw08Y9p16d5j0V9xTBsM4i7npO/ompLP14ihjW/W4twoCzqiefka6SwQq5TZov7KHNGzV16adu7/eyUFvE2SdWyXKu2nnK++MjVY+/Ri+sWBcspEnqGAnyogkhCVFjoOTPvKhzFK8TQkMsJ8/ySJm7Ti13ffaWrPxdd0NZTY6XDGmhh0T5jVvcYxusM0g0I0WAwBfGmmIpxLUF6FOacLx6gdZ+VdJdeumQl1XKOgqG7ZXdgWjrgSX5MrhPW0k1zRsyYtQfE2KMXLrly0nsCJFB1xszXfpAuEemRyzGz/JQU1hh4w1E34VUkUMm01UZYNcEGVbb5BZP8mF7YZtS8RVgKorrZ+UquEyByc+1Xcnv9134u+3qjDL0tJ3z11e9cGkBlitDzBazM8h7T/IRe2GHY3Fp65VInBOmbweDR3ImWXMdM8xNskMB1UhyRdcJs8YIY+wzSVWdKL8b+2jjoU0pd0MQ1ggzI5ZxJ+RjVzCjdpRe3sGN1O2KoD3SDK2xkkG2oj8n1nFF8i17aQjWzKEcgQi9sE1w9ZnDbTiadlX1yGdNPu0RZpeiYSfuIIIFhusjJK9YKKU70VM3EMCJIwyIfc95+AxDWeu+RwjqqLW0d+zDEFaBrcDEGua2nzNrHWM5608tipyzKAUk2nGiMriOHICwltkJDEzfQCvO6xyy/YNTcoB+7PHcBWpfEqDL3dzugMud8/jGtHnpkvQzLDa9EWXG01BlrpOiUSfuQXMYMmztWzmLOPL8ihB79sLvkScxxC1nnLMortGZ6aZdAj1xPmLRPaMI6w+aWddi5XiM4qdrWM0CMG1CYl30m+SH9eJmV5g6mx1+gZEQaRKEyA4I5egqT9inz8ox+vMqwuWnroDOU1svERr6KBMRT1Hl5wS+98ec9Dfv06w0z9FO++up30pYT680OkVrnzPJjFuWYQbpBE7f9Zw+puqAXt4mhOxjPVGuooPWMlmPQhiZuetPLK4PNcZeh56vVhyJ2sFmZoCrEMEAILMoB4/YjAgNWeneJYZVcp5R6Tgw9omz43fuk1yDkcs48PwdReuGK1Uf1nMniKU1cpb8sw3gfPdEjwYkp0OIqgYZ5fsW4/ZAoq6z23iGEFVd+TRHpEeh77lm960poyyHT/BBhwLC5TZA+pZ6R6xkxrJPCJs4wurgFcj2jLQeEMKAJW6jCvLxgUQ4ZpKv0U8cGZ4fc0Tf2xIw1jKg6Z+zGOmruMoiXQaCUiR2PJCMsrfLRUyFRypRpfuA17rdp4iaqc3eExmYbL+ODHD2yLsoLSjUYLPRoywmz/IQoawx79swsJ/aYYyn1BJFADFZSnbcvmOQH9OMVRs2dpapOaR3mCzB1/sCMf7p4wqw+ZdChDaI72NZLwA10o7EkWWpZnrIo+/TiVfrxEqAs8imEQgqbREwvYWlMBG2Z1z0W+ZBevMTtjd/A9bXPHvn8Rhn6Iu/z4eHvp61nFJ0xLy9RCr2wS5QhWc+YLJ4QY8NKvEkKq96kYUIYlUjRCVXnREZeK50zzY9YlEOG6Y7ngAGtYxc8jMDPRReJiB90tyj7RviFTXrRNnpbjyjlnH7cIIUtxA8AkCXJM6GtJwgObzGDmZfn9MIlVpobCD2qzj037kG40K6H13LyWX5ME3YYJuMQcjlDmBJllRAsGhtl48MR6hGLsk+UVZqwi4iyKPu05YxhvEQv7WJyTWv7vCj3TAjSlbPmFiX1hFHzNoN4CUGtu0qU4IMODbU0SGisAtB+RNExo3TXp8gsKOUQkUSKWx6hqpcoxWBw2aNqYZCuEKRPLqdM8zN6MmDgDsp6ErqqSyZrF1nX3Bm9ZOrGupJuWwutLlBtCdJ3bLfwdMjOdJ8uHjOve/TTdQbpOoFArafmgMKaEZquvhRJ1NoyK09pyyH9dI0mmAinLUdEMina3uzOw8PTuEV9Sa5n9IKlWAb9nyMES23SOlp9SrCCitKWI3Kd0ETrQgzS4/uu/vufy77eKEOftPf56OB305ZjI898VNA8v2BaHtHINqPe24gMQefWPBF67vVNj23llkSup0zaD6naMmreIYZ1r6ceIxLpxW0CzbKDrat9z/M+Rc+91LWO6px5fkapM/rNLZq4jWhdsrg2CmhO1RmBPjEMqTpjsnjAQl8xjG/Rb66hKtQ6BgoxrCw5AJY5ecuiPGdRDuiFyzTOUi/KAUpLL12hka6v++IwibYeU3VCDGturAZpq04YpLtm4FpQrONOfK26KThBGko953zxdZQ5w/SeCWFoKeXU2nfDJt153+I6/6JT5tkGZA7SdWIYkesp87xHlDUG3lyjy5w8eInsCBuSsY4SWOQXzMojeuESg+ZtYkhLAk28wVKZg0ZCHCKamSwesajP6IWbDJrrrkE4RzWTwqo5ax8B3RnrvDyhLYf0wnWaZGlXWw4AtUAShp8g0JTCIr+gLWP6zSWiGN8xz48RaRgkCzRKcScmXiI7odKSZM2aqsoxk/ZDhD6j3rvupFrwcVod+aq1IDIkhcQiHzLJHyA0fN+1P8Nq/3s/077eKEMH+Ojg9zLLD0wK2D4g6yH9dJtevGw5t56juiDKGkFeezkeLdpyzDy/oIk9mngJoSHXYxblBSls0ItXvylaBGqtZD1DayGldQKJUo+Y5g9BA6Pee86uZqpOvfQ28M6ssoxuuZwzbu8TZMowvU0MGygLcjkCiTRh5yK6IcYK15ZF3SeXKcOmq5OPmeaHBAn009u2OSguoLmIiqaHHiEhWURsv4aijBozVtU5pU4QaRw6dyfOOClVzpi0j4hBGaRbhprqGW19RZBVy5WlAawDreudbsshEOmnDSCwKC9ZlKf04mX68dayNg4FNKFSKXVulYQwAlrm7SMWdY9+vEEv3XDl4BSldf4g0Z3BJpJMVdg+QTmkn66Twg6QacuBk26XbD8sx4H52paX1sTTu0SUEbmOmZfHBEn00x2irNANgLATam1ApmohhVVvbDpk0n5ACiOG6V0ra2p2jsRP5dWZKe6kTwiBtuwzaT8gssaod5cQRoZ06pQQ+rZ/yI7KTAuwKK+Y5/tEGTFs3mK1//N5a+uHl/LeT7veOEM/HP8V7h/9bod1123j65S2vAQS/XTVX6giUpefy/WMomOirBBllaot8/yEth4wSDfpJaunWh6WlzltZQ4O7cDQw7w8IsoGg2TkTNYxVc8JrJCineaJWk6uQSj1nEXeAwn0whUv1x0za5/RpE168foFybOcKFIpeoYqxLCKHQj4ikn7ISmsMUz3lpuj6sxz4Z4bO0DP6sj1iFn7gNBBXgYUPaOtxyTWabyfnNeEIqWOaesrhJ5zHsKivGCR9+mlK/TTNQRXyIkiGlA6J9e4GrFl1j6irS/op1v003XQQGWK1kzwWfKWoiQkNGhdMM0PyfXII+IOqoW2+pyAsE0IQ6A6hxAc6byg1Am9dJkgI4qOmbePEXoMe3cIYtNacDJLUYobawyrCA1tOWSSv2Fr29wjyqqv7dwINKIjBwgyBIFFeck0f0ySdQbpbUIYUOuUqhNERhcDJLEpP1bF2WdWjC8YpBseaE4pOiGGdesV8P3TseyWdlmprYmXl2lirWO+//pfIr52xPK3ut44Q//q3q81A1KhLa+YlSc0YYt+c9tzxOwwNLoHnqG1EGToZbRTxosPqMwYpfdo0jaqxQUSQvRyC7VF/MTNqi2LvEdbDuilyyTZ9pzpFbVOaeIlkh/gqFRraRSh6phSzxD6LmksLPIzFnWPXrhGv3fLGNnq7Kpr1VXnVpfFqgkG2Z+QZJdec9NaVMsplRkxrBPCKlARxQgbKm05oi37pLhKEi8V1pem809XaaK1zKrmpcS06BTVCeIViloXZqy6zyC9ZcaKRVaoBB81LXVhxiA27WWWP6bUE/rxNinuAplFOUZESGF7WbPu7ld1YelPmdDvXSPICqWOmefHBOnTT7cIYcVRlufHVIqemhQ3rBJILMoB0/whkTWG/XcJMnI2fwHSmLF1kTX0jSGvL5i1H9OEbfrpDsEHQNQ6JYSROQkpBOUTxjovz4hiCFAk0pYjqk5JcYsUNiwSO++gVHI9IucDYlwnyZaz9fuUMqaXrpHiFoigNTvMh1LOKJwRZOT7p2Wen5LrKf10i93VX8WNjR/6XPb1xhn6q/Ff4OHB76XoEf10h350SSFTJ1mGBn/Jzv82Xns8Zp4fIfTppxsEGVB0TCn7hLBCCpcuGFxRdxKZXF5RdUGKWwSGlHrOLD9EqPQ7JpiK6oLOc1edU+uCEIwwqXXKZHGfygmD5p5DdCXXc9BKjGsIjcPDaCRetZw81yOacInkJE8uL4BME68S4xq1dsjF4FtbTlAmBNaIcYVSJ8zahygTBuktevGS691t/BLSd/4iE6SPSM8qAPMPUJkySPfohW1UWiP8JBBlwwyUi467Wj0n1xm9eIMYLMXI5RkShvTjDYIfbWwRWVAp5HpiaxDWERJtecU03yfJOqPeO94I06K6QEIDGjyyCsGHXc7bPeblISns0E+3iLFPKWOqzhwNDbx6IQiWaizyCxZ1jxR26MXLAOR6ALoghR2iD9awy/iOUg/J9ZgY1olhE6VlkZ+jOqGfbpHCFsthHA6nczlzZeIqKYzIy/dh6VuTdtHalUIFpEF1Zkd+haFXRcbM8n1KPWfY3KUXL1OppLDOu5f+3c9lX2+cof/dJ99PL9wmhnVgQS6HiERS2EZC3xoLfLSyaqXUQ9pySIrrRDGjXOSX5HpEL12hF6+YGEULaHblWKHqBDsIcAQE5vkFs/wRUdYZ9O5ZxNM5WqdIaAiMltBbpEcSoS1nzPMDqhaPFmsoU1qv5Tbx8tK5WI3eSlSl7pPLnF7aRhhR6inT/DFCYtR7hxhWXRjSenSLVJ2auEaGxsLrCZPF11BVBs330EubpsMu54TQEMT04FT1PDdQ6znz9iFVK73mlkfEcxb5JTGu0I9Xgcbq5FVdwdaagVSI0SSabTlglh/QxB0GzVuOtBaOHpJD0xmqQopD0Mq0fUZbH5LkiqGz0COXMTYaa+RiJeMggjSIZmblBW3eI4YdeukqCORyiOrc2e5VTAuARUutlPLK1Ipxkyidau0pVRcMmjsk2UBFMVl1QEWo9YxSZyRZtS69OmbafmCaid57VnKkGswnGG/RTYz1QZ2tnjKZfw2kMEjvk+I2qi1VJwSJiHMk+PCRSDR1XPsBRVsLEHGTyoJST4FIE3e5sfGvsNr/vs+0mzfO0PdP/yQH5/9ncn1BkE166fqSwFKXIipKURv8b8ft9ql6znTxEcicfrpHipdAq8s1FRE/6hbXzQdnn8tT5vkZvXiFJplirdRTVKcEWScEm0ZqpElAxbw49aUZfNxxrfcrctkjxh2aeGMpeuju2SbajFHEjywS2vKCeb5PYJ1B7x3PNeeeA/aBoUcqReh5qeuAtjxCGNBzDqHoOaUcEWSdGLfdsXUNOYFSJ7T1FY0Eu1+EtuyTyx4pXqKJN72s6GeMqUXzolMjEcUOQ5y3j2nrU5p4nV66hRFmU09LRijJqxFxWQnJ+Qm5viTFK/TiZRTI9RA0E8MOIj6ZVnCHVljkl4ie0KRdgqxR65S2PgWt9NJtgtjkIYusoCpGpmpLIyNDc/WEafsNggiD5n1C2HDydI712Zt6Ei0QBiQipRwxy19HEYbNe8S4Qa0zqo5NfBPWgIpWE2QhgVxOKOVjTnp3FQAAT/BJREFUUKHf3LHn0Qm5HhFkhRi2wfX55iQCpZxT6jNQpUnXrOTKGYv8wpqmonEkhAHXN/9Vhs07n2k3b5Sh53rMV578QvrpDk286mTMArS1mrMEq4tqMEMQy+MX+T7Qp9+85UTc3AUSjdVxfeSUiS5smGQuzyn1nCZdI8gaqnPa/BzVQpOuk+KGEX5kF+EEip67hx4RwohaFyzyI0p9RS/dponXXRo6d2Koj+X1CyAh0gPNtOUZbXlOClf8RQdyPcWOHl4nyCoiF87F1uaQXA6IYYUoNgWnLS/I5Zhec40mXMIY+dbdkpFLtY4R6XsO3DJvH5LrS1/ja3a/deYEpR0lbBxI48a/YJ4fUuoBTbxFE21AZluOCFIJ0WaTX5B9EdVMW/aoekaKlwmyiuqMeWsdd/3mjglXVL0MJqhArafWxRZWCQxM795+nSANg+Y9q2J0p5pIdAOZo1oJYWBl1fKKef4QaOg37/h+mFHKGSEOSbLq59t1I7qFUk9Y5IdAn1664c7zlFKOCbJuhKVEb1PtZguck+tLhIYYTDGY6yvavE/TXKIJV/37u/Kb6fNLPfZAsw5qzr4tz2jSZXrLikUGMilscHP7D1p+/xnXG2XoAM+Pfj+Txd+j1HOr+4YNotecA9YvXWtL0QNyeUkMm8Sw44Z4SC7HpLhNDJeQEJHXzrNSbcl6jE1wXQcvo83bDxAZ0W/eIYX1i5xRAiINsEBrBhnY+KlyxnTxdWBGP71LE3cs36+niNeIxY/ZNdhshNQiP6WUU3rNNYJ4Xb/sgRaadMOgvyoiPlVGhaLHqM4IrBDjqpFYi48pnDPovUsTLtH1k1vvfR+kUGtrZRzpoTphtviAoqf04z2SN6eUcgxOoF3k5AHro57R1meUMqZJ1wmyStUJbX6KSEMv3jJnpxWhWJSkUuuxGWvcINCjLUfM268jMmTQe58oRjopRkiKNqjMoVZEbPR0W1+yaD9CdES/d5fo+oCqY4QBIa7Z71QfcxWglCPm7WNCGLnDTaieUMoJIWwRw7aXYItHVijllFxfOSm3hWilLS/J9ZAmXaMJV5xs80qHBkuhOAd6RLGa+CI/8erDbZp0w5HJHOtETLYuzLysOQIWzBcPWdRn9ONtes0twHgQu78hEqzf/sbOH6KJVz7Tbt4oQ5+3H/Bw/59BZI0mXHZyRh3aBbRmcj2k1rltpOAjgtsHBJnTpDuksOv52sJLLo1vfF/oMAQK8/YpbX1IP16libeMVNMpVadO+I2WfIBoAhGrx+fHQKKXbhBlgOqZpxmrpHjVyaDq4pIuJz/wUs+WzYorR7T5A2IY0kvvuIFnyxtFQNNr2umh6+aPmbdfQ4FR875Htzm5npq23pV4qKLLM87HzNtHoJlec8uGXtRzctkjhBEpXveo3eWOVs4qeuR15C0gkcsBpX5MkDV66Z6x8dWrH5JQFdvICuKdVlbFuE8vbNGkt51089IUIyuRdlN8pQGttGWfNj8jhHUr8Umk1CNqPSOEHVLYXJamCIJWpegpuRwR44gom6CFXJ+jekqKN2w/ELFuRFA31sqYoENCXKHWGfP2IcIhvfQ2KV7FCLqZBYnlhKEFQuc8Z8zaj6h6yCDdo4mXUZRaJ5gk2RqVTImYsFlxMxb5AbUe0qS3aOIOolZdQCshbPp3297pN+9wdfNf/5lXR1fNPDv8V8nlFZCX5A4oWqcgYjVOAqUeMM8fIPTopXd84y+MZCM4GaVcNEIkap2zyA+pekKK10mxi2ymPktxlxDWHIZ2HWFQ9dQh14AYN52hfUGbX5DiVRN8+Gw78HtWRenuxYiYtjynzQ8JYZt+eguRgTU26ASwkpd2kUpsIGMph7TlMcLAooX0KfXYcvKwToqX7GeXRzsJWqdGoOE5uQq57tPmp6S4S5NuLzv81I920uX9Rl9jpc1PWZRHpHCZXnPHGOM69QrEwBydWP+7pSWFXPZoyzNi2KFJV4FgCjSdE8M2Ma4v+TNcTVbqoQ2rCOsE2UJZ0OZnlDqml245rwCdGtEi5hjVqTmNOKLWCfP2Pso5vXSPFC5jCGMGgjPzGe2QDg1FxyzyN6h1TC+9R4o7nhqMUREiq0t+JSyrDxMW5QGljOk3by/Vk6UeYEMxLnlHWteGax2YliqOaeJVd+wTFu1zQkikdN0cg9YLVKWFyoS3Lv95fkZOgR3P/n+8PP4DhGBNENaDHAkkhMwi71HrHkG2SO71az21erasLSFad4oKXmuveY+qlSbtIgwp9Yw2P0CkoUlvE/3UDTwnN5nnGOqMICuEOKCUsW+mE/rpHWK0s8Kqjk0AEYao167FTxkRWtryhFJeEsNVUryyZI/RlhC3COJNOahHdKXWY0o9JIYVRLZAC215Tq3HpHSTJnaTWjJQvGyzMOLIG02UBfPFI7I+px/fIqXrXEDEDPKaqMVzXmFBm5+Q6wtSuG73ixrbTSaFHSSOXKdtoyCVgtZ9T5t2jCzTGW15huqCFG+R4pZNolFbX0Woeg51ausbRpR6xrz9AGVBv3mPFHY9ks69NDUAMrW2NjoqNNRyyrz9un0mvU/0iUG1noL0TPpMNyeoqz6ckcsjam1p0m2irFAYk/NLQlghxit0PQ8doYnOqPUlSra0kB7FEV4MazTpjgu5io0U93Sz1mOohRTXURK1HLEoHyKs0Gve9X2XQeycN3unE6RmNtd+kM3VX/O57OuNM/RXJ7+P2eIrXuO0jqVSF5T60sizeAmRNapOyWUP1RlNvElKpvBCW4/k0Tf+uZMfNji/zXvk8jFBdug3d5EwROsccIWU9NDanYvWRyQ61P4IVaVJdwlhHWFOW45IoSGEbYRENz8dSdQ6u/Di6SoBu+e2PAGUXrptL99PIzGoCFXPTcwhq8uJpIv2Q5AJTXqXFC9bmdDr5CJDv9+8vP+L6HZMCveIcQehkMshMQRi2IJPSHGtGy3n55R66gThGur3KwhNukOMqx51utnkeEPI3NZEBuRyxCJ/gyCRXnqfEDeM2fa2TaG/zF9hYORoPWKRvw4EmvSe9dnrnFLPiKGPSDeZ1khGkUApJyzyIyDQSzdBhqBntHmfEFa9HGfiItM3ib+TfSCQ0jaqkVIOaMtTUtyhSZbCsSyjBjsViDOokRhXUYScn5PLQ8T3kKkqW4P20mDz6ecowVAPSi4vaPOHiGwv912tU4S577MBWltPFU31mOspd678eWP4P+N64wz96Pw/Yjz9zzBCqEXVpn0YE50o9YBF/gC0odd7jygbXt+eogTrC3cySug5jJqxaB+gHJDiTVK4asq2emabVNY9t+zmnxpUKvWYNu8RwoAUL3uedWgiHNkixqtO1hUfGWQqu1pPEHHCT6LV+tsPkLBCL73rLHTropbkm8MGMiL91zb/BwiBJt0jhg3Xt1s1IYhPtFk2YkSqTsjlCVqzw0Grk+fyjCBDYrxpm1IrSEVVQCqlHoEWQtggSM8m6WYjKHvpPURWQFuvHkR3anNnrofYGOwD/8yQXryHhBVUp44wBoifxmpXdOb6mDY/QsTTEhqKnlDrISJbpNgN2nSH5OiplANEGmLc8rTkJaW8IMbLpHADQjJnqIYG7d7HQOM69UJbnpDLU1K8QRNvLYUsaIssFYwLEG9T1UxbHlPKU2K8Too3jJ+oYxPDyIpVhhx6ix+CWcqerX/YsSoHgaInRrDKhqWKr6FPBUo5oNQ9gqywu/nDrA7/ic+0mzfO0A+Ofy/TxY9i4gkvSZFpy3NyeUJim6a5aQRJGVPp8tsNJ+HUc5rgG/8pqnOacM2kpDqlzc8RCcR4fRnp8c2kiksvx4iseD41p7QPKXpIE+8Q0zXsuKC517kbDHjPnVk1DXSbn6DlMUEu0zS3EOlRyjkwtY0hK+BDHDouotRjcnlqOXm8RpDkOfkrY4+97GhEo0IIVuv1rrAYbPPX8pK2PiDKZXq9twDv8MO054hQdYrl1+bkcn5GKR8T5RKpuU2QIbWOUZ0hMjL0IB2H0N3vK4uIrL6WGhxR6ykh7BLipq0r6s/pAhU9RBiatLhWRz+HpHTDUAvJ7lcK3UGLJt/tEWTFKhaLjym8pBff9t9ta2GpjKnqLEVpMGXigrY8QMtLUrxDdDa7VjvEMsi6k7IGvTsSL5enlHJAE64Yr0Mhl1cIhRAvIbLqJTSWqYwpLo8JYZsgG4jOKWUP1Tkx3iAm6/vHlZqKzVCwwZO272LY5drOz1Bl3KujH6ZtP3bGdUqbn4KeE+JVM2YyueyjzEnxCjFsAp2kxctodUrRIyB5B1mglH1yeYCwQb93Dwkj20h1wUUfuh1MLzq0/E9PmS9+HGhp4vuktIMNjxw70bLqhFIBH3BY65y2PEXrARKvkcIuIoWc90EKIVzy4QdY/beDwHpihJ+sWp5ZF+T8lKrHJhKJlw0u1wxiXWF4TVmkMX5AWxbtQ6o+JwYr9Vhdv5MPjzBVV8uy0UQzbfuUWveQcMkqBx2HwIIQdkyp56scCHRy0VIPCXHTc/JMKU9dm9Bp4HG2WwkYkaVMgeFrFZOPUE5p4j2SH3ioTL2fYIhINXQmPRtFVaYs2g9QTonxIi0p9QwEomx6JcBLmwRKnZHLI7SeEeMtQthEZU4tL4BoLLsMvf240rUQl/qSWidOBq4aOsqPCCGQ0lteoq3uPINxK3pGrXMvAfYp9ZRSbFZ8iu+Q4jZGElqFxfbdlFoXiEuqtY6Ztx+inHHr6l+jSW9/pt28cYZ+ePx7mM9/hKrHzrKv03WDte1HhNAjxXuEsAl+uqhNXe3g5GKZ86Bz2vyIUp+T4i1ivInVtCeYQmpo0Ve7gwTtOB+DTo+APinetEim55R64N72kkOzbgilRfdaO938DiJDSjn174k08a7BV3RZRjOSZ2IvWXxQRj1j0X6AMCM17xHDLlCcQFOPvsZABxe1lDqhlI+pekqKbxHCNkZaHQFKCLuIj+MymB9AW3J5Sa2npHSFENaodUIpT4FKSrcRsWOP6XJyjzrWlLPq3VxnLNpvIFJo0ruEsOOVAztrHoe94vP0RBqb/pO/QdU5vfQewWevl3pCkMZUbNgcdYus5qxyeUQtc5rmFkFWvKnoBSIDYnAFJeqfM91ErQdAi4RthB61HtPmj4lhhZTu+Xp2CkZzYqpjus43JFnlI38NGNDvfQ/i9XPjHRp3nt3E2IEHqUMW7deARK95z5V5hkqQZEHC19bWJVLLKYv8ISItKd1jOPjH2N74LZ/Lvt4oQ1etvHz16xwqWqNCm59SyiOC7NIsddUztI6RMEC8nxgtni9b6SXnj6k6dTbU5otXPSRQfeOPHOaDU6vkeoTWI0RWkbDlBNYLq3vGKwbZNTpLaoMRbCrqORB88ouQ8wty+YgQtpy8G0E3AooeuK7bfr+1y5Z6RM73QSIpvk0Iqw6bT7Ae520XgXiKIY5c6nO0ZmK6ijCk1lNyeUySIbFjgl8jl6C6lrogYc3Y43JIm7+OyIBe874pBWlB5xgTPACZOzwdeJQ8os3fAE00TacFMA4hhIFHuy6VikvInvNjFCGFG0gYoHpqZcqwZqmUJB+tZFN7rAHkEIAYtlEitb6izQ+JcZsmvrWcu9dVD0wuPTF8F1bs3ZY9crlPkG2a5q6VEHXuQpY+SA90YRtR+tis+D1DgbJOk+64wx+jem6OTlbdeQIkqxHVI3J5hEjfnlEGVD1B6wlB1ghxh26QZ7f5aj13WK/O+A+o9YSqr7h17e98Lvv6rhi6iNwC/jRgtRf446r6xz7tM5/P0FuOT38f7eJHafMjVE+J4QbB4U4pRxictJKUeCNDV2cs5RzlFTaNZAdI1HpMbh8jYZWU7li/87KMZkMctJ6ZkiyuWu5fz8n5PrWe0WveQ+Ku+QKdebQYeqpg0tbgHWK5PDYILFcvcsZyCuKEX5eTY0cPgZXRan0BDInhsolW6iElHyBxx1RRXZ1cukktc7SeYs7Fyke1vKDNDwhhl6bpBCoLYI4d8xSg67cOQyd99ij5Y5ANGq/rlzoBxl6ftpNfzOjsUIdajij1if+7kZG1Hnldf5sYdwmvjb225xlT66ELe7Yc+r8k56ekeI2YblrOr9lhsM1eM2NN5ij1wunHeIO0lItOEVrMGSV7JxoRP5Qz56fU+gyRy6RoqUwtZyBzRNb9u/2d+Gk8tbwyMixsEMRm3xnvcE78BO/w2kjncoLqIciQIFsgSikvKOWQmKysKj4b0Lr7ImCOEWnMUVZ8XR4RwiU2Nn4zayv/zOe1ye+KoV8Drqnq3xWRNeDvAP+0qn71W33m8xh6Ka/Yf/Vr0K7hgZ7VyMsjkMZgqU9ANdiusITiE4ShDTzQTNs+oehTAtfp9W6D9JyoWWBDGxpnkQW6IRT1iNJ+CERSuovEdagzip56ic7PCVvOBzOpaClPER0TwjVEvOsuPwMgpmtLaStL7y9UPb2IDGEVrQtKfkjVYyeKrnKhm6/OChcj/KTxlKMlLz4G9gnhBrG5iahFCJXWkIlPp1WCRTsKtbxA6wuEbY8gQin7xgSHS0jcANSFQ6AiaD2h1mMkjIwXqXnJIaR4i9DN4vODCNUHV8DEKwk2RCMvHlB5QYpvk+J1SwfUpr2KDJ1QbQ3eqr2jXB5CeUkId4jJJsTWeoJJbzeR0H/N4ZsuoNYXlHpACpcJso3S2nNrJizfidXJ8bkcVY9QPSPKupcXZ+T8GJgS0x1i3LFKRddPIMkifJ0iwdV+dU7JDyh6SApvkxpj2k2444eSUDz9uXiPNT+k1OfEcIuYjNEPssX2F4mME5H/FPh3VPWvfKuf+XwRfcHJ8Q+T80NKeU4pjxB2aXpvGYuqrcP6hu4wQjOCHqZ8O6e0H1I5J6Z7BNlxMucUqIhs+EAC2/jB9d0lHzgZtUYIJkRRPaLWQ5BNYrxC8HKJ+KF+qgtqPTK4FTZRkke2j4ABTe89L6NlVBeEjsXtBkOKE371lLb9KlBI6X1i3LJ0wA8RCD7RRpeEn41zKvljVM8J8bbxFdKS8z5BhBAum9RXFel67zVTywFVz4hxB7DyVymPUc2GAvwcNtWWEAQ0OlRdoDIkhCG1nJPzh8A5Kb1HjJcdNhuD3yEmy2F7/oxjipNuIb7zCQ5BJBLCFkuBSmesdWEVk3pGTNeRsI7WCbXuYXXwm55+FUMcPg66VmtjDWEDZGh7It9HJFhOHjZcC7AwYpEASzLMeJJSTsj5G0BLjO8R0yVDGzrFlI5DLpSbHjTqmNx+ncqEEKyfwJ5x7KRbdyKO8w6S0Doj5weoHiHxJjFcRsR6EEQsxdzY+F00vS/AzDgReQv4L4DvVdXTb/q3HwJ+COD27du/4OHDh5/6Xe3iRzl89c+iekyMdwgOmaueGskWNoARNjgCVP18snpKyc8REYeTA1TPqeU5IgNCvO75lR955JtC64l1o4V17+6a07aPEM4I8c5S+WaR6UI3D1OMQDElVCnPqOUBIVwhptvYPLCpb4wByAARL4dJz3K5ckQtD1EaUrxtwh09Q+shVtbbRSXZxoBldK/1pSGeeAnoWy5XHiIyIqa3l/fUTbVFFXRsTUFhxeBuOSLnryHSkNL7iHeFqU4NQmMKtK73XiRSyim1fIBqJTX3XPo586aRPhI2gejrFHyNJ9TylKqZGK+5YZ75exkRokl6dTlJVzCZ6hGK1fWhZ7C5fAQyIsZ3DAFpC7T+O91Y1abiGLF1QHbeITXvIz46Sn0cFgyQDhV2ZFg9IrcfAkJq3kHCqkt+T20fhQ2P6MYf2DOOKfmRvZN0E2EFZELJ+0gYWOAQQ1XiKZsFiT1qmRHTJeOZdEItz0ACMd4CWSHIGuubv5MYr30eO/zuGbqIrAJ/Dfg3VfXPfdrPfm7BzMH/jFqPUT0n52cIPSNp4opDyQ7+BqqegY4dGq6jZGrZo9TnCJdJzW1jYusCU5/Z7HaYOkk0xEQPR7Tt14FKar4HCZvIMqoGJK7aUH7NBEkO2Rb+gg8J8QYh2HE+pRjLG8Ku1e3p2k39qCg9daQw9Mim1PLS6+RXiH4mvG3k6uKUjOqZ179XEFFy3nPncpmY3nJuwRV+9IwJpnXOpw8CpexTy8eIrBHjbUSGVD1D6znIig37EPF7DnbP9cx7p9M35eQuGkpXWZazlpF1jtZje+qwae+qvKSUB+AIrYOs+HyAbo66qdhGiODPeN9z/7eXajITmwyczHOtPY1zCPuU8hBklZRMu1DLmSkkZdUbR9zneheb1lPfMw0Sr2LDQQ8p5YAYtwjhCt0cBFzDrszsPWogxE1MP3BALU9QNmnS7eX9WcUhOmQ/w6YVuwCsHFDyh8CApnnfnItmjIvaZGPrj140LH26LX53DF3MLf4F4C+p6h/5rJ//vIbeLr7Cwf4/BeySGhvIp3XBUl5IBBYOfwcO+c5pF/eBU2K865EYJ3OykWA+YqiTqFqe98rLSSNivG7RpZ5ZWUpWiXF3yeKCOPlnURVtkbBLV3rL7SOQRIp3nEdQJ4mM5NF6Tq0zf8EDg7PlAaonxPSOE3HizTsKPk9OOnLKWeGcH5nWP95cevpazxEWIOvuvOoS7ahWtL6i1pdI2CTIrhv9K7SeEeJlh/LQiT5UBdQYf8QY9KrFonN9SQg3Sc0NWObkdbm+6MzyaxkCLW37GK1PkXCTlG4ar1EnoNnViAl8NLOVqTKlPveof8mrCcbyq9rml7BqKRQYgaZK1QNqfYXIOiI7CJVaX5qMNl4lRptrbzPpHOjUMXDqBJrN/CvlKVr3CfGGk3cmpe5O5FUnCU0xtwJayPkJtT5CwnVSssMgLEVbAH0kRLR6W670bO+VF+R8H5EtYnrL0qI6QXVKCAN3dhtsbP0hV899+vXdIuME+FPAoar+5s/zmc8d0fd/JYgdfVP13A1qFeizjOaSACeI8iMQ8Rr5CjChlFcOOS/7GVo4EWKKsloOQE8JcQNhA2gdCZwS4jV3FD5YcemNW9Bz1I9jFoScX1LLfZQNer13wM9Zs81+YZzqkD1IROuxe/BKTO86bJ5T6ykiyTdq8pzcDxHQGZQn1HpGiDfdw88oeQ9ECPEaF+osh8CqVD1CdOJRzDq8Sn6I6oyY3iakHbR21QPo6sEmwhm6hntCO/8IOCGke64mU7SOzRG5aMhGMzX2bnRu74VDJNxe1ta1HgKKhB069aBFxwBkanmB6CkSLyF06/LMOIN4kxA3/H6tvRURajnGlIar1iBSJ+T2Y2BCTHcJfjrK63wOboQXeosJub1P1UMT4SRzoMZP6LL1tivfgb/X+ohaXvq9XbU9W09BCqbP72bZ2TgwXiNCkQ4piCPYidX6ZW3pvJrmfdY2f9fnMa/vmqH/Q8BfB36UCyz9O1T1L36rz3xeQ5/P/grnJ78LMKjYzepe1lWpaD31qLtCjBuoVmp5ZUSN7JKam9hRty3iBxea2vDMPLrY+KlcT6j5Q2BBTO8T4o7D66kr1voWXXWB0rAcP5UfUetzQrhhRhYiWs5s+IOsEWSEdJDdW1ZLPULLM8vX41UggZ5SyktC2CTEK94uWpY5ea1zqh5CVWLaRGnQckQp94ERqfcuIiOoGWgdXlq+qt40YoKaQ2r+GkJC0nvWalutjyBKD2QEFOsuIzmkPEXzR1RaQnqLIBvAHK2HqDTe593QHZi4vN/6HC0zYnMVMK19zY9B+p5KeTlLCxLseGjqKVUXhGDGUcoxtXwARMuvw7oTfguiBFsHnWEzADtS84TSfhWoxPg+IW55KmdnzSErvsOM1LTR32Nq/ojqTkFkE6RFl3LiXU/Tuh4IHwxanqD1DInXnNybeioDIV73kl33/oWqBS2Hln7FDWf056g+N84g3LIRYGr3Z4gjIHHIxvb/8XNY5E8R6/55rs8d0V/8MiRcQ8LAmc6WpToKg3zQTYKdUNuPUT0mxLuE2J0RZpM66A6v81NKkL7BvPqKmh8AI2K65Q0XUyvZhAHIukk2vYxmU1tn9oJ1TIzXQdaxjf8Si1JXzBvT8QjiL/vMXrCs2L9rS8lPUY7cUVzF0pEWK4MlBBN8WIQfQS2U2hF+VwnxDkjf12OOGXRXRsNyTQye1/IQCSuEcMvLUGdWg5dVRDZ9bbtDjD3dqS9QFUK8bBG6HFHrc5BNYrrpUbET4UQg+3fiESmieZ9SPkJkg9C8Y1Dezzaz0mZAmPv8tSEEoZZ9d7wjYnoHCSvYkMlzkAG4A8UJNCSg5YhaH6Ia7V0yBCbeGLMCskMInYjGD7JkSi17qFaTFtP3PP0pIawRwg0n0Dr0EHwvnvioqw1b/3pMKfcR6RPjPVg27rSgwZHO1NGDzzasZ9T8AUpLbN5DwrZXAWaIBltbTJo9WP31DEb/o89lX2+coc/O/wSL6V/AItQIdfGEXQ1gUKfmj1HEhB5hDZih9QSItniuIrPc2qbA1voSLQdGEIUdgihaDkFPDU6GXbqZZ4A7jTmqx0bChE1jwssR1I+BITG949GiE3sISvQX3I2fshdc2g+ACU16334X1fJEEd/E3fHL0XTddU7Nj1F9hcQbxHjZkEI99vXZgtANLIBuNl6th6a1D2vgU0yoL/05r/pzukbfc3K73zOsJLaOakbzU0SND5B4A8un5ygZtGfKY52BN/JAIS8eozwhxauEeMvemU5QnXkK1rsQmvg7Msf7FAnrpG4MVD0GPUNlkxC3rKxP16+PqfvqAdADH4VF3Yf6yqB/uOppRJd+JX+XJ5igZh1F0fISqY+RcImQ7ngwWNA1VZns14aemFAKtLyklA9JYZOQ7gEjc0jMnAg1otHut+d79oiaPwICqbmHeKCofhQ1ssaFCKcjjYW1nX/fnfinX2+UoatOOdv/1RZRl8ctwUX305HXXodmzAS0HlieFLaQeJ1urnfVuqyTo8eODNa8//zcSlt1iqS3nTHHXrCALXSn126Wm7iWp9TyxDfFbSfvpl6yGUIYmPFg32GGd0wtD4BAiLfNKdQJVY9A+i7H7ZwSdCeGaHmBYgIWZBXVMTU/BYQQby0Jv2W+Cs7oG+GHjCzHLA9MLhzvEtIlZ6FM1NJFD5b14D6qM0p7H/SQkN5CQpeTn1vuyZo1w1SbE2f33lppqB5AvEIIO0ClZJsUFHxyj223rrxZUT2CemKbPjhXkp+hdUxINz2X7/J/qGqad2HiJKGVREt5BPUVId5BvBXUVIAVpYeVNrtDHvp+v4/R8hyJN6z86lAeWqyyYV2TxswbfNe6Ry3PENkkpGuA6SDQsVVqZM0RB5ZCCVBPqOU50CPEKyA9tB4bXyHrpnno+iZco9EhRdXKyuYfJvV/0Wfa1xtm6JXp6e8jt19DOsgEVgeuc2es+zbzq30IHEG44+SJiVEg+8sEkQVaTfIJeOT4EOgj6R4xrNsQBD23XLqb9PLamV9aZ9TyCK3HSLxpGnhRSj5CpEXCjuupfbbdUtp6AvUAZeA69YDWV2h5CeGS8Q/BcvJlEwYZ1VODmGENIZpirXwIrBrUk5GPKZ57ua2HVSEKwsB+jx5TWxvkENJ7LpOdU+uZwfrX5ssh3YikMVqMqAvhNsQ1RGdeD26QcNkqIEtHZgSa1n1qmRDTJRSbSaf1ESiE5KOWcMmx15HRc6ouEFYQRzuaPwTmhGSSY602XMOqJN4bUK2ub6nDuSOkM4j3rB6tlVLOEBHT8Ut0h+QDOuuCWh+j5cgM3IU7pR4iThKGMPJ0wp5RKdS8DxwjYQvYBFqTLesUidd9kAfurPXiGeupO3PjGGreA30F4aqJgLC0ckn4akE4p6rYJNz0DqPN3/u57OuNMvRaXjI9+pfdJ1reagbbw2SEh2j+yKq86Z5JNbW1MhHR5253unBx8qSYdywvUVkneLkGPaHWE2LYcqgvdFNtEEHrzPJvLUjcBfq2idWGQ0q87Se0vtbdpaB6bkQRK1Yy0SmaHxr8D3dcEimWW/ugCfPmPhI69K3E1D5B9QkhXIXlnPgxQeeojCx3p4PsXi4sh2h5YgRVuo7B5lNqOUDClpeYHK3Aa8/5ygJ83EZJUI+o5RGwQWzuIMFOMX19Rr3quaczq0BEyytq+QbCiNC852KTFmGOTXrp27uiYtxJoJYjavkQc0jv+HfN0XJGCD3jQSR43tsNqxhDfmTkXbq9rLTU8hJk4C2n/U8YneoCrfuG0OIlYGDBIz9EQg+Jd+wsNrpuMkNIVU+hzo3PCEMjc8vHVuqNdw2N4Tk5+HpfVC2ME5k6j3RAiHcR55EMLXZ98+KEbzIYr4Wan1DrE9av/E2Ct/x+2vVGGbrWMdOTH0bLgf+NRUeth/Yiw4o1+hPRemIbVNaRcNkX6LXhemRzDGVGSJuY+miGlicG/+Itg5g+MdYELdFeIhNYjuYFrS+o+QEStj2PM912V0YT+nQab4s40SoD7QdAS2jeNUaXlurHHhHWveTS1bwbKyflpwjHEK95A0hGvdUSueSRvkMP5lzQYycSV11NlqnluXXiheuEdMXIr9fyVWvvnWCpibPu5SlanhqbHG+5c5m6ExpgxpbtfkPPcuX8HPSxIZ1w0z9zjunXV5eiIbuir+cxWp+j9JYinAs4u+nltdcckoucajmwXLybrlMPqcV/d/RUqpuh5+Us0wPgnYWRWvfR/BHIqjsXm3dvz2hzCQwhedUiBLQeU/M3QIWwLIm6jp9oJUbUkWAyx1bHlHwfmBDi2xC2EFpqObb3L1uWAr02zktrC7pn6xB26a38OvorP/i57OuNMvSaHzI7/Te8dKKonlrkk1UjQnQK5QlaT50gurpcICGjYpNebAMbwWVEyAGSPwQvL0lcd2g4tTxa7ARPq5P6NBIW1PKIUPdRMWMRgqvlZuZgZOSnjdqIZRRUT7yM1iME38R6ipZX9hzdxu7KaAQqC6iHWNqxBdJH9NRr0QGJd5FlTr5w9BCd5DJG10ikc0M8ek5s3odgBz2o97IThnavPl23O6ChloeEegjxJhIu+2dOsQ6/TQiuYVDbkHQoqR5A2Fr2FGh9ZbxHuOyNMX4oJfbrTRdxihmQDaugPEfrISFdR8I1j+AmwjEitnWn0TmkbFxFfYKEG4R0y8m7OYg5JOM5zHChB1KNZS+PCLJNSLewhqkx1nSzStdZaGtsnXpaj31C0AAJ11DpI3ruPNEKEi5ZqrRcG5filj1MpnzZ9m09Q8tzW/9le64i3mxko8iOLAC55oE6QfQ5oyt/43PZ16cZ+mdPnPspv6LFcJ07Y7nhHvWQuvgKIEh6l9i8h0WgU0LAX1SDqOVjyAadOIHyDGEDab6fEBozhvIYWPF8uxtw0Czzfy1PoE4t9493EJ2i+REqAuEaIW7bhvBDJVQEyglwjsiA2LxLrRnKM1RfQbzh92ylKBtYkBAxkksIVsoCSt5D6kcoW2asMsTY2SPru5a+awMyKiuEuE4tR9D+OKpKaO5hgqMZ1D1ngTfpZpghdkS01ilaPrYprPEqNG+Z42jvQ2iQcI0QVrzE6O2xqDksnZjsM15Cyznkr1vZLN0jNLex6GYOSYjGSGtLoI/Em0YsLr4GnCDpHWLzNuZIxiaIEdOrowsjV+MO1Bm1/Qh4ZSKc5pciojagpBYkbLkM2ownMvJKyx6UV9bq3PyAlS7rAVqnhHQZwlXQTjEXzTXpCZRjRAZIfM+ep7wEDlGXHHeKPju80glUl0zHeMO+s75E61eBTWLvHcDUguiUblSVOWvT9Yvs2rvMfwtI9Lb+ve+IVX3hIjrA/OyPoosfoWr1vGofZIUQrlj+yBnUI5SVT0C8TvLZEURazpC4w3IaiL7A1EfXnLG3UdJWtAngpRcjuNboGH3Kxw7zbPxUrRnxZgolWg5KxppXGsv9WuvuIr7r+ZXa70ZRRl4i8vnvPtqplmdQ9iyHC1ecvDvFnMKG1ZT9bg3yq5VmeIFqjxAvY4MQjzyl2XaWN1kE9pTGUg7rPZKwDhpNs10+BllD0l2rIPgmNobcoLPd/9CJrSM0f82QRHzHGz4W/nMRlRVf3+qVEBvLTbkPZCS+5WITL1+SrEyGD9fwLjZ07oz+mNBcA1kzCW19Yax/uO7ITV9L26rBX52a0w8jqMaVIJmQ3oKwZWSkl25Vxer6OgOGHnWnaHlkaCu+5ZoHk0ELFaXvmoeFIyTXMpQnaHniKdBNezadcjHVyDsoBXPEqKk16wP73fEWEkZI2GSw9e98Lvt6o6A7QDv+M+Txn/W667rViavlrsgZMd4EbyW1l9RFG4sIlpCNgAbqITWbwkrSu86yFo82iqrBOhOdeG8wC7R9hOpzkGtIvO6trSZOUYZGzHT5oyYrSddTNH+MEgjptm0+nVr5KPTQsOMsqzdGuIaauofWCRIv2SbWGVqfg2ZiugWybhmu+oGCYM9Zz+x3dF1Z+QlwAOEW0Yc02hCGjPp00q7rzlp+M7U8hfrInJ/DWdUZwswdUt9r5jgXAbW8QssjJKwg4aY5KsZIPUNl1VOPpS7QuI96jtY9qyakK6gmM+76wsui14BuzLLSjYHC9QuEdYPn5RAtH0FYJcZ3IKxg5413jhdDMlp8bbrPfACAxPe9AaXYuyECnUy1+LMkqOe+b6YQ7hLSDpCROrZ3HjZsz3k5zBzfHPVZgYSrhLiLUtFySJQKYRvTW3Q25/xTObSAFkzcYy/5COoxIVyit/mHCc33fKbdvHGGPj/6TWg58dz7EPKH9g/xHSS6oXrjh8kpAT/B0xRXFS17UJ4YaxtveVloYgYiA5Q1n4LipRcCygzNj6GeQ7xu5IlkKHacksTd116Us/OYgVOtJm5IAbTsg76yFxevOelSkI611gJ6ZilDWPMc8wjyB8AAad41+E1hOc7Jy2jUbFFUPA1pPwQmFlXjrhlmnRh3IKv2WS2oWC+76gJtn4AeQLwGYRcRNZSkrQuHRs43gEk4FeHIxEU+Zsui5kt7DrlMiJfoNOvW/+ZSXD3DWPYV+0x5bilFvGqcQFdi0tZzcjyyBlMpovaZ8gBkF0l33FHN7PvpW1WA4jIcd0j1APzgRNJtK5vp2ERVYtGS11pOCdZ4RH5u+8nbamGM5hdIGPrfNSz1APi5bPUVWqYQt1/jkp6CKITbhG5+/2tro/XMnc0QiTbVlvLUjDzcQuIVQrxBs/47vBrx6dcbZ+jt+Z8gT/4TqHtGeMUrmLc/R8uxbcKwzUWZKNAdoKj1hUXQeAmVDavF11dm5OGSb1CBjiDymWRaj7Dy0qZHgRPbWGGIxLcvNqm2RrgQzcjq3DeNzbGjPIR6bC/XjyPqavvWlCOYsiz5QQFGElEeguwg6ZZv4s4pDc2wOpZdrcRU6ynkJ7aRumYeHaN6YLA77CI0PnvNhkFWXZg6rs6QdMm+u47R+tTWMN5CwsX0HrtXudiQskYIAzvyKn8MTJF4Dwk7fm8Lux/tY00yraUUwUQ42n4MHBrnEWzSrOrYfpesgHbv04YyiGaH7KY7kHjFkdOJGblsLQ2gi6yAOaP6Comrtk9UQA+8ArELrl83YVM3lGNm742IRO85r6+gPgHZvmD0yZ5yOXrwc9akQw/10J11gzTvWwroLadLZ62d5qGPBJsLr+W+Ocx0Dwm7xhPUCSEM6W39cbqmmk+73jhDn+3/CpAVlFWLZuUF0DUQ7Dq7nX3Si8tV9QyoS1KullOTqKpCuksI3XFANnoYaRBtUWbYIAirZWt+BvUxhMtINKPTOkVkjhlqp7KqqDSWi6o1f6AtxLvWYaUZ9BTF+rG7IZJWGvKuuLKH6qEzt1uAej17DrJrJ5zQ5eR2aR2DHqL0fXIq5si8mUfidUsTvIwmHTzUM4PNYQXrDX8FLsIJzTto8AMa6hzT1/eW5UKk76WsEzR3EPiewWltPWInQyafmNzq02nKI6hTSLfoxmxp3ocQ3fkOLJXpat4Uk7Lq2PJo1rDa+lOoGWnse2znvla5qGcIU1SGVkqt1vGHHiPpjlcTurbagrHx2de7MbER2fPrZ0a6JsuvbZzXApW+O+jWnIHYmfWm03hk+y/ecqZ9itYzQwJh/bWSqCNIPbfPaAvhtjmmOkfVpu6obBOb77GI/jPxpJZ89u+Sp38Zyoe2yeO73olUHa4pKgPvLutEJnYap9aXkB+isu6QaUitdohhkMYFNYoJMJIz7nO0PoZyjMYb5sGDWlRn4ZHjwqPaZzyy1BcWieIVh9In1PzSVFnxqsNtK9mEYKfBokf+cjdQBlDHUB7Ys6a3vOxkvewdESbMMCQwwOS4c+riAcoBEu4gfsa61byto0tFkNfbKinuyJ6iYRfCDYehY0MQskI31MKGMhh60HIM9RnQoPGa6QSWIpx14xY6Ag28SjJD6oE9U9hG8Tp5eYg5F9cikE2H70MZRc/NIQabH1DLMZRvGAJK79FNwrHjqKIbWkt3pLUpGc/dIU2NDA3bIIVazpEgRuJKgFoMOQQvzdUnlqbFm1i7KMaAUwzmu0AJR0iqFcor4MC4FdkBxBxxPTNicXlUc8fLeDpTDwxpREOmtjZPfW1u0wl+YnOHZuN/87ns640ydK2HLF78owZ54jVXiU3QaqN88HFFJsPsmlVaKHsGveKuw3rLOWEMsm3GKgbZAYuqZWp5dK2QtoGB5ef1qRntsr9dvfRic82NCDsHRkagkCE/BX1pn4mmgTbhTUbVvbHPORefwEo5gPIBsArJZ77rAmVqLPWS+VagoWuFJd8HpgbzurbKcmJOQTadULK6rryGHqjHkBw9aGs5OnMQr3kvp/d0IpwzqDaUgbhuDqS8MD17um6VAaIZ61LC2dq9aTQhCgXyHtSHIFeQ5g52YswcYWFkaLDjqCxV6Llz2V9WOwzqj2wf6NgIU9eUayfh7XLe/MieId70Zp8J6KHvnR26hprlaK7apTNTU8yJfyY/gxBckdid5FPcwBX0xH6OVYirUGeWX3MO8ZahNFyjL+p7YO6f6TlZXOy9lMcQriDpNoYa52hdGDKjT7P+2wjNu59pX29UHV3CNmH0q9H2KwaH2nMTmMTrFzCdcrGB66HBubQDXPeX/eP2ZfGOCTCA7rQQJSG6MDECjZFuUQ1Gl//ajKC5i2DKN4NeDWgPOyetIgyRtO4s+1fM8OM9JN6x31HPDYbKyCKO2Plf1vBQqPkF6HPLyZsfsHyxnnptf80Y3W6ckzrqqGNoX1i6ku5ijREnaPlxN4aO/e7KWR0EPoC6QOIWpKtQz9D8YxZN0t0LA6+eX3d93nVh5FXasNy//TroKRLvQu8ftDVdTsIZ2P06ugphG3ThvQgvQK4j6RdDEHMe2vpzroHP0bOpOIqWAzTvgWwgzc/HUoFDQyKyjfgMP1l2vwUznnIIRKR3156tHqD5vn3mE221C7qJQaLHoFjTUEzUcgj5b9t7a+6ZgWtB69igsyRbGy028UW2TAjT/gjoHInvQnwXQ3BnlvWEkXMEnhLFXV+bB6AvINxE0i+0Gf3lHJETVEZL9GBl2JNv366+cBG9/Srl4NeARNvQWO5qUA0sUlaPfNEnoKjldOU+sA7pLa+b+kkaEjGhQqX6WCaRxrxwfgxyCOEaiM1UR889b1tzMqyDsp0w5hSpzwAxR9GRZ/UApO+lP7vPZWNEzWh5SWBi4g9ZBRZQntuzhRuOVjCSSBTVDoqfE2RA145K3YPyzNKFeAvz160bUEN3+osdXjC0+y77UD4CVmxdw4o9Y51A6AEWYSxyuXMpZ7amorammA6demLOSbb45gMlxMuFVrm4amtIx7OosfzSzf5TQ7oKlCOEKcQ1+/e6sEjHxJ4xdLC4tfupkepSZWEAYWj/lp+C7oFcg3TL3r3ObX262fY6R6Wb5Frt3sojkA1Ity/ep04dVblqEuhO8qGegjfukG7ZujKDcmzrKdYmjU8JUhGkLuzeypk5XVk356gHGCF5ybkpPFAIsEbc/Dec//j0642C7gDl+Dc7Cz61SCZ9TG56UQ7DBwFQn1tUD7uvbYZj38Ab9vK6pgjpOqcm5hjqwuGa9RJTX9gNhKvYAAEwgq8rXp87lO3b96IG+8oL+55wnU+2fTpgquf2s7Li0fvYmVmB9K4ZuBbMmQkG32xijH1fY/eXP7b8PtyBdMXuaclar2KyzYINPHAGu7w0wwtb7oCSRYh6bs+wHJR4wVpTx6D7oNFSIfyeyzP7nnjd0IP6QQQSPRU4NasNq3bP9djgN40/56p/ppOm2gEG9qxD+8564uXUDOkdZ827mjeOktRKjMFr3jqzCkk9cUO1Pn+7n+rP6TqC1yS86Etj1mWLZf26Htreibu+53ygZ7c2em4OneTGHC1FLHuWb8s1T0Wqr43vUz2xZ5INX5vOUQRIbzux+VqHn+fykIkbfxhJb32m3bxxhl7bb1APfoNFBG/vNMOxco8t3JH9f9gA+vZyyiNAId10thb7GY9SliOd259lxf66vsLUSKvQvONGn23jBssZcShLGDoEnEJ7H2uRfdsjl3ipxYUaSzGPf4c46sgPgTWD2nEIZYzxCMbM2j2rOzPxfPGxRaV40wxaZpBfmTFHHyX82qkoaLH8n3NbB7Hc3yLtBOINiFssnaWobThm7jj6LlJqzbh1D+S6ravPlLNna/z5umObfOxWfgn1I2AH0h0IAyhzEOshN6jfFen9O8qRR9UA4bYjqS5CDtyoOlKrM4SZ3V+d+zvoBEov7B2n6/Y9XRebiPExemxr3o0Or3NHD3OId2xtuj5/wX4fC1+bnu0dWsvjdQ+4Bs0tXxvvSNPGA4Qj0TD053zpyGrVDXzV1lkdeYbhJ/asND+HuP5bP9u4eAMNvRz9C3RdaHTlsG42WSce8ZIMZR/qfYOI6W034HyxcH5KiS1+Ms+uCzeePdv0wXrZYeKf63Kk4pE82UsrZ1bvpjgs7GDpEYTOw39z5GiNma1HEDc9QlWDa3oOXWlNOuGGATfq1DdkcgcQLQ/VJ8A6xNuvbYpy4QTruf1+jB+gnkD5uv1beu9bowdtHal4hGw/Ao4h3TO0hFqkp/pGT/57wgVELXuGcMKOOyAxQ2V6USYT/BndaOuZrY/0HD10UfWVrdVySsw3o4cTRw8bvjYHRviFNQhvQezm6GW6jjmYmaEHlyqXEyjfsPuI71hEVh82Iu64ln30zYUhL/UAb9v7A3cC2ZFVx5W8hqzyvlcu1qG57sju3PaArNpzvC7eEX+XdZ946S/yM27CDECd/lXq+I9h3nP1Ikq5kAKdG5OrrxyyX3II5UxoWHOI1C3ca1CoPPeods2h5MI2WlCQSw47oWOfl8ZTD4Hk5ZDgm3EP2PBI13ttMwbbhPXEkcEahL4ZSv4YJPsm8epAN9VGO/Z5bs8eBljkeOqVgBvQdLrpGcvWUbHmCvsSjyTllcPmkcHZjoEuZ/a9YcOf06N5R/iVp/a98bqvz9SMjq6EOHgtQvp7qa/ss3GbZTNN9z2vo6vlPeL3P8Yg+wjjK57ad8XbFqHputiyrUfH1Wh0R189oj8Eueyw3RGYdmvYOUOhmxxMPXRk1by2NlPnHgYgmyzTPVfMUbqa/NSDwxowMwMO0dKiDj0YpW97oRwYTI/rtic1G7LjHKt27NJ1r9nlKKCbib/yzxNHv/ozbQbeQEPPh7/BXqZ4PzGwfOn10GB02rKFrRPL08kQbnIxqCBfwC5dAGe2ocMa9rKPDLLLisHv4A0YXYqgESsTzYFuRJS/7PrKyzfX/B4Xjjz6bjAL+w7p2y3UAy+J9R2urdn3+mzwZRqhHrHEGiDID0BPPXpvg4/EQotDcieTALphG3poRh7XQKxFlXqIyVR3LNpK+OS6duhBI0TnNMoB1CeYI3OCimy/29txzVDVYWnHPXxo69u8d7GxdW7fuXSGvlaYRp5OwpvuOs9SX+M1XITjk1svUNJzQ0Xh8muI48i+W7bcYav7eXf49dSMTIb+e4zRpx74uly+2HNd+lRnwIkhgbh58Zz1ke2L9LanDB75XWNha9NiJVgv25YHtqdi95xwMdKr8bVa2J+9OYayT9z9f3lp+NOvN87Q6/hPoLP/3Oqk4sSGNyDoJyC75zrNXdsQWgg+n1xd5WRG2APpoSxMNqrPQK551OpDnRGYg/RRGWCdXuq1bIvo6gMECPfMGChQTwkSbENLY+WsT/RrHxhRF9a5aMI5hnruPcdbLHuZO/SgM9fJFyTtoPR9kzyxDRNvuf5aYdlZBuiJNaPIKoShq8IeYbnobYiXsBmvJlBRb7FEZ6bwEz/xpDyF+hi4Dr1biJfbAtnuZTlsUehSGmP0H1g0j7d9Y09Az+zsOVeFmV4+2mfqmUf9DOmGG8vE3qv0XQDkQySXZ915NKxeucBRSn1mDiTdsm44MOkzcHEQxQTrSLPhI+QnwJEz+ldcedYiWtDlQRRTIPmeq0683gd2obnjEXxOUN87uGIOxVqDbWCFOT91A98EWijnNpk2+EDIDj1IAl24CnAfwjXC2v+SMPzvf6bdvFGGrlrQo9+IbXqwOqtH9w6y88qiUzTBhnWsdQKWDY/I3cJZLzT1qcPLaxb1KXSDHsybj/x3dmUNLALooUe6HbqxTNYeuWLOInQjgevF5/XYSLa44bDQSSOdOKHWdShl/1xiSfZIQ3e2nBE3j1DZMtZVBlYHZmH3svxcZZlf12O0fGR15njPIXrx/FrMGO3hPHp1qdBD0BNHKo4e6ol9NmxeoIeOCKMaIciROVlv5qEeGHoIuxZZibA8c04sQuqJoau46WnGgacmW2Z4Ph/OmPVvRg8ju+d6BPlDc1LxHUdJHffQoYdMN/TSGP0x5I+AsXMPHXrw75aVpZO+yK+zp3svQXY9fQnGLejM+ZOVZUbyCe6h7tnzd70aHWMvI083u3TE00vNhhbLOaRdQyWySviZ2KaqWtGz3+esNg6FFg6xFg5ZO3Z1z2H8dS5q0F3+6I5BT7ANvoZtkBOHUIML1lOdrHu9/KZTujnin2CfuWZ5sng+vewpd4ei6p+LDmW/Yb8/vnvhzevMof3Qn7pl2R7ZoY6676jDN5aO6SbtGCNdfX8ke9567JGt586sbwZXDm0Dx0v+s93nrJ5s+WJrm1g6iPnM7j94/vr6HDXBHeDMuZChQf/8CFOFvWW/S/25qHT99kvuQQa2duWppQfhtpfskkPlhf2MT5ex3+vEWHllsFlXPf/vKhfn9q7ECT9Vljm5OiLSAuH6a3yFk6jhsjuGLr/uSrcv7edCxz24HkBb33NeYtUufRIs3Tv151z3e35p6aVcdvTS8/V4rWxXz+17wqrvnVMvwUZk9z9G0jufaV9vlDLONucz/49iL0md7Ahq3j9/BRhCcw/SmnvuKSxLWR3sahwyZyuF1KfmSZvvtY1TnTGXC7lpdziEOYAJtD9u95DeBvnF2Is9t00ja74hu4i1YgZYj4xAYwDNz8Xy0XNj7MOKOyvPqXGD14WRSnXq93gLY/Sf2FKEqxYBlzLVboMc25rJCsT3bM3Kc7uHcNVVdF0td3ERperYviNc8e85gPyjIBvQdHlnC5zZOjqkpFaP4FvmNNu/Z9/XMfpkY9olfDJCSs/WQxeek58Yp9L7pbYOeoRpzzcvDAjsXWhxyH5gxpO+9+Ke26cWmeM1f/+dQ+r0Esd2D/GO/X09st8ftrxy8nrVwUlUPXWnsA1yFcoplB+135nucaGhmHpwcIekc9sP4aqjpI9BX0K4Bc0/yDLnX3YlJl/jcEGO1gPnZvrQ/Bzo/UJDZt/m9cWL6PUcPf1dHokCBi1bi1Y+Jpluako9t5fJyCCUMV8sIXudWcTQMyPOwiagXvJZOCRd+6bPdRGgE89cwpRRY6sPh569yNDVZ90r14rl32fuldftvstL//2XIXme3rHz3VipJZRdM2hcjqDex1RsHXnX1fa7NfHmFQZ2T3ruG+vcIfuuR9+ZOR8G2F+0buyN/e7yzCP4ZYtSJHcCMzfU0QV6oKvtHxvqCD0nJAe+ZgfuyC5dOLIlSpoZLNWF39vQNnx+avcTbsLytNwOXeEE2sR5jpH9OT+29xHvOHpQe5alXsKNjsQnFXNPgeuv1bznbpwdMbiw9Zee/f5uupD23GGO/Hsn9t2f2DueXtaJpUEyNgOXTQs85cTWsUuDXl+bjjAtnhIu1+8U6hly6S97Y9KnX29YRB/TdZYZafECM8ot21RL5rs1dVjnydVr3j5nzGCX+r/fNgNsvw5EF3GsehR29rkrL+kYg/V3LMLUl1B/3DZn7w42stjr9HhZSs+xzblm1YB6DvmrtinSPQh37N46aB86gYuRPcYaF4tO+tz+O32fbbg6WxJU+Mmdxu6OIIiVy9pv+LPecrZ5bjVtSR6VvA4tEeMZFu4AT21T9X6AZcOKtuaUXFP+CfSgZ+aUZAC998y5VVeXhcuOeuKFU6L7s/MDHSFZ9x2VrRoqw8trOvb37rxBx7qnLfu9i79rf5fu2X7Q7DyCuEMKLBVzTpSZ8zvEJMa/xIP+ia1h2OCim9GRVYfIOqOLP9fX79j4obBxsaZLVt/TtvLK7qm5wVLEVT90RPqaI1sauadcOrbUIL1r91X3IB/afl/5wc9l5J91ffEien6Cnv4eWwCCe2QswtePgJ7LKdc9onkO54wnHVHV5VzluUFidqG5feGVdW4vy0cqGXRz0kanLoo4gvCWdXwRoExA3Mj8FA/bID9BfTbe8vx25rXrhmV9dhnNuzx5zxVgl14jwg7tecK2Ez6vkTZgzqSTYoZt+756aIYXtjxP72FEXDUkoMU2rFbf4J2g5oHdS7rHJ6SYgm1Supr90NHDDNoHwCGfUAbqzDdxz76PLlXw+1jqAS5fyGjrBGSKEZBOQnboQcR5jif2s+Ga74eJo4eRo4PIhbF2degXVvtOlzB2fmZ7QYIr5lb8M4VlSayecqFSXDP+Jz8HTlxN2CGy9rV3WN1BBb9/cXHMx3xCbYmnTq9rQbS4A3dE1n5svyvcddQKyDph69/+TNuCT4/oXzhDB6hn/za0X7WFyc+xPMcZTz/HC8YYZO88svIJyJ6fAse+CXds39UzN/B1h6X4Zzsl0sT5gezyW98g9cC+O1zySKG2ITuWvZ6YkcUVugESVrs+Atn2z3UlG/WN1XJRE1/HkMIZJsUUg6WdgS8FHx1ROLeflyFL8k4PLGrFaxeoZik08c0vwWEqHlXvOyS+c/GsOnWHN6KbwGLGGhypfGy/M72F5aqtPf9rZcYLo/Oad34OnNo77CKxHtj3yCWW2oZl5aJ7V0dm2GHDnf1Lf85dS5+Wa5pZpgp6aj8bVu2+i8NvGTr8XvXPeG5MxBp1MkvFnI5tbXTstf1Ldm86s2d7PQ3S6M6vGOFWnprCL1y/CBpdc4xPKWI5TlrsOesjQ6jxtq/FwpyOBAjbyNpvQZqf95l282ZBd7DFnf0VI8viFshV27jluf1dumIvuoPsghv43GCXZmiuALfNeOpHUMT15bss80DEjFwntuD0TBxCR/p9w6PjbTMQLW4wXclnavclQxuVXKcuHT2DcBvS92CRdo5tai+n6MR+rx+yaCq2vw9suCbAibBybEiAjvBzJVxY81TkK5gA421DHlLM6FSxNlAnsghmyNWZ5PLCHFL6fncep67w2nLUId+0Gc/NMRDcWBqLtPVrwIpFO+lSGndkZHd2C6zX/5pHrR+3NUhvXXAm6gIjoq0hc4+qt8y4Fg+Al4Yemu/1n5vZv0nf7qvO7e/Djr3bvGcGJNtG3i1nzL20P8uqr2mxNY3RkFf5ht17Z3S6sDSI6OvTsHRIuOouP7N9F3eg+X5zOPkVhIUFGdn9JJITsTSxHJhDTG9DSKAn1mIt3ZoO7M+duObbMalv58Mi8o8Df8zunv9AVf/At31HALO/ajApOhxu/x5mhHchObT0IQ4W4Z2dlx7GIhevQT8AtswIxV9KPXeo53XWTsccrzokfQi8tBfdfD9LlVqdcjHOuYuwq44UTmHxdaB6BPge2yAuYzTSJnEhqVwzo8t7jlZ2IP0Cg9f11J5ZNlgSjIC9qi7aPPS/epsLIuy+/TlexdCBl3yWXWwHtrniFvT+AXNY+TEwMweY3nbI3JFa0R3SxNYq3rLvqXsWocNlY9q7lKnTAGgwZISaMwnijuxHbf2WM+cXZhzijqwj1DojrOfmyGTm6OGe/Xs98uda92d3h71swnluvy/sGNMNnge7c1tq070EK67DKAf2zM1dlh1++ccd8VxnWd5boo5iiKMuTN6artj65g9sPeIdy8vhtX2W3Nl0a3rDnHN54YKoXUjvu9Ns/X0lLsqwP/nrJw3dxRiCbwD/GPAE+K+A/4mqfvVbfeZzQ/fJ/xXGf9KiDzu2iNJ4vbSrb/8EjKfOobp3DVdYtq3WM6wdcs02xDJidSz7xFVac1fLrTnkPDSIHjtBzet5sjrscqIs7GAv8ti9+TrL8VJ4bb9j3PXAIlLcBF2xZ6rPfdPccKmlcNFZ1uXJ51jJcNWeu+7bfbPj/INvkK6M1nV4dXCzO+7ZRx8T37dN2jVyEHxtywWp1bXIdrPNwy3PVXGnWTw6dmXNjrNQI+nKc1vPcNXek5471N+wiL58F11+7d1nWsyZyMBQWX7uMP4GRmZWWxuf4W6S5qmrFke2pvmJ3Xu64ykD2Iw4bG3q3PdTl6p0zvcZcMnWlB7G+yz8GTt9hhrUJxh/VD6yP8d3POXqCNuOKKx8orWW1hytq9+W4q86xk6bGZqBxy1k/V9neSjmp1zfLej+i4EPVfW+/5L/C/CrgG9p6J/7mvyfPCe/6UboRpAusxwOQfWX3dV3j+zv4g0TbdQTE90I9ndhx734a0aHR2rpQ/O+kVZ1HxZ/H2sjfMvhr2JRqyuHnNmmCDsWQeupK8s8T27eZ5kn+1FCgEe9ZJshFoN85W/bvzfvOFopHknlYkPr1DZVesuMbfHjWEPPbZ/20hGFXk/vdNKoGWG8bDln+1VMn/3zLK+sYy+tDT8J2bsuPxla+lLH5gDjPazM+NieL172aONMMp2Bz4BDi7rp52OE5DNzDPGaPUcnSulQjs5sjWVoSKG2RtzlH8NQ2btcqN0m/t6j3Q/R7i2pcTP579p6d73+OJIDjPTzNCgM7F3UA4veZd+icPoF7gjOgROWZUbt9BIjSNeMrygfYT0MP8/gd52YeCiOWOrpO/Vj6BnfkL/uadkVk9LqzB1ZAS55Sif2DmX1cxn5Z13fjqHfAB6/9t9PgF/yzT8kIj8E/BDA7du3P9cXh92/4COj1GaL1SOoL33s8BwjTw5sQes+yAoy+heQ/j/sn7OD60WPsAmpY/tMFy3yY4eNW8jglyOD/57PoHMFWj0EPwfLvPepb1TnCLiO9H4uMvq1Ps/N8+56BHrmE0MnTng9xWS0gAQbprj6LwHY79Qp6ImNZeq6luoeUl/42CIwJ3NK2Pg3v+lz5/a8eg7lJVL3bMZ8l3t6Hfjic+40WNhsN9fiSz24mIyqp0YI5sfI5h/2YYwVmF/MkSv7SH1p69OJb+pzj/pjZP2HkeZ76MZG2zz7E6j7/g4X/i72/TMG4aX/jyKDX26DMUXs++sJ1GNfi7m9m/LEOYMCRBs1tvLP+TMq1o56ig1hnAGn9pzluX0P2D1wTlj/3d/0uYmtjY6h+pqWU3vOLnUoDwgbv+e1z1kVR7X4/e0heuj7oHs/T6E8RNZ/t+vtFUMJ1e6x7iOvrw8LX5+Hn8tmPuv6dqD7/xj4x1X1N/p//3rgl6jqb/pWn/m80P3L68vry+u/+fVp0D18G9/7FLj12n/f9L/78vry+vL6gl3fjqH/V8C7IvK2iPSAXwv8P78zt/Xl9eX15fWdvH7SObqqZhH5TcBfwsprf0JVv/Idu7Mvry+vL6/v2PVt1dFV9S8Cf/E7dC9fXl9eX17fpevbge5fXl9eX15vyPWloX95fXn9LLi+NPQvry+vnwXXl4b+5fXl9bPg+tLQv7y+vH4WXD+l/egisg98Hk3fLvDqu3w7P9nri3xv8MW+vy/v7Sd3fd57u6Oql36if/gpNfTPe4nI3/5WUr6f7uuLfG/wxb6/L+/tJ3d9J+7tS+j+5fXl9bPg+tLQv7y+vH4WXF9UQ//jP9038CnXF/ne4It9f1/e20/u+rbv7QuZo395fXl9eX1nry9qRP/y+vL68voOXl8a+pfXl9fPgusLYegi8i+LyI+JyFdE5Df7322LyF8RkQ/8/7e+QPf2b4nI10TkvxaRPy8im1+Ue3vt336LiKiI7H6R7k1E/iVfu6+IyB/6otybiHy/iPwNEfn7IvK3ReQX/xTez58QkZci8mOv/d1PuP/Frv+diHzo++8HPtcvUdWf1v8B3wv8GDa6MwF/FXgH+EPAb/Of+W3AH/wC3duvAJL/zB/8It2b/9stbE7AQ2D3i3JvwH/H/9z3n7v8Bbq3vwz8E/4z/yTw//kpvKdfBvwA8GOv/d1PuP/93v4zbHrkLwX+5uf5HV+EiP5zsJudqE12/GvA/xCbKPun/Gf+FPBPf1HuTVX/sv83wN/Axmh9Ie7N/+2PAv8a8NPFtH6re/sXgT+gqnMAVX35Bbo3BbpxqxvAs2/x+e/4par/BXD4TX/9rfb/rwL+tNr1N4BNEbn2Wb/ji2DoPwb8wyKyIyIjzGPdAq6o6nP/mT3gyhfo3l6//jnMw/5UXz/hvYnIrwKequqP/DTc06feG/Ce//3fFJG/JiK/6At0b78Z+LdE5DHwh4Hf/tNwb69f32r//0TTl2981pf9tB/JpKo/LiJ/EINOY+DvY3N8X/8ZFZGf8uj0WfcmIj+MzQH+M1+Qe+sDvwNLLX7ark9ZtwRsY5DzFwH/sYjcVcekP8339i8C/4qq/t9F5NcA/yHwy3+q7uvTru/E/v8iRHRU9T9U1V+gqr8MOMJOgHnRQRL//58OmPet7g0R+WeBXwn8T38qN+pn3NtXgLeBHxGRB1hK8XdF5OoX4N6+gUWfP+ew829hJxv8lJOF3+LefhD4c/4j/zfsgJKfzutb7f+f1PTlL4Shi8hl///bWL70Z7GJsj/oP/KDwH/6Rbk3P3PuXwP+B6o6+em4r29xb39KVS+r6luq+hZmWD+gqntfgHv7s8D/AyPkEJHu4Lb/f3t3jIJADERh+K88gB5FCwtBWO9h45kEDyDYW2tlZaEolipYaW1tYzFTyELUxhiY98E22cAOIROSYZfN/sVYIrYr0PcuFXDMHVdNav7PgaFX37vA/WWLn5arsvih6rjCfuW0Bwbe1gKW2IAvgGZBsZ2wc9LOr0kpsdXuX/hD1f3NuDWAKXZO3gJVQbH1gI23rYF2xnhmwA14YIvzKDX/sWr7GDgDB6DzzTP0CqxIAEVs3UXkt5ToIgEo0UUCUKKLBKBEFwlAiS4SgBJdJIAnBf2ANJ1wbH8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "area_h3_gdf = convert_rasterToH3(\"../../datasets/raw/h3_raster_QA_calculations/h3_area_correction/8_Areakm_clip.tif\", resolution=6)\n", + "gdf_buffer50km = gpd.read_file(f\"{FILE_DIR}/satelligence data/AcehMills_indicators_50kmbuffer.shp\")\n", + "\n", + "area_h3_gdf['h3index'] = [row['h3index'].split('x')[1] for i,row in area_h3_gdf.iterrows()]\n", + "area_h3_gdf['h3_area'] = [h3.cell_area(row['h3index'], unit='km^2') for i,row in area_h3_gdf.iterrows()]\n", + "area_h3_gdf = area_h3_gdf.rename(columns={'value':'raster_area'})\n", + "area_h3_gdf['ratio'] = area_h3_gdf['h3_area']/area_h3_gdf['raster_area']\n", + "area_h3_gdf.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "22ada76f", + "metadata": {}, + "outputs": [], + "source": [ + "def get_zonal_stats_correction_factor(raster_path='./',\n", + " corrected_area_gdf=area_h3_gdf,\n", + " resolution=6,\n", + " buffer_gdf=gdf_buffer50km,\n", + " formula=1):\n", + " gdf = convert_rasterToH3(raster_path,resolution=resolution)\n", + " gdf['h3index'] = [row['h3index'].split('x')[1] for i,row in gdf.iterrows()]\n", + " gdf['h3_ratio'] = [list(corrected_area_gdf[corrected_area_gdf['h3index']==row['h3index']]['ratio'])[0] for i, row in gdf.iterrows()]\n", + " \n", + " gdf['corrected_value'] = gdf['value']*gdf['h3_ratio']*formula\n", + " \n", + " geom_sum_ha = []\n", + " for i, row in buffer_gdf.iterrows():\n", + " filtered_gdf = buffer_gdf[i:i+1]\n", + " h3_gdf = filtered_gdf.h3.polyfill_resample(resolution)\n", + "\n", + " h3index_list = list(h3_gdf.index)\n", + " gdf_filtered = gdf[gdf['h3index'].isin(h3index_list)]\n", + " sum_ = gdf_filtered['corrected_value'].sum()\n", + " geom_sum_ha.append(sum_)\n", + " \n", + " buffer_gdf['sum'] = geom_sum_ha\n", + " \n", + " return buffer_gdf" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "a81832d4", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 0.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 2.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 3.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 5.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 6.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 7.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 9.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 10.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 11.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 12.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 13.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 14.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 15.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 16.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 17.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 18.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 19.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 20.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 21.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 22.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 23.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 24.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 25.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 26.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 27.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 28.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 29.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 30.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 31.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 32.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 33.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 34.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 35.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 36.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 37.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 38.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 39.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 40.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 41.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 42.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 43.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 44.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 45.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 46.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 47.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 48.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 49.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 50.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 51.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 52.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 53.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 54.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 55.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 56.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 57.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 58.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 59.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 60.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 61.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 62.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 63.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 64.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 65.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 66.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 67.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 68.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 69.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 70.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 71.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 72.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 73.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 74.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 75.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 76.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 77.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 78.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 79.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 80.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 81.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 82.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 83.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 84.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 85.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 86.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 87.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 88.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 89.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 90.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 91.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 92.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 93.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 94.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 95.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 96.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 97.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 98.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 99.. 100 - Done\r\n" + ] + } + ], + "source": [ + "#calculate deforested area\n", + "!gdal_calc.py --calc \"A*6.69019042035408517*6.69019042035408517* 0.0001\" --format GTiff --type Float32 --NoDataValue 0.0 -A \"../../datasets/raw/h3_raster_QA_calculations/satelligence data/rasters_indicators/Deforestation_IDN_2021-01-01-2022-01-01.tif\" --A_band 1 --outfile \"../../datasets/raw/h3_raster_QA_calculations/preprocessed/Deforestation_IDN_2021-01-01-2022-01-01_area_ha.tif\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "04a4a3ed", + "metadata": {}, + "outputs": [], + "source": [ + "#preprocess carbon datasets before computing the carbon emissions\n", + "\n", + "##1. downsample carbon layer to same resolution as deforestation area file\n", + "!gdalwarp -s_srs EPSG:4326 -t_srs EPSG:4326 -dstnodata 0.0 -tr 6e-05 6e-05 -r near -q -te 94.99998 2.1 98.29998 6.10002 -te_srs EPSG:4326 -multi -of GTiff \"../../datasets/raw/h3_raster_QA_calculations/satelligence data/rasters_indicators/AboveGroundBiomass_GLO_2001-01-01-2002-01-01.tif\" '../../datasets/raw/h3_raster_QA_calculations/preprocessed/AboveGroundBiomass_GLO_2001-01-01-2002-01-01_downsample.tif'\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "727cad39", + "metadata": {}, + "outputs": [], + "source": [ + "#get the downsampled carbon layer\n", + "!gdal_calc.py --calc \"A*B\" --format GTiff --type Float32 --q -A '../../datasets/raw/h3_raster_QA_calculations/preprocessed/AboveGroundBiomass_GLO_2001-01-01-2002-01-01_downsample.tif' --A_band 1 -B \"../../datasets/raw/h3_raster_QA_calculations/preprocessed/Deforestation_IDN_2021-01-01-2022-01-01_area_ha.tif\" --outfile '../../datasets/raw/h3_raster_QA_calculations/preprocessed/carbon_loss_T_downsample.tif'" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "bf37ba78", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reprojecting to EPSG:3857\n", + "CPU times: user 1min 34s, sys: 1min 53s, total: 3min 27s\n", + "Wall time: 3min 38s\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
gfw_fiduml_idgroup_nameparent_commill_namerspo_staturspo_typedatelatitudelongitude...confidencealternativgfw_area__gfw_geostodeforestationhigh_biodiversity_areaprotected_area_losscarbongeometrycarb_false
0706PO1000004155IBRIS PALMDELIMA MAKMURDELIMA MAKMURNot RSPO CertifiedNone2021-07-142.2450898.02851...1-Fully VerifiedLAE TANGGA0256170af-2d4f-4a5b-a417-b981205849be349.5068535490499200.1382939086634.09989214403075757812.37323319753POINT (98.02851 2.24508)57793.746094
1717PO1000004167ASTRA AGRO LESTARIPERKEBUNAN LEMBAH BHAKTIPERKEBUNAN LEMBAH BHAKTI 1Not RSPO CertifiedNone2021-07-142.31416497.99571899999999...1-Fully VerifiedNone0b2d76be0-1ace-7a54-8e5e-74bb01111787444.9278149230584295.559255282671411.2747033960845874432.2796810086POINT (97.99572 2.31416)74415.992188
2264PO1000001775SOCFINSOCFIN INDONESIALAE BUTARRSPO CertifiedRSPO Certified, IP2021-07-142.39111197.956667...1-Fully VerifiedNone0aff58ced-c18c-a5d8-d084-eb5a6a74416b552.3038111406324400.836070915583414.5018019068336895543.40760696075POINT (97.95667 2.39111)95535.335938
3738PO1000004197UNKNOWNNAFASINDONAFASINDONot RSPO CertifiedNone2021-07-142.4359497.91529...1-Fully VerifiedNone03cee289b-cdd6-a33d-e0f6-15ea8e7423fa621.1470874150178469.424222897163522.19581347407044109557.3760590317POINT (97.91529 2.43594)109531.187500
41516PO1000008193TENERA LESTARIENSEM LESTARIENSEM LESTARINot RSPO CertifiedNone2021-07-142.45677798.06502...1-Fully VerifiedNone0128b643f-9046-0f4e-c71e-59ca37fb221f600.0120538952435448.960569095298211.4179310692385104970.0756673934POINT (98.06502 2.45678)104951.414062
\n", + "

5 rows × 27 columns

\n", + "
" + ], + "text/plain": [ + " gfw_fid uml_id group_name parent_com \\\n", + "0 706 PO1000004155 IBRIS PALM DELIMA MAKMUR \n", + "1 717 PO1000004167 ASTRA AGRO LESTARI PERKEBUNAN LEMBAH BHAKTI \n", + "2 264 PO1000001775 SOCFIN SOCFIN INDONESIA \n", + "3 738 PO1000004197 UNKNOWN NAFASINDO \n", + "4 1516 PO1000008193 TENERA LESTARI ENSEM LESTARI \n", + "\n", + " mill_name rspo_statu rspo_type \\\n", + "0 DELIMA MAKMUR Not RSPO Certified None \n", + "1 PERKEBUNAN LEMBAH BHAKTI 1 Not RSPO Certified None \n", + "2 LAE BUTAR RSPO Certified RSPO Certified, IP \n", + "3 NAFASINDO Not RSPO Certified None \n", + "4 ENSEM LESTARI Not RSPO Certified None \n", + "\n", + " date latitude longitude ... confidence alternativ \\\n", + "0 2021-07-14 2.24508 98.02851 ... 1-Fully Verified LAE TANGGA \n", + "1 2021-07-14 2.314164 97.99571899999999 ... 1-Fully Verified None \n", + "2 2021-07-14 2.391111 97.956667 ... 1-Fully Verified None \n", + "3 2021-07-14 2.43594 97.91529 ... 1-Fully Verified None \n", + "4 2021-07-14 2.456777 98.06502 ... 1-Fully Verified None \n", + "\n", + " gfw_area__ gfw_geosto deforestation \\\n", + "0 0 256170af-2d4f-4a5b-a417-b981205849be 349.5068535490499 \n", + "1 0 b2d76be0-1ace-7a54-8e5e-74bb01111787 444.9278149230584 \n", + "2 0 aff58ced-c18c-a5d8-d084-eb5a6a74416b 552.3038111406324 \n", + "3 0 3cee289b-cdd6-a33d-e0f6-15ea8e7423fa 621.1470874150178 \n", + "4 0 128b643f-9046-0f4e-c71e-59ca37fb221f 600.0120538952435 \n", + "\n", + " high_biodiversity_area protected_area_loss carbon \\\n", + "0 200.138293908663 4.099892144030757 57812.37323319753 \n", + "1 295.5592552826714 11.27470339608458 74432.2796810086 \n", + "2 400.8360709155834 14.50180190683368 95543.40760696075 \n", + "3 469.4242228971635 22.19581347407044 109557.3760590317 \n", + "4 448.9605690952982 11.4179310692385 104970.0756673934 \n", + "\n", + " geometry carb_false \n", + "0 POINT (98.02851 2.24508) 57793.746094 \n", + "1 POINT (97.99572 2.31416) 74415.992188 \n", + "2 POINT (97.95667 2.39111) 95535.335938 \n", + "3 POINT (97.91529 2.43594) 109531.187500 \n", + "4 POINT (98.06502 2.45678) 104951.414062 \n", + "\n", + "[5 rows x 27 columns]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "carb_tif_downsampled = '../../datasets/raw/h3_raster_QA_calculations/preprocessed/carbon_loss_T_downsample.tif'\n", + "#gdf = get_buffer_stats(def_tif, mills, buffer=50000, stat_='sum', all_touched= True, column_name ='def_true')\n", + "#gdf = get_buffer_stats(def_tif, mills, buffer=50000, stat_='sum', all_touched= False, column_name ='def_false')\n", + "gdf = get_buffer_stats(carb_tif_downsampled, mills, buffer=50000, stat_='sum', all_touched= False, column_name ='carb_false')\n", + "\n", + "#convert to area deforested\n", + "#gdf['def_true'] = gdf['def_true']*6.69019042035408517*6.69019042035408517* 0.0001\n", + "#gdf['def_false'] = gdf['def_false']*6.69019042035408517*6.69019042035408517* 0.0001\n", + "\n", + "gdf.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "93ab664f", + "metadata": {}, + "outputs": [], + "source": [ + "#export to csv\n", + "gdf = gdf[['gfw_fid','mill_name','deforestation', 'carbon','carb_false','geometry']]\n", + "gdf.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/preprocessed/carbon_all_touched_false.csv\")" + ] + }, + { + "cell_type": "markdown", + "id": "aea601e0", + "metadata": {}, + "source": [ + "### 2. QA using satelligence data - H3:\n", + "\n", + "Calculate deforestation and carbon impacts in mill locations in Aceh using satelligence data in h3 format. Explore differences vs raster calculations and seek ways of mitigating the potential error.\n", + "\n", + "#### 2.1 Deforestation as a count\n", + "\n", + " 1. Downsample the deforestation by counting deforested pixels\n", + " 2. Translate downsampled result to h3\n", + " 3. Compute deforestation in area" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d621404c", + "metadata": {}, + "outputs": [], + "source": [ + "!gdal_calc.py --calc \"A*1\" --format GTiff --q --type Float32 --NoDataValue 0.0 -A \"../../datasets/raw/h3_raster_QA_calculations/satelligence data/rasters_indicators/Deforestation_IDN_2021-01-01-2022-01-01.tif\" --A_band 1 --outfile \"../../datasets/raw/h3_raster_QA_calculations/satelligence data/rasters_indicators/Deforestation_IDN_2021-01-01-2022-01-01_mask.tif\"" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "68f30cd7", + "metadata": {}, + "outputs": [], + "source": [ + "## as the deforestation is represented with a 1, the sum will be equal to the count\n", + "!gdalwarp -s_srs EPSG:4326 -t_srs EPSG:4326 -dstnodata 0.0 -q -tr 0.0833333333333286 0.0833333333333286 -r sum -multi -of GTiff \"../../datasets/raw/h3_raster_QA_calculations/satelligence data/rasters_indicators/Deforestation_IDN_2021-01-01-2022-01-01_mask.tif\" \"../../datasets/raw/h3_raster_QA_calculations/satelligence data/rasters_indicators/Deforestation_IDN_2021-01-01-2022-01-01_downsample_count.tif\"" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "08b0eb07", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reprojecting to EPSG:3857\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
gfw_fiddeforestationcarbongeometry
0706349.506853549049957812.37323319753POINT (98.02851 2.24508)
1717444.927814923058474432.2796810086POINT (97.99572 2.31416)
2264552.303811140632495543.40760696075POINT (97.95667 2.39111)
3738621.1470874150178109557.3760590317POINT (97.91529 2.43594)
41516600.0120538952435104970.0756673934POINT (98.06502 2.45678)
\n", + "
" + ], + "text/plain": [ + " gfw_fid deforestation carbon geometry\n", + "0 706 349.5068535490499 57812.37323319753 POINT (98.02851 2.24508)\n", + "1 717 444.9278149230584 74432.2796810086 POINT (97.99572 2.31416)\n", + "2 264 552.3038111406324 95543.40760696075 POINT (97.95667 2.39111)\n", + "3 738 621.1470874150178 109557.3760590317 POINT (97.91529 2.43594)\n", + "4 1516 600.0120538952435 104970.0756673934 POINT (98.06502 2.45678)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf_filtered = gdf[['gfw_fid','deforestation', 'carbon', 'geometry' ]]\n", + "\n", + "#get vector buffer for computing the h3 statistics\n", + "gdf_filtered_buffer = get_buffer(\n", + " gdf_filtered,\n", + " 50000,\n", + " save=True,\n", + " save_path=f\"{FILE_DIR}/satelligence data/AcehMills_indicators_50kmbuffer.shp\")\n", + "gdf_filtered_buffer.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "a2ddcc4d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FIDgeometrydef_estimated_count
00POLYGON ((98.47767 2.24508, 98.47550 2.20109, ...149596.56250
11POLYGON ((98.44488 2.31416, 98.44271 2.27017, ...192274.68750
22POLYGON ((98.40582 2.39111, 98.40366 2.34712, ...250899.25000
33POLYGON ((98.36445 2.43594, 98.36228 2.39195, ...316392.87500
44POLYGON ((98.51418 2.45678, 98.51201 2.41279, ...246846.03125
\n", + "
" + ], + "text/plain": [ + " FID geometry def_estimated_count\n", + "0 0 POLYGON ((98.47767 2.24508, 98.47550 2.20109, ... 149596.56250\n", + "1 1 POLYGON ((98.44488 2.31416, 98.44271 2.27017, ... 192274.68750\n", + "2 2 POLYGON ((98.40582 2.39111, 98.40366 2.34712, ... 250899.25000\n", + "3 3 POLYGON ((98.36445 2.43594, 98.36228 2.39195, ... 316392.87500\n", + "4 4 POLYGON ((98.51418 2.45678, 98.51201 2.41279, ... 246846.03125" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANwAAAD4CAYAAACHZ4ihAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACTyklEQVR4nOydd7xbZf3H3yc7uXvvvfft3oNdyl6CqCwVAVFwi6L+3ANBZaggICggyJLd0pbu3d699565N3uP8/vjpLkps6Vl5/169dXc5CTnyUm+eZ7nOz5fQRRFwoQJ8+Eg+6gHECbMZ4mwwYUJ8yESNrgwYT5EwgYXJsyHSNjgwoT5EFF8VCdOTEwUc3NzP6rThwnzgXH48GG9KIpJb/fYR2Zwubm5HDp06KM6fZgwHxiCIAy+02PhJWWYMB8iYYMLE+ZDJGxwYcJ8iByTwQmCECsIwjOCIHQIgtAuCMKyNz0uCIJwtyAIPYIgNAmCMP+DGW6YMJ9sjtVp8hdggyiKlwqCoAJ0b3r8bKAo8G8J8LfA/2HChAnhPWc4QRBigNXAQwCiKLpFUTS+6bALgH+JEvuAWEEQ0k72YMOE+aRzLEvKPGAa+KcgCPWCIDwoCELEm47JAIZD/h4J3HcUgiBcLwjCIUEQDk1PT7/vQYcJ80nlWAxOAcwH/iaK4jzABvzw/ZxMFMUHRFFcKIriwqSkt40LhgnzqeZYDG4EGBFFcX/g72eQDDCUUSAr5O/MwH0fCftfOcydX/kbU0PhWTTMx4v3NDhRFCeAYUEQSgJ3nQa0vemwF4GrAt7KpYBJFMXxkzvUY6NpRxu3n/c7Njz8Bl+r/d5HMYQwYd6RY/VSfgN4POCh7AOuFQThBgBRFP8OvAqsB3oAO3DtBzDWY8I0bQ7eFmTCRzWMMGHelmMyOFEUG4CFb7r77yGPi8DXT96wjh+fz8fDtz3Bqw9uoXpNOS6biytuu+ijHFKYMG/hI0tePtmYps38948vAtC0vY2H2v5MdulbHKVhwnykfKpSu6LipGiFQqVAG6n+iEcTJsxb+dQYXHxqHP9o+RNrr1hBVHwk3zvtF3Qc6P6ohxUmzFF8agwOICEtDo/TjWHCyGj3OG88seujHlKYMEfxqTI4gPSC1ODtzOL0j3AkYcK8lU+N0+QI199xFVWry0nKSqCwNu+jHk6YMEfxsZ7hHDYnLz+wmZkxAwBTQ3qsRlvwcZ/P/7bPW3bewrCxhflY8rGe4a4p/RaGSRMP3/4kp1y+nNce2kJMUjTX/PxyNj66DeO0me89eCNlS4s+6qGGCXNMfGxnOIfNiWHSBIDVaKdxeytej4+ZMQOv/2sbLbs6GOkc44nfPf8RjzRMmGPnY2twaq2KL95+MUq1krKlRcSlxCIIAhExuqMcI4np8R/hKMOEOT4+tktKmUzGVT+9FJvRxnN/fhmANZcv51t//xoRMToWnVWLz+dnzWVLP+KRhglz7HxsDe4I5pm5ZGStTk1EjKTusPrSsKGF+eTxsTW42QkD//7503Qc6CGnIovohEjO+doZb3usSW9GrpATGfvmQvQwYT5efGz3cHteOMTL929ipHMMn9fHXdt+Qenit3oj/3fPa3wx7ya+Uvktmna8uUzv2PF5fScy3DBhjomPrcHJ5HNDi0mMesfj9r50EKfNxcyYgbpNTcd9no4D3Xxz+Y/4atW3adrRxvN3v8rt5/2WoY5R9KMzPP7rZ9GPzgDQ3TCA1WQ//jcTJkyAj+2Scv1XTiMiWstA6zAX3bL+bY85uKEepUoJgFKtQKVVHvd5tjy+k/Z9UpLzP77/WDDhuetQL1aDDY/byzN3vsS89QvZ80oDielx/N9/vkFhdfb7fGdhPssck8EJgjAAWAAf4BVFceGbHl8LvAD0B+56ThTFX5zo4NZ8bjlr3uGxp/7wAg/+8DEAataWM9g2wj9vf5KB1mF+9Pitx/T65hkLtpAZS61TBW+rtCo8wTigjbYDfQDoxwyMdE+EDS7M++J4ZrhTRFHUv8vjO0VRPPdEB3SsTA/PDcXt8GCckryZx7qsbNzeyu3n/hanzUXlqlK8bi9N21upWlWG1y/isLmpOTWN3roe8qpzkWs1mPQWUrITyKvI/EDeU5hPPx/bJeV7ccHN6+g81Ivb6Wb99adjNdoY7hwjvyYX/egMiRkJ7/r8obYRnDYXALNjBsZ6JwFo3tlOTFoCllkpZ7N0YS7NAWfM+Tev56a7rkKukH+A7yzMp5ljdZqIwOuCIBwWBOH6dzhmmSAIjYIgvCYIQsVJGt87klWSwV92/4r76//IumtP5e/1d1C2tIj6Lc18teo7tO9/9+LTypWlZJWko1QrSStKJy41FoCYpGjp3QZw2V3B2zHxEWFjC3NCHKvBrRRFcT5SD4GvC4Kw+k2P1wE5oijWAPcA/3u7FznZyssy2dzwVRoVo90TgLTn0o/Ovutz86py+Hv9HSSV5dJ4eBifNoJF5yzA6fKjUCmoXl1G8fw8nA4fuVXZVKwooeNgDyNdYyc87jCfXY7J4ERRHA38PwU8Dyx+0+NmURStgduvAkpBEBLf5nU+UOXli765HoVSTm5FFmO9k4iiiM/np7uu/22PlysVTI8ZAbBbXcxOWvC4vBgmTYiiSFddP+P9U6h0Wlp3d3LwtXpuXnLbSR93mM8O77mHC/QRkImiaAncPhP4xZuOSQUmRVEUBUFYjGTIMx/EgN+NL/7kUjSRGh74/mM89KMn6DjQQ3/bKON9U6y6eDE/fuxmBGFOq1ImE/j8t8/mv3dvZNFplSQlRzLQMoxKq0StmQsxqHVzgkRqrYowYd4vx+I0SQGeD3xRFcAToihueJMQ7KXAjYIgeAEHcEVAq/JDx2KYK1CdHNIz3jcFwL6X644yNgBBEPjS98/j4htPJyJKC0BBVRb3f+/fHHytjoqVZcgidHR1TVF7wXIcM0aE6CieuPt1Lv7KGt545gAA669a9SG9uzCfdN7T4ERR7ANq3ub+UCHYe4F7T+7Qjg+n3cUL923g4IYGcsozcVidRMVHkJqXxET/NIXzcpkZM5CQHveW5x4xNpAyXCyzVgDGB6YwIc1uLQ3DJKXFMt06Rk/rGA072mne2QHA1Mgs1/zogg/hXYb5pPOxTe06Xpp2tPHQj/5DT30/k0PTTI/MUL+5Gf3QNOVLi2jf38P1C2+jZXfnO75G+/5u9r18mJS8ZAS5jOySdGLjpOoEXZQGj28u39Jldwdve9zeD+6NhflU8akxuJlxQ/C2LkqL6JdWtB6Xh+kRaTtpNdgY65t82+dPDExxy8qfsOOZfRgmjOSUZ9G4rQ332CQLTq/AHxuJEBtF+ZJ8SnKiMQ+MkZmfSFFFOsNNA4z2TOByuHntn1uDlephwryZT2zg+whup5v/u/hODm5soGxpEUq1kplxI1Wr0xntGSerMhdBJmN20kRSYRqzLj+iKCIIAoN90+TkS95S47Rl7jUdbiYGpL2f1WjHZHVht0n/0pN0tO2WlpK5lVl0HO4FoGFrC7ooLbMTRqITIvnLjp+TURRuAhvmaD7xBjc7YeTgxgYA2vd1k5STxMyYgfH+KSpPqablgBQSqDl7AfUDBh5+YAftHRNMT5rp6ZxgzRkVFBUl8/xje6m+bDXTDV0kpsUjk8lo3dtFzsJCImKlZaVCIUOtmrtkod5LQRCYnTACYJ6x4rDOBczDhDnCJ9rgHDYnW5/cQ1p+CuN9kyRkxKNQzmWCeENq3HwiHPGbjo8YGOiTAu/bN7Wy9/UWvB4fBr2Vgvjo4D5v3qUrqG+fhAP9VC/IZXRohkONo1RcvgbZ2CQ99QNUrSrBYrCh0alRqZW07e9h+XkLSCtI/vAuRJhPDJ9og/v6otsY7hxDqVaweP18Gra3o3b7mX96FcYpM5PdY5TUZlFQm8fay5bwwN+2MjFqJF4rx5kWw8S4iZzcBKwzVgwzNmQyAa9zbmbyhoQR3C4PM4Fl59CIEUtgWdm8o52MojQGWkYAuPGuq7jo5nXvOfZDrzfy1B0vsfjsWs674XRef2Q7umgtp39xNTPjBsZ7J6lcWXoyL1eYjwGfaIObHJRmKY/Li1Fvwevx4TXZ8bp99DUPA5Cen8I37rgSgD8vyOOi9Buo3+NCpVNTs6KEhmd3EBkfyYJzFjN0sAujyUbFsmLmn1bJwvMXcd8dr2Ex2tG4XaSkxjA5YSInL4mRvniM47MotSo8nrmZNDYp+pjG/vtr/opJb6Fxext7XzxES8CAD29uYscz+/G4PFz+vfP58m+uPJmXLMxHzCfa4G6482oe+tETLD57HrlVOQy0jqDSqtBEzO2tkrPnqgacVieuQIWA2+5C3yEZpXXWimNgnIkOaZaqWF7MF2+/BIBf/PFyLs+4gVFRRB2hofjcpbTVDxGVm8Xi02rpGTAgKmRUFKYjc7t55s+vklWSTmFt7juO2zxrxRsSSnDYnMHb08MzeFweADoO9p7gFQrzceMTbXDn3XAGZ3/5FBRK6W3kVmZyx5fv58CGRgprc7ns2+ew+pK5tE9dtJav3/klHvvt/8guSUcQ/Yz3TRGbHH2UkYZ6Fy0GG0eSZlw2J5OB3EuL2YHVC8ZAZktaRRrNz0rdev741fv5+8Hfvu2Yn7/nNR752dNExkWQX52Dx+3FZraTUZhKVHwkogjxabE4LE5WXLDoHd/7EU9rmE8Wn2iDA4LGBiD6ROxmByClda19k2alIAic/7XTGewY5eV/vAFA9ZpyWna0cXBDAxUrSrjuV1dQvbocgA3/3Mp/fvMsVatKGe+fIi0/GXmUnBazQH5xKsUVGXQ0jyAIAhrlXEgzOj7yHce749n9OKxOHFYnaXnJdBzoAaBofm7wdkxSNP/uvfdtX6fjYC8P/fRpPC4P37zvWlr69TS3jXLDdWuQeX1s/+8ezrhqDRHRuvdzOcN8wHziDS6Uonm5lC0ppLuun6LaHIY6RskuzcA4bcbn8QXTukLzLf0+P97AHsxmtAWNDeCB7/0Ly6yVsd5JSpcU0bxdKkS96NZzuemuqwEor8rg0V//j8Ov1FNxSjUyt4ve+j7u/96/OeNLq3n2z6+QU57Jpd8+l8ObmoIzqUKlQBmSIK2KmLutVCne0Whf/ec2mgNe1L/8+gUaAoWyHZ1jGP6zA5fDzdN3vsw/mv6ILiRlLczHg0+VwSVnJ3Lnlp/wjaW3cei1w9y4tYnzv342rzy8DaVKwXW/+yIH6oboHrFSvLIMmcOB2+4kuywD/egsafnJjHSNBfvKqbUqjoTDQ/dcMSHGEB2hYiJQh9fVOIRrUpJ+eOaulzm4oYHBNmlf2LCtlYOvNQAw/4waBtqGqdvcTPXaMjQ3axhIGGH+i1WY9lmIvCqSV8be4KzkNWx/eh9yhZy1ly3FarQHq9QBFBFqCBicIIq4HFK62dSQPlwo+zHlU2VwAHK5jOkh6Uvvdnpo29eFy+7GZXez9eV6WrqlxzTJEQzvlGYsmVxGdEIUe188RN2mJv6861cUzsvj/sY/cv93/kXnwR5mJwyULS2ifGkx6796WvB8KVkJpOUmMT4wTV5pOuM+Fya9BUEmBJ0fAA6LI3jb7XAFNVjG+6dwJ0rG3HvBCHGXxjDgGeWRgafZefsB6v/TCsDhzc3sfrkOu8VJzWkVWNMTaByZpaYyC7fbi8fjpfyKlfS+eICShQUcfr2R5e+yBwzz0fCpyaUM5aqfX442UkPxogJ0UTrkChkqjRKtThV0NESEKHQJgoBxSsp/dDncwZkiOj6K+NRYBttGmB03EhkbwQ13XUNcSmzwuRkFKfx12+3MP6WcnuZhhOgoFp1dS1JGPG6Xl9IlhVSvLsNuspNRlEpGcSpKtYLEjDgEQaD69DKiFJJitFqmxuOfm0ntk3NGOjEwjd0ieTNnrS5a+qfxeHw0tgzT3TdJT/80DQYHWSvKaNrRzs8u/iOv/mPL214fURTZ8PBWbl76IzY/thOT3sK/fvEMhzc3AzDYPkpv42DweHOgeiLMifOpm+EAzrvhTDweH/d/7zFgmNLFhYz3TXLgqZ0ULCtFlxhN+5YmyleVo9Mquex7FzDUPsKjP32KlRcvITdElSs+ba6cJzX37bNHNBFqRgMiRFajA4fVxdSwlDCdmpNI0/bW4PMnBqYY7RxDG6nhT9t+RtmSIgxuE7v1h1iTtASr187jg88zP66KlJ8l8afRB0nMiOP0L6xkbGAa84yV2hUljLWOYrW5SIyPwGSZCys4DHPG4XK6eTtMegt3flWqrvr91feSWZrBWO8kgiBw6pUreOOpfcgVMq747nnsfeEAoz0T3HDnVZx93anv49MIE8qn0uAALDNzXzyv24tJL+3GBg/34A00Tu04PMBftv6U0kUFzD+tivNuOPMte5+Lvrme7LIM3E4PS89d8Jbz2MwOXnxwK6nZiUyNzJKcEYc2es5ZoY7UzN0OCT04rE4KArG6OFUM56ZLy9QoZSTfLf2adFAKPFD326B2y5Kz5+FyuElMj+MyvYV7fvsiTc/tJysnCd2iPBxqAY8zkSSHk6T4aLq6pzHOWFGqFOze2Mzq9TVodCrGeiaQyWX4Ax1kjziRRFFktEeSpvB6fDRsa6GnYQCAF+7bGDa4k8Cn1uDO/drp9DQOMN4/hTZSQ055JsMdo5QuKkA/aWZiYBptpBqZYm5V/U6OhgVnvKX+Nshff/gkbzy9H4DaNaU07exkcniW6jNqsZidNNaNUHV6LYLHzUjXGNWry9CPznLRN89BpX5vpehQoaSouAii4qTlZ3JiFFMHe3HbPUy0j5G/JIe2finzpubc+XQ93UTXaAvd7RMYZ6zYLE6e/NsblOfFsOlf28ksSiM2ORqryY5So0IbqSY5OwmZQk5EjBalWok2Svrf4/KQlJWA3+8/ajxhjp9junqCIAwIgtAsCEKDIAiH3uZxQRCEuwVB6BEEoUkQhPknf6jHR0JaHLc/cQvDHWM07+pgqGOUwoX5tOzvZWbcwOJ1Ncjlcm47/w72vHT4fZ8nNMTg8/jxB+rw7HYPw4EE6famUVp3dzI7bqRpRzvfeuAGLvzG2Sf2BoHCqixA8qbGxM15TlXC3McqArbAknN8aIZdz+3H7/Mz1DGK2+VloG2U7rp+UnKSadnbTdPODlJzk7Ea7Rx8vZmk3GSKF+Sz/5U6vnvaLzBMvXOt30j3BK8+vDXYGKWvafAdj/2scrKUl88GigL/lgB/C/z/kWI1zhmD6BcxBDyDHpcXm9EebMyx99V6lp/31uXisfD1P3yev3zr3zhNVuxTetJzE7CancSnx2G1utCPGcjKS2DG58A8Y0UQBCLjTk5bre/ddy1rL15EUU0O0fGR/HdjHRq1kjOWlPBkdAz1u7oQHHbKazLpbBuneEEurl4VXfu7iYqPRHmUtMTR4kpHwiAz40bGzNJ1bNnVwfSQnrjkmLeMpW5rKz++4A78fpEtT+7BbbXTebCXRetquf3JW9FGaN7ynM8iJ2tJeQHwr4Bw0D5BEGIFQUgTRXH8JL3++0Ka5b7JY797gei0BBAEzAY76dmJqDUK5AoZIBARpX3fqVIpWQlc8c0z+c7anwGgVCtRZaZRt6sbjU5F1YJsGjc1EhUfyYIza5gc0POrK/7M9x6+iYrlJSf8HhedVhm8fcXZcz8aX/7BOVxwx/PBuF3ZpStpbRsD5Cy56lSaOqboMHiZd9kKHBMGutonqFpTwdK1o5x5WSuvPZnJ4/c4ybl8EfaOcYY3txJfnIpDM/eVcdpdaAI1gRMD08HZfXpkholuSb/z4IYGnFZn2OACHKvBHVFeFoH7RVF84E2PZwDDIX+PBO47yuACqs3XA2RnfzjNMFZdvIT92zrZ8uxBACoWFtC4oQ6A4kUFGCaMPHvni/Q19PHrl29DqTr+36AjhacgeSwdDin+5rS7mRqYRhRFzDOS5uVorxQkf+GvG0+Kwb0TPq/vqGC9LSRg7lQocQUeszu8dNVLS7+JoQEuvkoKJVx2bTN1ETeypcmMLDOS5b+4iL3949x47/+4Yd1imv9Tx0DnBF/76QW4DBZee3QbRbW5TA7pSctJQCGDkc4x8quyiU5453ZjnzWO9du1UhTFUUEQkoFNgiB0iKK443hPFjDUBwAWLlz4ocjoiaKIJWRpScAzB+C2u5kOuO/rt7RwvBOcz+fjD1ffy7an9lCxogSf14/L7iIqOY7BETN55RkIPg8TPWPEpsSijplbSsaGxPI+COQKOXfv/DkP/PAJXA43HouVhKQoEpKikCtkREZrcDu9REdrUKmVuF0eMvKjEZEjIO3BRmd9gAy/KGLCj8/vx+eHPXW9DB6UKumfuHsTo4c6gueNjlZTv7kZhVLON+/7Mud89fTjXjm07O0mPT+Z+JQYfF4fHrc3OJN+0jkmgwtVXhYE4YjycqjBjQJZIX9nBu77SOk82MMfr/srU8MzlK0sx12eSr/oJV+3AOvANKp1VWQkRjC6vYOy5aWMD+jJKko95tc3z1h54wmpQqB1dyepeclM9E8BQ1SfOZ+W/VJ5Te15S2jZ1Undji6qz6jF6fbz0hP78QgKShbk8tzftrDynFqu/Pb6oyrWT5SCmhxyK7L4330bASg9rZqONmmpl5YRh3NyjMMvjZKak0BKdgKt+3u599fr+fx39fxrqgBPURKJVieZ8TGoBTlatRKFXEaMqEChlOP1+IiJ0zEmCNKSXCZgDoRfvB4fueVZx21sv7nu7+x4/hDR8ZF87pZ1vPTQNgQBvvf3L1Ox9K0dcD9pnBTlZeBF4GZBEJ5EcpaYPur9G0Dd5mYGWqWVrsHpoGVams2GYxXI5qXjG9cjz4tlScpyOje18vVTfsmPH/4aS86sBqTe4Y/85EnqtjTzzfu+gkKl4LUHt3DxredQUJPLruf2k5ydyNSQPlBaMzdpe0NmUp9nbnlnmrUxMij1Pdjw+G62PncAl8PDf/68gbKF+Sw67eT1QfF6vFhDAuGKENVoURQxTUtOpInBGewWJ163jw1P2qjLXsKubAMoRlhdkkvrG9JvZ3FeMjMNkxy29ZFdm02szUH7VqkUSqVVYjXaiYhUM949RkZJBns2NFK8qACT0U7z4UHWrqtEJpMxMTxLalb8246546DUh888a2XPq/VMBtL0Nj+597NhcByb8vKrwHqgB7AD134wwz0+0gtTUaoUeNxeYhKjEARJ1yRCo8IaSN/y+UWMgS+e2+lhcnhOob3hjRZevn8TAL+/6p6g/N22p/aQW5lFb8MAap2KJecupPlAPy6fjNrTqnBaHEx3DZNXlIFKKcc9ayQ9NxGD3kpyZjwOp5eZSTPJmfHYLU5cgT1f7Lu0Vj5eOg/18vNL7mBmzED1mkpQqRhsGKBqeSkmq5so0Uv8glw66wYoWZCH1+3FPGtDG6nGlzQXH1R45kIMgk/EaZOu29i0hbFDUtVCT+Mg2aXpDHVIs2fVqlKa9/bQWjfEQNckjYNGvF4fr79UD3Y3jft6WXlWFQtXF/PMgzuYt6KQS65ZyWsPbCI1PYbpMQOpOYlHLSOzSz4dCmgnS3lZBL5+cod24qy5bBkZRan88bq/0vrffVSdWYVqTQnDejO56fGYzA7SvQKaWRGjTkVSehz6MQM+rw+5Qo5CpUAILJciYyOCBufz+pjsl2T0XHY3JqM9mIMpQrCuTRelpTtQLaBQKYjMTOHwG23oojTMW1VC455uouMiWH3+fC786ikU1RyfI8nv9+P3+Y+qCTxC54Ge4P50eniaiWkpL7PlpUNERGsZDtQNVi4vpjWw9J13eS0bl5qxqfSsiMlF2Sgw1DVDdUkGLrcHhUxGQU06Q22TlJelYXHYGGodISYx8qikgSOaoAAupyco5jQyoGcmEJvctbGZloN9GGdtjPRP07m5jrZAMvn8s+bRtL+f8f5pFpxawbU/u+RT03H2U5tpcoTk7ER6A+lJQ683E1mZzuSshclZC0siouh5UvJeVi0ronlvN//9ywa66gf43XPfZsWFi/nthh/TtreLC25ex6ENDTx/z2ucf+NZWAxWHv7RE+TMLyQqNQGhZRSFUo4mZm6W0kbNucLlCnmwyaPd4kQ/ZsDv82PUWyidn0fZwvzjel/7XznM3779KCqNkpvv+yoNe3roaR7mpl9fhsvhobNllOiESMwzVpKykzBYJaFatVaFM6Tnnc00lyBtjvRhVHpABMeUm+56aenb2T+Byz2n21KRn0Bj0wgyjZYl5y2gcVMTo70TzFtbjtVoY7B1iNL5OQiCgMtoIS8jhskZOxkRMlRZ8YwPz5JQkIDf7YNAVzGPc66ywuf1BZfnXo/vU2Ns8BkwOKVKQcWKElp3d5KckwSuuS+OEKIdGeoyNYXkYS44oyaY2nXqlas49cq5xh1+lZqHfvMSDBgpX1PJWP80h/cPULZuEQqbhfb9PVSuKMXl9UFqIhEqJd17OilYWIhSp2a4b5rIGB3+kHQpy6yVqHepGD/Cxke3MdotbZMf/b//0tYuzRw/u+Z+hrukfMiY5CRys1Jo2ttDSk4imcuL6eufISZOh9LrQa1S4HW4iU2IJDYxCu2kmyiPAofKT7JPx6TChMfrIyFCy7jbgojkADEZJSP1+8FmsuMOGIvb6abrsLQH040bmBiQxiSTCcTE6ajbN4tCraTke+vZOz6JTq1jwbxMjFM2pkw2ipfLUcdGYI2NIqPYjc1oIzI9nskxAynpcfTU95Ock/SuFfUfdz71BqeN1HLX9l9w7y2P8No/tyP/9z5OuWQRhpZRRgamqViUh6DTYnSJFC3IwzRp4pKbzjim1zYb7cHbXo8XY8BQR/r0WLokt3nL7g6y1i9lZFx6rPb0Wpr3BbyXZ9bQ0TTMg3dtpKd9DNfEDPterWf9dafwtd99PhgTtFscvHjfBiLjIjn3a2cw3jeJzzvnlFFq5pwhSqUiODtYbW4Mg5IE/OSgHm1qIiajA5PRQWVpEk1bpHKckkUFdB7sgcNQW5eCvTydnu528goTSdIo6flfA7UlabjnZaFygdLpx+fwkp4ei8rmQKVVItcKpJ6jpu2AgN8jEh0fGTQ4AENAit7r8jDlceHzi1gcLuxJCnobjQDE1xTQ1j0JU1Z0qfEIXhm79/RRf+m91GZHsfPpvcSnxfHLF75P8YLjWxF8XPjUGxxICcDmGSt+n7Tn8Q3OMtQ0BIBx3MiIMFfe8tzOnx3VTefdOPeqlXQ3DaOfMKLRqsksSGasf5r80lRG7Wb0IzNoIzX4QuZPr2cuGO31+nEGHCYd9YOMH+4C4OUH3+CqH1+EMkH6Jf/jdfex81kpQbphazM7n5XyIWtPrcQ0baZ+Qx2Vp1Qhi4piesxA1dJCRnomyMiMxetKoG1fD9ml6UREqALXQ0Amm3PXHyWe6/Bi6g54L3v0uM0mnDYXfXUDlMbH0N4nrQGrFuTQfGAAgPKLy9Dd2MqY/xCr38hC/+MY2vf0ULwwH7kg4LI50OjUDLaNkFOWic/hpVcmI1KrOqoPX4R2zkmi1aqwBqQv7FYX7Xslh8zsuIGh9tFPrMF9ZlK/l5+/EF2UhpjEKCqWFwdnj5iUGI589ZRK+TEbG0ByRjw//vu1jPRM0bSvh/FBPbmZkTS+uBeb0cbi9fOQK+TYDrZTnR1DRaySmbpucnPiKKpIR3S5Sc+OR6VWkJYWTXyqlKMYlxwDwpyRHvGiAhgmTcGyGqvRRn/zEH6/SMeeDlr29zI5PEvzvh4ilNC0vY22fT0sOL2KoY4x2rY2M39+JskZcbR26Zl3Vi1f+snF3PboTaz/8imk5SeTkpNISUkKAEVFKcQlSzqbKo0SQRHy+xyyBpel+LD7pRlcLxujZUcXPq+frkN92IxWeur6adnVQV5VNi27O2i/ezOLfXKcbi87uwbJXZlJaUkajc1DVFZkUJUeS9zwFFXFSURFqqjMiSa9QBpTYmY8dsvcyuKTxmdihgM49YrlVK8qJTIuAo1OzdrLlnL37c/Q3q2noCwNXbSW2QkTv771Ca699Qy2PrEL84yFa37xOWZGDTRsb+Psa9ciV8jpaRgI6k6aDXMfvs/rZyrQBMRhdWIx2IIJ1H69kba9kvcyXS5jwCDtHxVqBbEagcMvHiAiRsuCUytp2NHGjUt/wjU/vZjN/96OfmSW3KpsIvLT8UVHkVxsxDFrJb4gg5jhGUzTZjKK05m2icHcSYc1pCjVKu25RFHEaXEwMSzNUnqbjy/+6CIAbrn3Oj6XeQNjgX1h9elVND27E5lMYOH6eXTt76Z7wwFqLliGKMgZ7Z6gvDIDqyDiVWpIEwqYFgdInynCUGhntGeCiBjtUdk7fv/cMtgrirgCs/20xY6tUxpTS+soqSPTGKbMDHeOU1qdQeMrkmNrwZk1NLzRwj1ff5ChthFuvufLx/09EEWR2QkjCWlv7RP4YfCZMTiAxIy5YGtmSTqdAX2TvvZxsguSGRucYWxwBkP3ME2bGqXHmodo3tGO3y/yxhO7cNmddB3qY8EZ1SxcV8PTf3yZ0vJsHH4Z5161EqfewD9v/w+ZxenoojQIAghy+VEKWtooDQQMzu/1Mz1kBCSPoX58Fq/bi37MwIZ/bqVpawsAxafV0DZqg1EbMdlZiBoTdQ3jRGZmUrsilpbWSRJToylJj2FmwgQC5MZFEBUfhc/rJy41FrVGydJz5jP08C6sZgelNaHJQWAL2ZNaA2U4fr+I02QPSlBYB6fon5aM2Wp2MlMUAw1WhMY4FrgFNr7ahUKpYPGZVTRtb2dqaJZ5p1XhsjsZ652geGGBlH0yYSa/Jp2xWQslgpbRhEgmZ6wkxOhgfG7h5Q7xqHqcnmDpz2D7yHF//oNtw/z6839mpHOMa3/1eS777vnH/RonymfK4I5CFCmfn0Nb3SBxSVEoVSFxpJAmIF6P7+gs+EB/ucObmuip78ektzA7buD2J29lzWXLAJAr5fz1ln9CE1QsL2F63MzB15spWZiPSquiu66f8vn5OEQBtVaNQpZN285WCqtz0ESoJZ1L3dH7G3VUBJiktCmlSo41sPezWl2MTUuGop80k5QYwUigzXLFvCxaAl1a8yszuWfrT5DLZZxy6RKmxgyUz8896pL84fUf87fv/BuNTo3X6yMqIZLYxGhUWiWaCDVuh5vYzATkhnF8Xj8x8bpgI3dRFJhuNgWumRerwRacZb1uL+37pdldpVExecR7ua2d/FW1tI53oNEqWb4oj8a9vcjjYqmtyMIyacRqtJO/IB+tRoXH7SE1Lxm72cGpn1953B95294u+pulvfurD24OG9yHiUqt5I5/fZX7f/sKr/73ABajnfmLczF0DNFX10vlCimT32qyUzQ/j6khPRlVuahjIhis7yOzLAOf1ycpdAkCETFzwquh8g4uhxv9mOSh620cDGpgtuxsJ3dRER3tgSXc6koaNjUAULOqhK59nRx8rZ7K1eWIWem090xRNS8bt8uLx+sjfWUxvXUDnHHRAtxuDxufPkRsYiSqyLmZVBFS+RARrUMul2aOxNQYElPfWtNWsbyE+adV8uQfXgSgdFEBHQe6Ge4YIb0oDVlmOvX1o2QVJJGQFE1P2xjzk6OxpupQR6pRRWiwv1xHekEKGp0ahVKOIJORXZ5J655ORFEkOj4qaHCi149+SvoRcTo8zE6a8Xp8mIx2fFlx9Ab6QxRWZdG6vQmAyLgInhj6+3GX+0wNz9DdMIguWovd7CAtPxWP2/u+qkNOhM+swYHkvbRZnUEjcBos9NRJcaTp0dngFwMgYUEJje3TyBUy5n/1TPaNzqKWy1hUlcNo0yC/u+pebvrT1Yx2j7Pj2b0U1OZiN9uJjIskvSCZsd4piublMj0yi37MgEqjDC1cwOuZC/x6nG5sgeLYqXEj03Zp9m2uHyI2XodxVnrstt9dxilnVQGQUZjKo/e/QX3rKLVnVWMzO2gcmKHq9Gr8TjdGmYIXntrP2tPK+N89r5Fbmc2ay5Yx2DGK1WgP5imaQyrYZfK5pZ3L5cU4Iv1wDPdOYzM7sZod9DSNUJBYTH2n5EVcuH4e7U/uAaByRQk/fvybJKTHsfZzyxhqG+Gsa09hz4uHeO4vryD6/Wgy4ukZNZOXG49KLkMmC8zuirnNnyZEYU0bqTluYxvtneT6hbfh9fhISI0lsyKbwzs6+eaan/OLZ75FUsbb53V+EHxmDc7v97PzmX2YhybR6FTIBAGdVhnMgo9NimZqUB8sTDVbpL2Ez+tn1hfoNeDz41TKGQ8sM5++62V6Ah1RVRpJC2S8bwqFSkHpokLa9nSgjdSw6IwqOg/2YOofpXx+EaLDwUzPGDml6chkAnKZQGpeMtPDM2SWZeFxChhnbURFa46Kv8WGVI673F48gWwQi81Fb5+0P20ZNASXxH/94wZe+f0z9Acyb/a8cgo7npcUMy699WzqdnQw1DVOzRnViH5piVqxppKpvnHSSzJI1EbQ0z5OXk4cfqQkEZlcwB8SYpCFdBISZEJQ7bp2bQW1a6XE7FMuX87/7nmVtn09QA81p1TQ+N/t0nHnLKKnZYRDXcOULy5AFKHtUB816xbg8ot4EmJ5/J87ueiyRbz+yFY0OjXr3kPcaGbMEPxRNeqt0h4XaX8+PTIbNrgPg43/3MpdAam4/PkFTPZNsu9wCxkl6SRkp9BWP0jB4iI0GgU2FOgSYpgeN5BalII3IQL1rIWoSA1qtSyogBUVYgCRsRHBwlSv24t+VNrtOKxOrEZr0AmRaTbTsktKAk7NTQoGi9VaFWmramjsNRARrWFRdQYtG+uIjIukbG0V6y5aSO2ivOD5Fi4r5PWX6jEb7cQlRBI5YcZqcZKWGYd+yoIrkA3iMM+lck2PzAaD5G0HeoNLuIkRA9Oj0mw2MQRxCZE0BzystatKqN/SjFwhZ+H5i+gftTC2d4DFy/MQXD6mOycoWVqMfdaCSqOkdW8XFcuKj7r2DpsTV4gzxBdipF67E0dAg2V61MD0aMB7eaCPmCWlGPr09D2wjUOPb6XlDSlwPzth5MofXfyOn3Xx/DzWX3cKO57bT0F1Nk6bi87D/WQWpZKam/iOz/sg+Mwa3BHZPAC/24MtUMYy1jXO1KwL0S/S1z5G/pIShvr0MGKiYk0xB0f1MDlLZVk6Hd0T7PH6KbxsOcr2YRq2tlK8qBBthJrRngkqVpQwO24kKSsRmUyGccpCSm4S2kgNgkxAQMqEOYI2xJPpcriZnJGWdzazE0PPKC6rC5fVxfrMGFaecnSzxtKqTO751/Vcd9HdHNrTQ0ycjtpFuTTVDZKUHE1KjBpTSx9+jZKsknRik6PB7yM2KQoEAV1cJNpINQ6ri6SsRGanpH4MMpmAOaSA16yXYoI+rw+n2YF+MlBpMWKmt0PajxoUMjzdEwx3jVO/pYX7635PTrmk9bn9v3u4++sP4vf7qV5bgc/jY3pkhoLaXMmjK4qk5yUxNWogszgNr9eHYdJERHoM3pDYpDNEyTrUYN8OTYSaW+6+hr7mQRp3SE6kL91+EVd+//wPXYXsM2tw5990FuO9E4x0j3Ppd87jtQe3cPC1es64+hRGRoy0HeglJjEKXYjGpC8kpiSKUqYIgNHlxRJQKu6u6ychLRb9yAz6kRkqVpTSvEv6kGvXVtCwrZWRzjHKlxUzMzrLwdfqKF1ShCY6kr7uKapPq8Y4aUC9IBdZahz9r3WStSgLtVYOjUMotSoUyW9fxuPx+LAGZgeTwc7I4Ax+n8jkuIl4m0B/4wCANKaA9zKrIptpn4pDB4dISE8iJz2O9qYRMqrySYhSMjk0Q2SsDqfZRnxaPH6Pl8hYHdr8BLyL0lCMmvE6vMTEaJDJBPx+kehoDfrAzOn3iyhD5AD3v1aHeUb6sfN7fbQGGlGSS3DPrFArSZtXTMOeHiKitZTetJLtchPRGjU1s0mIzeNYB2bJLssgIjaCnqYhJgeniYyPYvsrDaxaV01U7Fu7Bx0RkQJIzUn6SCT/PrMGp4vS8q0Hbgj+vezchZhnLEQnROH3+9m/sYl5a8qQyWX8845XaNncxNCL+6k5rQpLdRyjCT5yolPQN8yQr1JgKMtgqH2UlNwk5CF7Gl9IUWpo4NdhcTDRL+39ug72oEhMxO/z01Y/TMKXl9I8Pgujkyy6vIqD7cPggiW3nEb/wCz3vHiIPpuT275+dGvjmDgdF39hGS89fZBT1lUhiiKbXmkiMlqDKi6kxi2kEFWhVeE1SDPEjN6GwSDNHKMDelS58UyOzDI5MkvVssLgsjL3rHJ2J/kQjZPkX5JL6vM9HH5iK3kLCpl//mIuvW41bbs7ePL3L3Dm1WtIyU0Knq94QQFbHtspfQYhP2aRsRFMIhmcz+1lKrCktZkdTPidOEUvTqsXp0rOwGYpRlo0P4+Og/1APx0He/EnJWE1O3j8nk3c8/wtxAeyZFp2d/DQj/6DViUnNSeBhJRYDr5ax6IzqvB5/ez+30HOvHoN6pDr8kHxmTW4t+OI2I1MJmPZ2bXB+4sKk3nut9KXTb+vi/21OWAAImBF3xTNA3pkchkLz11I/fYOVBoVi85dyLTFx5TNQ8VpNcg9bsyzVvKrczDPWohJiia9MJWxngnya/Mwu2B2woRcIcMTUk/mCXFlukQwBvZgB0O0/4+gVCr42rfXcfWNp6IJfHlyilL510M7aBi3U3vtmTg9ftoHZ6i+ci3eSSNupYaKAi197eMUVmbicnroahomMTUGdYh3MHQ2EKPUiKLkKbW63DibBgDoP9zDz5+4mfikKFZeuIiVF761mciFN59NRmEqf/ra/Rx4tZ6ShQWsuGgJF9y8jm1P7eHFBzajTYpDqVXTfrif/PJMcMgQdCJqhQK1MBcvDTUQuVqJOXBtZqcs+EKu2wv3baQlsMqoWlVKc0B6frBthOGOUdxOD8/f/SoPNN7xtrWFJ5NjfnVBEOTAIWBUFMVz3/TYNcAdzOmY3CuK4oMna5AfJU67i6HOsaD3Mi4zHoG5VEJzII7k9/kxG+2IorT/8spVjIxKCl3xMWp6d7QDUl2c3+tjenAahVJO1eoymne0o4vRsfCM+fR3jOHd3EXtOZUIWiUGi5289HjwiaiRkZoUzdSMheUhybt2iwNBENAGZNU1IV9Et8eHM+AwMXtE+ruloHhr3yzyGSt+v+S8yS/PoPmAFBJZuLqEut3dzE5bWHBmNTNDetoP9VG5vBBrYQxjcTJqImIY0Rsps8rwVWXT1zxEVmk65lkrKTlJ+P1+rEYb0fFvXf6qdepgcWx3fT/37P8tgiCw/iunseWlRtoOSZUWNSuLadzVBQ2DnH1uJXty/Gx2GFj6q3XEvtZH1+E+qleX4fT4EWKiyYjU0Nk4THFVJq2HB1h7bi1A8LoARy1vBQiWFk30T33gxgbHN8PdArQD79Q1/ilRFG8+8SF9fDBMmvja4h9h0lvILErlopvXse7q1RwYH+Ohp99A+doQ2ooMxgf0ZJRloNCqUWnG0epUqBSSW1z0i0RGzBmALlqLefpIRoYv+MWzm+zYLQ5mxqXHEictHHBJs0hybCTGYTOjzKBWyfn7b6+kPNAW+dUHt/CPHzxOZFwEX/vTNex5o5OxgWm+9fvLmRzS072jjYQYDRanl5j0aHSTJuxmJwkZMZjNDvyugFxeaO6lzRVMkHY4PAwEpBOGJ4205gF66V/F68N0d0lNQOafVkndlha+tfbnXPG983jjiZ3Mjhu48c/XMNk/za7n93P9HVex8MwaUvOSKZyXR099P8vOWxAUGnK7PDhC5Pw8rpDKCrsbo0P6ewgXo7ulyoqmHe0kzC/FGEggKJ+fQ+vhAVoPD2CYNnPRtau59e9fJb8mh8T0eBatq+GRn/6X1j2duF0eypcV098yROniIhq3t1GzppyJQT0uh4uc0gzgaP3NE+WYDE4QhEzgHODXwLdPypk/AejHDEFv5kj3BKdfuQKFUsHy7Gxe3jVD3cEBACrPXUhzm7QfK11WQu/Gg+x/doy8mlxUOjWNrxygeGE+aq0a/egM2WUZTPROkF6QiiAT0I/MkJSdhCZGF5R00EZpIWBwkWoVxsCYXG4fBdlzruwdz+zDapSSpF94aActTdIi4w+3PEZfgzRTRMVF4F2Ty7bxMRJKoihNyuHwwDgpZxWQI8gYz1VgQCRhk5zY7AScMWoiBiKQef3olEJQRi8hLRq5TMAXWPJaA/3ORVEMXiePy0P9G80Md0jjeP4vrwYr7n96/u941fkfkrMSuWffbxjtHienXMrn3PX8fu65+SH8okjFolIQwTg+Q3ZxaiA2CRlRUUxYrRQKWvSJUVj0FnQxOtzuuaQBp32uY5AjoL8ik8m4MGS/e/XPP8f5sXOyOzkVmTRsa6NxezvrrjuFzU/tQyYX+MIPL+DgxkYG2ka4+a6rOOVzy47zG/RWjnWG+zPwfeDdVG4uEQRhNdAFfEsUxeE3H/BRCMGeCGl5SSxdP48DGxpYfcmS4K+czWQ/6tdXkB+dh3mkv9zMyAyWQEJw16E+UnKTmByYZrxviorlxTTtkDQ8as+ooaXbyPSBIUqXl2Bx+2je3MPC1fnIYzVM7B9mQXkaE24XCfERPPnyYb544WJadrYHl0EKpfzoTj3quY9WkAkY7NIMNmOyo1Iq8Hh9jOhN6FZm0DIhzWDLTs3k0IFRmIXcZRnYHt7J/oYOUnKSSMxLou2FQ9SsLUa1thDHxg5iClOxGO0kBZbZ2kg1ETG6YFqX1+M7SgQ2MqRSW6FUBI0NYM+LB5kNFKlmWe201Ul71OScBKZGDNAI2h1qFhQkMtjQRnR8BItWV9LRNEKkRkFmTQbm4igm/V4SRC8JCAzW9TA7uQhdlIY9L9Wx7Jx5aCM1OKxO5Ap5MBHaOjvXPWiwYwyf14fPC4deb6JljzSTPnXXKx+OwQmCcC4wJYriYUEQ1r7DYS8B/xFF0SUIwteAR4G3hP8/CiHYEyEyNoKfP/0tZieMxKfGArDrhUPcdfM/8bg8kkKXVkv/oIHy2iz8Xj9+t4fCRYUMtw5RUJuDfszISNc4iRnxKEP2CP6QBGmROa+mzeVlZCyQCbGjL/jF7Zy0kH5aIY0dozR2jNK2p5O6P78KwLyzahkzeDi8p5fKRXkIgkB3ywhVK0qwzFrQ6NSkaiPZ77RSnp+GXC4wrjej1SmPKj5V+eccIzIEXDbJSCcHp9GPziCKIuNbO8mfcTLZMMAkUL2mPNj7vHRJIZ37u5nqnySnPBOZXKB+SzOF8/KIiNEx2j3O7750Nzff82UiY+eSBLrr+nDZ3MhkAqJ4tBaMVJ8YqBa3uphulpaO5lkbhlk7dqsLu9WF9sx86ial/WnlshQ6f7+VTqBtXzdupweT3kJqbhJ/fuN24pJj+MvOn/Pw7U9inrEik8sQAtk9Kp0abaQGuUKGNkoTvP6JJykb5VhmuBXA+YIgrAc0QLQgCI+JovjFIweIojgTcvyDwB9Oyug+JhwxNoCWvV3YA94wh9dPR5v0BRgdmMEULG9RkZ6VRP2WFhRKOQvPqqFuczMqjZIFZ1YzO2FitG+a8mXFyBUKbLNWcnLjMZocxKtE3EkRTEzbyMlPxGxyYJixIZMJeHxzRuoIyXl0efzMBALQI33TQamH5rohkuI1DLSPwWFYctl89vZK4120JJf91nH2DQ+zPDOTiHobg2/0snB5DnaZiN/rp/jzyxn43yFKlxXjMDnoPtxLfGosyhCnjBASAhHgqJ5zR2asnvp+EjPi0Y/OsuXxnSw8q5bTv7gagDee2Mlvv3g3AOXLSzBMGDjw4gHKV5ejjtTR1zhA5eICDHozMZEqZEoFrfVDFFRlBZuiKFUKFJEqjqy7NeLcmERxLslhYmA6GCQvXpBPZGwEdVuk8qfqNeVB4d6CmhxGOsc4sKGRzOJUImN0HNzYyI8u/CM/fPiGE9JUORaZvNuA2wACM9x3Q40tcH9o447zkZwrn0oqlhaz8d878bp9FFVn0zPejtfrIzpaE2JwYJwyApJjxDJjwe/z47S5cDu99AdSqOJSYhlsk/ZZMrkMlVpOXZMLlUZJzenzaHyjkYi4SBacXs1o1wTuQ8NULc9H4/HjbB4jq1SqWNCqFSQmR6KfspKZl4jP58ditKPSKINeOAB7iMHaBC8Wl7T0NU9YGT0gjanrjR7sBZHBfVrtmfNo3S2FRJZcuIT67R1Yu6ZYdN4izLM2etonqFpTTnpeMuu/chpP/OZZWnd3klOWQXR8JAOtw6QXpiKEdOdJykwI3h4PyA0COG1OxgOlRR17OhFUakRRpHl7KznFKbTslAxi/rr5NB4aBMapPL+GA6ke3jCNsaQ0E78o0jg5wfLPzcfTPo06PoaUvGTa93ax5uLFxCbN+fxCpf1kIbcFCCqbTQ/PMtIleZsPb25memTmgzW4d0IQhF8Ah0RRfBH4piAI5wNepJzWa973iD7mrLpwIUXzcpErZCRlxLPui+M89OP/0Ly5noKKLOS56YgqBfK8GEZ3t5JZmYM6Mxll6whqtQJt5FxGRlTcXDaEWqvCEZAOcDs9TA9IThibwYp7ysjkgJSMnNozQ/vhAQDikyKZaR9iYmgWTYSavPJMml49SExyDPPWzadj1IBMLqPU70OI1mHwCaQnRhOlURM54ydRp8Nkd5Dt09KnU+Gwu4lPicIhwJHAhz1kJnXYPcEkYIfDQ0/gh2N6ysadm6Ukgl++8EO+lP916t9oQZAJLFw3j7otrai0Sk774hou+865FNTkBl/z1CtXcvj1RiYGp4nLSCTN5mK8Z4LCeXnMTFsxTJqQyWVH7ZndIU1KzNECU37ph2PIZmbMKM30m9KgukmGuUO6jj/8982sOXfeUZ/l9/95I7mVWaTmJrFoXS0P3v4UhikzF3ztdJ7/60Yat7dzzpdPoWVvF12H+0lMjyMx/cSWlsdlcKIobgO2BW7/NOT+4Cz4WSA1Z85LWFiaRteudtwONz2HeilJS6ArIHZafdEqmhqGoHOK0otWMPD8Lva/dJDcqhy0UTra9nZTsqgAhVKOZcZCdEIWo90TZJWmI1MqmByaIT4lFrV2LnYU6p7WapXB5GOnzcVooETGNGXC4PRgMjkwAam12TQ2SIWX+flJDHQNMQEkxWvJEgVap7tITIqiYGUe9UMTpCdEEatToxg0IMg9+NNiScqIQ66UExGjQ/T7iYrRoVQr8Li8ZBamHHV9DJNGQBKENektiKKIy+4mLT/lKGMDSMtL4Xev386FKTcws60dlUZJ5anVtO3tJiJGx8LTK+lvHMBld1K2tBCFUol12khadjwKlYoIq5+kBB0zdgfZ8TFYnE4sTjc6QR5M2AZIeJvmKXKFnM//4ILg37feM+e5nH9qBTaTnYgYHT6vj0Obm5l/auUJ18+FM01OAlmlGbTt7UIToUYdpQUCOXtH6XmIwQroqcEpHHbpV7rzYK9UL9cjLVuqVpXRFAiS155aScvBAaZHZylbUohTlFO/s5OyhbnIPR7GOkaoWlnCRP80KVnxCHIZLft7yCpOI9ItLYlkMoGYkLxCdWjg1yMyG0ja1k9bcJksON1ehsYNpMRE071JGkfZonzaA5r/WfnJ6If1HNjUTFpeEld+9zxOvXwpAPVvNPPP2/9Dfk0O08MzpBWkIFcqUetURETr8Lg8+Hz+YCHsESwGe9Bj6HZ6mBqSXAI2kx270YY+UDGQmptM805pTOmFqQwbPdAzQUKCjsivlLOvb5ikSB0riGHk1W6ik6OJjo1AJhd4/N5N3Pqby0jJOHYtkyNFxXKFnCXrao/5ee9G2OBOAne+8VN2PLOP+adVoonU8tDdr9O9uYHB/+2hbFkZXqUSpdFK4eJiBpv6KVlRgX54hpGOEWJTYo/aS/i83pDb/jknxKyV0Slpydl+aAClzYLL7kY/MkthdWYwxLDgjGoOb2qChn5WXLaM6/94FZmZ8bz4wmEsFifnnjuP/z17kB2vNRLt9SCUp9HaPk5xcSoerZoxQKNWEBNimMoQT6YgkzJbAMb7p1l76eKgAT3x62dp39cNSE6IpoD3smx5Md2H+nnqDy/QtreTu7b9/Kjrl5Aayy13X8NTd73CWV9ahV8UeeK3L5BSkIo2dW6/pwkpPFXrVGCUZjCXycnArBGAaasde5Mdq8mB1eQgITma5kBrrft/9SI//dvVx/XZnmzCBncSkMtlnHL58uDf88pSef42SRLAs70Zl1L6ogiCQPaiMpoPD6JQylly6TIa9/bhcUp6+haDlfFhI6VLipDLZTitDrKLU5mdsZFUk4+ne4KpAT3phSlYez24AkHeUMeI2zV3W+71kZkp7TnOv2CuO+rVX17Djgc2094r7W9q1pTR9IpUiHrhN8/k+lvXEx2h4fmSTKJidKw4t5bH/vAKLXs6kfl9lC7IpadpmNIFubTv76F6VSmGKVOwh8BbEIXg3m+if/ptD1l/3Smsv+6U4N8xmUn87TevMNE0Ts2lq5hp6uPQpmYqVpQiV8oZ6RqnsjaL6SkrCQk6cmeUbIt3Uy3EEB0tXQO5QkZkyOweHffWCoIPm7DBnWR8Pj9D7SPBwGpMcgxTAYUuURSDMupejw+r2YXH7cXjBp9CSW+zpEQVFadjMFBKI5PLiFxeRV3jCCq1gpqza2moGyAiJ50FS0uYmpZSwkqWFKHWKLGb7WQWpeEXRc68eu07jjNURs8VUpQa74O4aOmLeemNpwfv/9ovL+Wc2OuCS7/iBXk072jn+zs7OOfLp7DxoS34/SILzqjBYrTS1zBAxfISRFHE4/ZSOC+Psd4JciuzjpIZfCesFldwf2qzeRgJyPd1HuwNJiYbJk1kl2XQsqMNdsAFFyymoa4TE7Dm3Bqu/e56ktJieO6hHQgygfVXLH3Xc34YhA3uJGK3OLhh/g8Y75skqzSDxIxYOvb3kl+ZgzxCh1wpRyaXfu0zClPQRmpQqOQolQq0GkXQexkRPfdLrFQpsFoDM5nLi37GiiiC1e7Bo1AxOiA5QxKLE2naVC/dzojnsf773rJXCuV3z3+bv/7gCUn92eYiOTOe+NRYVl+w8G2Pn5kwHNX/zhKSndHfPBTMrnHYnHQdlNz3EwNTwdxQkBqrHNzQQP2WZu7Y/FMqVx5dRCu9Rw+vPnWA/ds6yCpIwmZ2EhulJCkrgenhGXIrs5gansEya0UmE4LnBXDZ52Z3bYQ6uF+79Ktr3/E6fNiEDe4kYpg0BfVNhjtGMevNOKxOuvZ1UnHGfDoOS3uJqmVFwcz8ktpsBve1sve/g+TPy0cXraVtVxuliwuIT43j8u9fQO+oiX//fStrz6okOkbHEw/tICZWh1oZIrQTIqkXGat7V2MDyC5OY/4pFTz8i+cAKF9cwF2v/uBtj336rpd4/NfPkZGfiC4mEkGQMmWcKTEkZyWg1KrQRmmkRO34qLnKiuRYZifMQUM9Iivh9fiOMpRQWusGuf+3L0vvSavEM6Gnrm0AtVZF1eoyWnZ1EJMYxYIzqxnpnQIEihcWoInWST8cqdEoFDKcM2aM02ZiEqNo2NpC6ZKi4xYf+iAIG9xJJDY5msVnz+PAa/UsOKMau9WBSW9BqVYe3T885A+vx4c1EOsa7RgJfhE79nfzt8N/oHBeHuXAORcvCNakpcRq+NN1f+WA20v52krcDjf1rx6mYkUpMhlMD+t56LbHuernn0OpUvJO+ENqxt4tmLvxkW3YzQ6GWkeoXFlK617JMVKxspS2gEMiuzST2XETh7d3klGeQ2ysltY9nRTU5pKQHsdl3z4X/egs93/v3yw/fyHF79CeKzTeptWpcQRibi6HO9DOWcoccdg9TAUUpJOyE4MNUjILUxltm2S0sZ+6zc0kxqroOtxHemEqv3/9J6TmJr/j+/wwCBvcSSQiWsevX/4hY4FKAJ/Pzz9//B82/vMNunc2U31aLV6nm8EDHZTWFqDQqLjwy6t5zuOgdXcHxYsLmRmdZaxngpjEqKDiFRxdAOo0WIItjI3D04wFnB9t+7rR6hTYzQ6e/P3/qFxZypJzFvBOXH7r2Wh0akyzVi68/u2Vrw5tagy2z1KoFMgVIfmWId5VRAFrQNpvtG+aMbcLn9dPT30/1//hi9QEFLtOvXLlu/b9Xry2lB/e+XleeWIPM/0TVC0vYrh7gqz8ZPB4mBmbJTk7CW3kXDwyNE6pDolN2swOZnulffFYzwTGKVPY4D6NpBekApL3Uq6QBZtxWEan6K6TZgS70cpL1scAWH52LbeuvJ3m7W0olHI+/6OL+fxtF73jEmj+aVUUL8hnpHuc1NwkvB4fU0N6UnKTcRgtgOQEiUp4t+IOyWt64ddOe8fHH/jBYzxzl7S8W7Sulp76flp2dVKzpgyfz89g8yAVSwuxWZxoI9SULMijp3GI0gW5mCcMDLQOExmrQxaS1uX3+5GHVFe8HWvWV/PgbY8zPWpgFCirzaJpi+T1nX9GNY07O5kaN1G9qhTjtJm6La1UrSgBuYzx/imqlhcz3jdJalo0XncSrbs7KF9WHPxcPkrCBvcBUzg/PygTnleVQ2/jIH6fn/iQ2UsQhGAhqtfjI7ci6133GxmFqfxl58+5Mvdm6ra0oNapWHDOAhp3dxERHcWChQXMzti44xuP8t17r6ViSWHwuVNDel7/1w7Ovu6Uo2ZQmOs8eqTkZzQQjAcpz/FIy2XDhJGhTslr2LK9FUWELui9LKrKpGlLE4JMYPH6eTRvb+X2c37LNb/6PK2722ne2cE37v0ygiBj4yPbuOIHF1AwL5eN/9zKvNOqyCnLZHJIf9Qs6HGGFKJ6/EGdTZvZHuwr3nGwhyPiXfoxIxnpkTRulWT0vvK7L3D59y98r4/qQyFscB8wqy5eQkFNDl6Pj+zSDM6/6SwOb2rivBvPPOq4a355BX+99Z+kri6j3elildeHUnH0TGA12oJlLX6/iCHghHDZ3cxMmvD7RSxGO165kqFeKd717F83BQ3OPGPhmrJv4fX4eP6e13iw+Y9Sayxg9/8O8PfvPIouSstNf7mWA6/UMTs+S2JGPNrYCDQJcUTGR2KdtZKQHsf4wDQel5eYpCis1jnv4BEZPdEvYjfZg+GHHc/spW2PpL/5t289gj5QvHpwQz0puUmM902h0ig567rT2PjEHjQRauavKcUwacI4Y6VwQT5qtQKnxUZGQQpWo42YGC1xyVEYpixklWYwMTQblJtwhoQ9QpOlP2rCBvchELqUKVlUSMmiwrccc+bVa7GkxHDnP9+gaUMDfZMm7vzhnLjpn294gNcf2cryCxdx5jWn8syfX6V6dRm9jYPkVWWhjNQx0jtFVKzuqHzL1JDqcOOUORiAthhsR3kyNz6yNeiUePRn/6U5kLmSv6CAoTEbY9M9xKWnEBmt4/DrTaTlp5BemELngW4y85JQR0aikIt4XW5siVGk5CajjolArVPj9/mIjNUFJSeiE6OCBuf3i8HZ3e300HGoD5/XJxX5OjzByoqYxChaAmldumgtHoeLg4MTRMToqFxbSWv9CPFJ0ZQuKmB8zIhM9JMfH0lkTARb/rObylVlJGd9uKKvb0fY4D5GmEJ+ld0h4qZul4dXHtgEwPb/7mWgfZzhQMlI9cpSmgKKVDWnVdLRMMihLS1ULi3ic7esY/EZUu+BrU/t4ck/vED16jL6W4fJq8hi29P7OP8Gqb1y6JdRFVItrtKpAcmL6nZ6mA6EPcb7JkGUPKxWg43KlaW0bA8oY62tpO3QALSPk1eVh75/jAOv1pNTnklscixt+7opWVgAMvD7RNRaFf0tQ+SWZ6GOUCOTy9BFaY5SDdOFFKVqIzVB4V6byc7YkFR3NzttISU7Idj/rrwyjabXpdjkLy//E/fs+fXxfygnmbDBfYy46MwaeganGekcJ6JbT8v+HsoW5rP9hcNBST0poTYkrBBS4+bz+nEH9jtmgzVobAD3fONhrIF6vZJFBTTtaKdpRztOq5PPffc8br7ny2SVZfDCva9Rt7mJqtVlCIKMiYFpKqozmZyykJKgw5NQRNvebvKrc1Bq5Iz3TSFXyBBkb++99Hl9GAMCrINtI4z2TEoV7Id6ya/JoS8g91eztpzGbdKsWr2mnN6OcQ5tklp8CQoFbYcHqTpjHn6XG7vTR2ZlLr0HOjn7ulPxqNS8/OhuEpIiUYWoMytDnDW6qI8+rQvCBvexIi5ax//dfDYX5H+baaB5azsl83NpP9SPQiVnyfmLaNrWin54mprVpbhsTib7JiiszUauVuMXpTiUfmyW9LxkJob0pGYnMjk8c1RYweWYU8YKrWhIykhgOOCEGGgexhpI+ZoemSEtP5mmJilYP//0Kuo2NyMIAovOnkdf0yDt+7qoPbUSvyBjpGeS8iWFWE12omK1FC0qpOdQD2XLSrDMWhnuHEcXpQ099VExQZ/PjzMgADQ7bkQ/Lc1mbQf7iUuODioo//AfN7HmQikzJilex0M/+DcT9T7mnVmLccpE3YY6qteUI/pFxvsneP6e17jw5nVHOWS6DvfidXspX1ZyYh/eMRI2uI8ZVtNcXqPfLzId6C3ndfuwGu3BRhdel5v2/VIAWqVRMTEpLfXkChkxCVHse6Weph3tnPK5ZWx8fDeRMVHMm5+HacaK3eokvzaXiEgN9VtaWXH+QjSRGhq2tRKTFI1p2kx6cRpDHWM4rU4EYa5CAAhKTIii1OJ4JlA+Y5g0MRzo2mOcMiPIhKAhlS4pom1Pp5S0vX4eLbs6GeudZN5plbjdfsZHDZQuLQZRRFAqyS5JY2JIT2ZpOjK1nqmRWakfQghxSXNhD9usZU4UaMZM/xHp+cN9QcfNX299hNq1FeRVSQJW//7F0/zr//6LTCbw9bu/zPk3nXViH94xEDa4jxnxydH83yNf47E7X0GtVSMIkhGmZ8Sg0cqDyzdtlDYoqRcRo4PJuSaQswH3vd3ipHV/Dz6vH9OsDV9+Ev2tUiC4ZEFesOfBd8/4FeYZKx6Xh6j4CCovWUlbv4GkhWWUq/yMdo2h0qiIT40jMjYCj8tDXEoM2igtap0q2OQwIT2O8WFDQK0rEnNIY8ojy0qvR3KI2MzS8tbj8dNRNwCAQiEPdsuRK+QklmbSUDeMWqtkwWkVNO7sJCJKw/Jzajn32jVUryjB6/Hy+qPbad3TSUpuEnaznZjEaKITozDrLaQXpDDaMxHsfR4TIrHQ3yLlofr9IqPd43wYnCzlZTXwL2ABMANcLoriwEkc52eKJWdUsv3Fw2x9TiqZqazNoGGDtPkvWVzI1OA0B16tp3BeLroYHZ0HeiidX4AmNoJLbl7HUOcY//7dC+RXZqHSqBgSICJae1RjQ3VIx1alWuplB1JS8pA+sJQ0OIjTicEmG1WryoI1bgU1UkxxrGeChPQ44lJjqdvURGZxGskF6fQ2DZJfnYXoE9Fo5Ih+P5ZZKym5SWh0Kqk7qyglah9J2o6MiwganM/rC3bmcTk8GCZNeN1eTDNWimpymLemDJBaP//peqntWExiFG6nl0MbG4hOiKJ6tVTMm5ydyMqLFnPZd84jPjUWm9nBS//YgtXiISY5GrVWjccnzdaaCDWdh3oprM09qk7xZHGylJe/DBhEUSwUBOEK4PfA5SdhfJ9ZQnMKRV9IrwGXJxiA7m8eCgaB2/Z08Jddv6RsSRGLzqhidtLEs/e+DkDt6lI6Dvdz6I02yleXYa1IZc/YLLXfOBNl0ygOp5eaonR6DnZTUJmFmB5LS/sEaZlxpEXL6dwrxc9C5etC2xm7bC5mAv3vRrrG8csUWGZtWGZtlC/MDbrzK1eWBjX+C+flMTtuYP9LB8ifl0dMSjztB3ooXZSPSqPikpvPYnzcxL/ufI0lp1eQkhzFQNsouigtxfNygucOjbeptKqgQpd5xsJgmzSbTw3pWX7+IvKrpedt+NcOHvn5swDkV2Ux0DbKq4/soGFHB5E6Oe37uildXMgvX/ohsUlvbc18Ipws5eULgP8L3H4GuFcQBEEMrecIc1x8+09fJDougsHGfiZ7JyhdXIjN4iAqOZa8ahhoHqJsSREzE0Ym+qfQRmqOyhwxhSznPG5vcEk1Y3HQHTCOuvEZ0kcN2AN96IpK04PZGZf++DK+8n+XIpfLWLKulvT8FIoX5vOf3z1P3eZmpof1VK0sYaRnkqySdNx2Fx0HuilbWoQ2LpqJQanBiSqkiiHUceNxe4INK/sbBlBE6fF5fbTv7+GPG38kpWoB53xxRVBHZPUFC0nJSQhoVUqsvmwZN0+badjawmXfOY99Lx/mhfs2UFCbiz+gqRKfFnuUo8gY0FwBSZD2yD7TpLcwPCbN5h0HejDpLR+NwfHeyssZwDCAKIpeQRBMQAKSCn2QT5ry8keJNkLN6vXVfO9PUoN7/dgsKJSMDRmQyQRKlxTSurcLlUbJJd86hytvu4iouLmM/y/98AKmR2YDzg6B9Pxk9JMmEhfnYXA60RtsJMZEIHhDmhxa5xwjcdHqYGD8tCtXBu8//8azePSnTwFSA4y0gtTgMvPrf7mOC79xNn6/n02P7aJqZQkJabE8dNvj9DYOMt47SdnSYsyzFqITo8mvyaG/aYjyFaWYjA7G+qbQ6NSoQuUdQmbS/MrMt1wnQRC44OvruCAgZV6+rIShzlF2P3cAkHJA67c084er76XrcC+9DQO07emkclU5KJQYp81ULC1ipGeCnOIUrGlRdB/uI7M4Dcus9S3nO1HesyNdqPLyiZ5MFMUHRFFcKIriwqSkpPd+wmccWaDJPEB0fFQwC97vF4Ozg9vpIa8y+yhjA0jJTuDrd1xJd8Mgrfu6mRqZRXZBNXvHZ3A4PazITEZ8pRWVWkH1imIKKjPxKdTk1eZRsaKUph1tjAf614XicXuDbaIEQcAWUi2eHMhqkclknHXVatLzU1Br1az53AqatrcxPTJD+74uxnsnad7eRn/TIOWrK2mvG2RqZJbFZ9WgUCn40UV/ZM/Lde/7upmn57rbuhxuvB4pR7R1TydN29vwenz01vfRsqeLke4JWvd1o1aI1L/eQPfhPhaeWcNI1zjfO/X/eP3Rbe97HG/HsbSAPKK8PAA8CZwqCMJjbzpmFMgCEARBAcQgOU/CnABVK0u5a9vPWLR+PkJUBKVLi8guy6ByVRmpRRloIjVUrSqjcsXbx5COeCtBim1NGQPZGQ43xvZxfC4vhikzol+kt2WEsQE92sQ4Wnd3sP+VOr6z9mdvec2EtDj+Xn8HF99yDv9ovpNf/u/7lCwq4Au3X0LNKVIJzlDHKE/94QUcAan0oa7xoAMiOiE6uIQTRYL5oF63F7vFLjUmMdjY+8r7N7hv3PtlihcWcMZVa7jg5rNJzk4kKj6SRetqg7moWSUZKEMyaqwhs5nFMCeDMdQ+8r7H8XacFOVl4EXgamAvcCnwRnj/dnIoX1rM+IQF06wN06yN8sX5tAaqxddddzq33Pnmj0LiH7c9wUv3b6Z8YT4ulw+5DIiLptlqpzg1ntghE2OCgC5Kc9Q+SxdSZ/ZOLZoyi9O58U/XBP++d99vgrc7D/XyzaW34feLvPKPTcRkptDdMEjWvELiEyMZ7JqkpDQTl9lKVEI0glyOacZKan4K6rhoFEo5ogiRIV5Ul8N9XN1J86pyuO/A74J/LzijGplMQBup5dzrz6DrcB/LzlvIYPsoL/3jDc6+Zg2WGTP33vJP4kpzQK0iomeSqFgdC8+qPebzHgsnS3n5IeDfgiD0ICkvX3GSxhcGiEuOZnxgWioUD/kZi3mHejef18ezf35VWkbtbCenPIOetlHY18WiC5bQ/N9GhoDaUyrp2NvOoc3NVK8s4dxr17Li3FpeuKeElt3tXPHDi457rPqRmbnyGaOdKb0UgB7umsDlTMCot2DUWyhfkEvrbsn7WXVqJS0jVgY6pileU8VM6wDP3bOBwbYRciuzePWhray8YCE33fkldCEOk2MlVCMmMSOBxAypeiC3PJNv/Omq4GNn3HoBj9y9GYDai1fx679dfdJDAydLedkJXHYyBxZmjt8/eyuP/OYFdr9ST1/bKDUri6leXsz5X177lmNFUWTPiwdJyoxjangWlU6NL6S5hc8TEmLw+HBYJe+dYdLE6oCU3sW3nsPFt57zvsY677Qq1l17Cvtfqye7NAOXX0Z34xCZBcnBJZxMJhzVtYeQqgWXx4c+kF1Tv62NujdaEEXY9Pgu1n/5FMqXFL2vcR0LJv3csjIyWvuRx+HCfEQolHKi4nRMBBSJfV4/V357/dse+/NL7mD3/w6i1qlZdN4iugZNWICq02vwWW3o2/rIzU1BJhcQTUZSs+LRT5rIyElgZsxAQnochkkjKq0qODOIoviusgih6KK0fOehm7i27BYat0m9tBeeVcuhjQ3IFXJO/dIarrztIhJSY/nHbf9hqHOM6b4JigszsNo9RAt+csoyGOoYo2RpETMjM0wN6lEFVa1PPlNDeu68/n5a93ZTeUo1IjCyo4mdzxWw6uLFJ/VcYYP7hJCRnxLU8k9IjMDv9yOTyfB5fUf9Eve3SPVjLrsLm90dbAgpJuuCS7g0UQx2qVFplMSlxbP3fwdo3t7K6V9Yyct/e53Y5Biu+9UVbH5sO7MTRn7w6DeCgeNjwayf8xSaZ6XbPq+P+KQoMgul+sBTrljOd8+USmYmB/UIwKhfRCaXUbJ+Ie39s6ji4lm0soL2YSM//O5/+f5PL2DR0oL3eRXfno6DvdS/If04DB/uDiYW/PKKP/N43z0ntYD1WLyUYT4GrDx3Hn957QdkpmjZ8vBmvrP2Zzz/141cVf4dfvmFe+hrGuS+bz5MUmYCaq2K3OocdPHRCDIBmVw4up4sem6m8IT0GbcabNRtagro++t59R+bObSxkb7GQf71f08d13h/+sx3yK3Momp1OSq1kqj4SJKzEwMtu6RKAEEgJOwREdz7+X1+ZgJJ3G63D6sgx2xyYDTa2bWt4/1fxHcgLiUGTYTkIEpIjzvqB+xID7qTRXiG+wQRmxjJQLOUcNuyqwP9lBX96Cy7RmeZGdXTGqjSrjmjhtZ+CyP7+ymtyWJmysyhwyOUnj4ftcdJV10fFStKcFicqHRqVBolHQd6KKjOCQSdh9FGaVCFeAZDk36PhZo1FZz6+VU8/OMnAChakE9vwwAv3LeBxu2t/KPpLiqXl/DH13/M4797gb7mIUoXFWCzOIjJS0WIi8ZsnyAtIw6tRiktgUWRyOg5z6nH7T3hbjYghV/uP/w77rrhHzRtbyOrNJ28ymwu+/a5J13LMmxwnyA0OhW1p1TQsLWVjKK04J5GECTpgiBCiBPC6WU6oH7c0z+Lr29Q8l7u7iS3KofOgEpy9eoyGrZIaV3zTquk62Afh15vonJ1OX6Pj02PbicyNpLrfv35Y3YmOEIyV+RyWTD+dqRyAKBiWTFjfZMYJk0YJk2Un72AlkEjDJqoWZBD4+FBBnqnKK3OYnrGyn8f28fI4CzZOjmvPLydUy9bwld+cek7hjCOlbT8FDoO9CKKMNQ+xk13XU3xgrfXzjwRwkvKTxDaSC1/2Pwz1t9wJuMjRka6x1l0ZjWpeUkMdU1Qvaac6jXl6AenKMyLJzk/EXVpEhkVaQAU5ccHe1WrNMpg/RgQrBYASSXrSPnMzKiBtr2deNxe/nvHC0fVxb0XX/zpZVz2nfM456unc8vfr+fUK1cSlxLDF358yVHHxSZK4Q1BEJCFpHWFRnJdLg/TAUM9sKeHp/+yAbvFwcsPbwsqiJ0IoihStUqSXk9IjyMtP+U9nvH+CM9wnzAEQcAwJTkhvB4fTrsr6ACxWT301kkzlqxvCtfZ8+nvHEMul1FVEE3bhoNoItQsWldL54EuTJMG5p1ayeqLl1C+rJC7rn8At1qNUJRByqyVmZ5xUvOTsJttmAKy4XLlsbvKVWol198xF+e67bFb3uLkAbhj44955cE3mH9qBQmZCfz1D68wUd+LfkcDBcVZmLVq5GVxpCpEJrr05M7PwGwwMjNmQKlWHFV29H4RBIHfvPQDGra1Ur6s+Kh8zpNJeIb7BHLa51cQEaMjIT0OTYQ6GN+Kjo8Iuu+jUqKDTgifz89MwDHitLmwGa2Ypi2Yps0kZ8Sx/iunkluRzbcfv4Uen5ymjgkM6SkkZCVQv6kJv8/HwrNqcFid3FD7Pbrr+t732N9uOapUKbjwpjPJLs0gIlLD6WuLaXrlICOdowxuOkxHtId9A6N0aVxkrC/ggH2W4ZWZLDi3Fl2Ulh9d/Ccad3W+7zGFUru24gMzNggb3CeSNZcs4fbHvoFxysTBjU0kZyeQW5xK/eYm8quzqT2lAiUC1So5uZnxfP26tVxy/emotSpKFhVQtbocmUxAJhMonJcXfF2rZa62zOv1MxlQ6LLM2pgemcXt9DDeNxmMr32QHPnhiIyPDC4tvT4/E0Zpdrf5fFitTkx6C/pxI7tfOuHc+g+F8JLyE4rT5sTnlZwQZr0V07hUKd3bOEhKThL60Vn0z+/nuw/dyFkXLgLg9C+sIjqQDrbigkVExkWSWZQWfM2Kyky+cetZvPyfPej0syhWl0k9D1ZXoYnSMdg6jCZCgyJkBnA5XKi1J+aweDPzTq3id6//hAOv1nHxredwaHSah17aR4rRheAGk0JOnlyFTumSDFOAiJAc0Ldbtn5cED6qHOOFCxeKhw4d+kjO/WnAPGvl7lseoWFbKxd//SwObWygeUc7uRWZKLUqug9Jy77fb/wx80+vPq7X/sayH9ERECiad95imrskY66tzaBrWwtWo41zvnoqTrON7f/dw2XfPZ+yZcU8e9fLrLp4CefdePLFeH595V/Y9tQeaUznLqBpRxcA5YvzmewcZmpIzymfX0FKdhIv37+JddedyrW//vwHujx8JwRBOCyK4ts22gvPcJ9QouMjuf3fN+N2eVCplVzx/fNp39dN+bJiPG4vL/51I/NPqzqu7BCQRGdDZQs8IfIObrsLq1GqDq/f0sJIuxQTfPxXzwaFhOq3NJNRlHbcRv5uiKIYbOkFILrmvKsum5OpIanOee9Lh4Njf+aulzjz6jXkVR3f+/+gCRvcJ5wjv+AymYyK5SXB+y791rnv9rS3Zff/DnD31x9E9PupXFWGLCoSs09OVn4SMfGRrLughpnuMaZHZkjJScQ8NYt5xkp0YlSw3zhAROzJy85o29fFn66/n5lxIxUrSpDL5cyOzZBXnoHD7iIyLoK0ghTGeyfJr85hvHcCw6QJlUb5sRF/DSVscGGC7P7fAWbHpUz9zMoc2nql2zlFKdzx7+sBWL6uhuvnfY/DGxukTqRn1dKyq4PYlBhyyjI45/ozTmrA+OCGBgYC0n5up5vuQBdZTZQWLzImeidRqhWUrSyn43A/EbFaFp+zgJ7GIb5/zu+44Q9f4MDGRgZaR7j13uvIKct4x3OZZ61EfEBVAkcIeynDBMmrygl6L5Nz5wK/sQlz8g0KlYKJvrlOpFNDM7jsbiYH9Cw4s5bl5y865sqCYyE9PyVoACnZc7IckbG6YHaNx+VlMrCstBkdWC0ujDNWJgamefbuDbz60Fba9nXz55sffsfzPP6b5/hC3tf55oqfsO+Vw/z0ojv4yQW/ZybwA3SyCM9wYYJc9p3zqFheTHRCFJnF6azY0MzIgJ7zv7AMkIRT//Pb/wV7bZcsyEetUzPcMYpapzopeY1v5oyr1pBdnonH5aFyRSn7X63n+Xs3MNI3TcWyTGbGjSRlxIMgYt7VRVZxKrpAcrYgE47qjhqT+M4NKjc/tgOX3UV3XR9P/uEF2vZITpnHf/Us37zvKyft/bznFRIEQQPsANSB458RRfFnbzrmGuAOJG0TgHtFUXzwpI0yzIdGqMb+qnVVRz32xy//ja6A9/NITidIEgZdh3u55+aHGe+b4vo/vL3sw/ulZOFcOc6S9fP48zcfwTBlRj9moGRhHs2BsqN5a8up29LMYPso1avLmBiY5tCmZipXlLDojGrO+9rp73iO/OocRrsnUOtUR7Xxik3+8GXyXMCpoihaBUFQArsEQXhNFMV9bzruKVEUbz6powvzsSLUMXKkxAbA7XBjmZW8iIc3N33g49BF64INPXwhbb2O9D0HcNpdQe/lcOcYd77+43d9zZ88+S0e/81zPPunV2jd3cWis2pZ87llR0kEngzecw8nShypPVcG/oUFgj6D/ObV21h23gKqVpVhMzvILE4jf34+qthoEjITkCvkZJRmYgmEDsyzFtwhSdEni3t3/Iyzr15Falo0kz1jlC7IpWp5MWa9iezSdFJzEonQqaSlJpBbloFJb36PVwVEEcusFZ/Xh9vl4cyr1px0B8oxOU0EQZALgtAATAGbRFHc/zaHXSIIQpMgCM8IgpD1Dq9zvSAIhwRBODQ9Pf3+Rx3mIyE5K5GFZ9XQvLOdwdYREASGBgw07unGI1ORUp7D3k1t3LjqFzz4o//whZwb+frCHzDYNnxSx6GN1BARqWG0ZwLjlBmf003TthYGWoYxThiY7B2nbnMT5ikDRVWZNGxp4vra79HXNPiOr9m4rZXepiGiEyKRK2QkpMfhcrjf8fj3yzEZnCiKPlEUa4FMYLEgCJVvOuQlIFcUxWpgE/DoO7xOWAj2E44QUmunjZwrzvR6fUyNSB69mQkTe148iNPmYqB1ONho8WQxMTCFYdLIEWdoQmAmA6lpyZGkbafNxWi31CnWMGlCH2gU8mYat7Xy3dN+wc5n9qHUqIhNjmHLYzu5ceEPjm1mPA6OV7XLKAjCVmAd0BJyf6jo64PAH07O8MJ83DjvhjOIiNYy1jfJeTeewaYn97Hpib1E6BTIVUraDg9QUJmJwutiGFBrVUcJrno9XhTK9+/NbNzWyg/O+jU+r4/SxYV87Y4vUbmylJ3PH+Dlf2xhuHuCqjXlTPVPkZydAIJAy64OsssymRyUVlU+n4/R7gmyS6WYXGhBrOj3MztuBGC4Y+yopiong2PxUiYBnoCxaYEzkLrjhB6TJorikSrA85G67IT5lHJqiCPh0q+fyRuPbqNlu+QprD2lnPpNUmuthWfV0HWolz9dfz/DHaOYZizsenY/X7j9Ei777vnvK1433jcVLJy1me1UrpSKRlddtJg/3yy1VZ4ZM1BYmRHseTD/9GrqNjdx903/oH1/F627Ohjvm+LiW9Zzw13XsPzCRVz+/QvY+9IhouIiSM1Npm1vF6WLCxhsGyYxIx6H1cHshJGMwrR3HNuxcCxLyjRgqyAITcBBpD3cy4Ig/EIQhPMDx3xTEIRWQRAagW8C15zQqMJ8YvC4vUdVgTttc3mYLrsb84wVURTZ/2odrz+yDbvFwT9+8NhR1ebHw8Kzaph3WiWxSdFcePO64P39LcOoNHOFqJ4QL6rHPee4Ge0aZ6x3ElEU2fGs5GhXqhR85bdXYjc7aN3TRdveLqpXldKxv5vb1v2a+259mC/k3sRXq77DS3/b+L7GfYRjkTpvAua9zf2hQrBBOfQwnx12PX+Av377XyBA2dIiFEo5VqON9MJU1FolcqWCuJQYTHoLiVkJ6EdnsZsdJGUmvO9lZWJGPL/feDselydoYPf/8Amev3cjumgNC86oYrx3EovFSemSIlRqJTaznYyiNHxeH9pIDfGpscxOGKk99WhXhD2kMckRiQlRFOlrHAx20jmwof6EqiHCmSZh3jfbn9kXdESk5ibTvFOSsMsuy6C/eQAYJjI2goT0OOpebyIhPY7Pfe98Lr7l/ak6H0EQhKNms9a9XYiiiM3kwG13MxZIPUvOiqcpoGSWmBHP7LiBif4pdNFa7tz+c6pXlR/1undt/z/++q1HEf0iLqeL+LQ44jLiUaYkoIvR4XG4qV37Zn/h8RE2uDDvm5wyqV+bIHCUrkiogpbPN6d7OTNmYPkFi9FGnlwF5bWXLaWvaYjY5GjUWmWw97ku5DzaSE3Qe2k3Oyhd/FbJ9IKaXCqWF/Pk718AoGRZCR0+JQybyTxlPn+4+4snLAobNrgw75sv3n4x6YWpPPKT/3DwtXoqV5ai0Kjp756g9qz5zAxPEZuehCD6adnaRNGCAgZahsirPLnNOC++eR3RcRHccd3fmOwZp2x5CW5RRsOBQSpPqUYug4lxMzWn1zLeNUJqfiqvPvgGF9x0Jh1Nw5gNdpasLcXn82OemVOMVujUYJGq6gWN6qQoMIcNLswJERWnC6qG9TQM4JFJycLN+3pJz0um7aCUe1lzZi31Gxv5zRfuYXJohiu+f8FJHYfdbMcfcMRYZyyMT0v7sY6m0aBE/Mykhdy8eJp3ddK8q5PG+mH27ZHGt/6SBRx+egcTA9PUrK3AHxXBoN1HVU0KRqONuPhIdm3vYOWa0hMaZ7g8J8wJkZafQnqgV0DNmvJgRr5CpTgqrctpmeuxHdp34GSx+Ox5VK4sJTYpmjOvWUtmoVRelFmQjC6wxBUE4Sj9TXOIaNJAp+S99Pv8TA7paZq0Y7K4aG4cYnbGSlP9ID//0TM01r9ztsqxEJ7hwpwQmUVp3F//B4Y7Riman49Rb+H+Hz5B3YZ6RKeT0oV5KFRKrEYrqXnJaLISmYzWMWuwER2tZe+BXhbOy0GrUWEx2NBFad5X/mJqbjJ3bv0ZHpfUEvmib5zN7665j93PHyQqPpLTL1vKpbesQ6mQc/c3HsIrynAarKRkxCETQC2DmORoTFNmksoyMFhEnE4PKrUcR0iKl0ZzYhopYYMLc8JodGqK5ktV3rGJUbhMtmDleGphGi17JUGi7MUFdMpldO3t4XD7GGqVgokpMxlpsZyWGcuL92wguyyDH/3rG6TlJx/3OGQyWbBTqlqrYiyQ1mWZtVIyL4ecknQATv3iGu66+REA0vKSGB/QMyaKRMVFkPTlWna4nKRnRzBfGUVP1yRxcToidWrOXF9DYVHqCV2r8JIyzEmlu64PX6CHgCBwVKtgZUgHH5/Pz0QgpWp03Mi2/+zBaXPRdaiPlj0nJupqtzj47x9fIi4lBrlCTlJWAnaTPfi41z0XdFdrVRxRrrNbHHS7pL3fmMXGtN6CyWRnYEDPmtMrWH/+POSKEzOZ8AwX5qSx4Z9bufMrfwegZm0FU0PTHHzpIFWnViNXqxhoGGT+6ZXo/SLR0RpkgkBz2yilBamoXS6mBqfRRKhRnGDY4MHbnuDlB7YAUqFs4/Y2HvzRfxhoHeb7/7yJ9desRhBg6zP7GeufonpFMeNDeuKW5pGeE0tD9xiFGQlEmqXUM7lchk55cuam8AwX5qQx2jMRvO2wOoLey/76Ppr3dGGZsdL+1D48bi8tbWM0tY6yoDidvv0DtFtFFn1xDYqaIv5wxwaefnzP+x7HkWJYAL/XH9Q+ORIQBzjziytp3tONfsxI0+4ufCvz2Ou209A9xtLSbPoHZjgwq2f+4mziJ6b4y5V/5r93vvS+x3SEsMGFOWmc8aXVFC/MJ70ghTOuWkNqnrQPyy7LIDJGkqxTqOQ4QzLwHbY5h4RTqcZi9+Dz+Tmwp+d9j+PGu65i6XkLqDxnIc64WHLm5RGTEkNCQRoTgSB8R90AETHSTCqTCdhDBJGdzhDv6rSRmd5JvB4f259+s8jB8RNeUoY5aWSXZnD37l+BICCXyzjr6rX86Jzf0LKrk9jkaOavLKLnUC+qtgHSVlWiRoZr1k5SSjRR0RoUShlR0VocdhfzF79/qb341Fiu+MllfPtL9wNSj3RZRBR73uigfv8dLFxbxs5XGoiJi2TB/FyGWwbxHxqg7IxydDotLpeHlPgoNHY3OoODyLgIbEZ7sJ3ViRA2uDAnlVCXvjZSw1D7GCDVnJmnjBgmjTBpJDUzieZRyZFRUJ5GT7e03EtMiuJv/7qe5NQTE+8JjQFqdSqsgT7jDpuLzgYplmYy2LFbnEz0Skvh4ppcDjmkGbAgQov+33uoE0Vik6P568HfUHCcKtZvR3hJGeYDZf1XTkUmEyhakE9BbS4gLeGUIa183yyvd6LGBlC7pIDb7/o8p55by2//cR03/OwiYhOjqJyfQ0paDDKZQEpGHBrN3A+EOrQPus8f9F66nZ6TYmwQbuYR5kNgemQmmIf42sNbefJPrzE1PEPF2gpkOg0DrSPkLCxg1uIkTiVj3YULOO2SReze1YVWp2LBgrz3OMOxccdX72fzE7sBmH9GNQ3b2xH9ItUrizHZvAz1TFF0yTxEjYLZnT2kRWuY6BknrTCV9dedwimfW3ZM5wk38wjzkRKa9BuVEBVUSR5pGcLkkn7wW15vIiElmtZJM63bO9j8RjsHO8YQBLjl1nWcd95bSjKPG9OMNXjb6/IEvZd2u5ehbqkX3shrrThsUhraLJCSqKNpVydNuzqRK+SsvnjxCY3hPZeUgiBoBEE4IAhCY6Cq++dvc4xaEISnBEHoEQRhvyAIuSc0qjCfWjKLUknOSgjejoiS8hwVKjmOEN1LU6AYVBTBaLS99YWOg/6WYb571q/paxqkeH4elSuKcdpcpBckE5ccTUx8BPHJ0QBkFCSjDfSaE+Qy7Na5otRQbZb3y8kSgv0yYBBFsVAQhCuQNE8uP+HRhfnUkVueyd/2/IIfX3QnLXu6iEuJYcHqEnpbR9FFaUgvTUPIjschQILHS0xcBKMzFixWJxq1kgO7u1m0vBDVcciq732ljuZAS+K4lBhadksy5pGxOlxuH4c3N6OL1lKxqJDWg30kpMZQvLqUIZMTlVJOwrQBbXYSr+zqoXBxEUlJ7yyZ/l4ci8SCCLyXEOwFwP8Fbj8D3CsIgiB+VBvEMB9rIqK1DHZIqviGSRPGGWvwX8m8LOoCrY5Li1Lp6J6gc0xPU8cojFjRT5nJLUjmrgeuITLg5Og82MOjP3uKqPhIbvzTNex/pY7xvkmu/PElOK1Opkdm5opS4+eMRaNTY7NK3ku72cFIIDA+M2EiFoHJQOpZdU02jY1D0DON67cvccddV77v935MPxOCIMiBw0AhcN/bCMFmAMMAoih6BUEwAQmA/k2vcz1wPUB29sktQgzzyWLd1Wv43183UTw/l5zyDHpbRxFkwlEeS0WIxr/X4wvK2Q30TgXzNQEe++UzHNzQAEhV5Ud6kLfv76ZtTydOm4viJUUIJXk09k5Rfvlq5BN6TCYX1RU5DLQMkluZjSiXY561kZKXhDZEc0UZkj8ZGeLJfD8ck8GJougDagVBiAWeFwShUhTFlvd42tu9zgPAAyB5KY/3+WE+PXztN1dw8U1nkpQpibgW1WTzzN+20Pr0IRacV4M3WsPAkJ6aikyMJjtxgoK0qkw6WkYorchkoHeKmgW50ouFqO35/XOG6LA4cAYcIDNTZmbk0gzW2jVJot2OcdzIaN8UpfNzad4vFaLOX1dDXf0I47t7WLSikAmLg/r6QWprsymryOSSSxed0Ps+rjicKIpG4IgQbCijQBaAIAgKIAaY4VNMx8FeLIE2uEe06MMcH0eMDaRl5tSoAdEvMt04QmPLCCazk8bWEex9BjoODtLePEJFTRbtLSN8/6Z/8frLjQD85Klvc/Gt51C2tJjB1hHKlxVTsqoMd2kWuWsrUMfqSLlwHmkZcdJ5U6JBNffVD/3s3D4xGH9zWF0MD8/i94sMj8zyla+uJS7uxLq7nhQhWOBF4GpgL3Ap8Manef/222v+xvbnDpCQFssl3zybF/6+CbVWxY2BbpuD7aN8409XkZZ3/DVdn0WGOkap21BPXFIUhmkLadnx6D0e7E4PapUCl2HOU2gNVI6LIpgDJTcqjYqK5SU89+dXAJgYUDBRWwiTFmQREURev4qdJjPqJBlLa4rZPTKKLjeNRQtysQ4YsVhcFNTkoNUocM9aSM2Iw+32ECH4iY3RYjQ5yE6LxWFzoo344JeUacCjgX2cDPjvESFY4JAoii8CDwH/FgShByl8ccUJjepjTsteycs1M25kx3MHmByUtqpP/OHFoDfszhsf4o8bwlKd78XUsJ6vVn4Lv18kMi6CnNJsmv63n4T8FKpPKafvlXpikmPQlWSidLnxmC3EJ0SQkBTFcP80NqsTpVLOQPsoCqUcr8dHTEoMR+oW/H6Raau0EnH5/IyLLryiiNnuwiuoGeiSHDTxVZm07JYEwxNSY5nt6Gfa4yMyOYaymjwa73uJGzYe5Nev/IjMovevvnyyhGCdwGXvexSfECwGGy/8fRMZhakYJk2k5CQGYzYASvVc+X1EzMevofvHEeOUKShfZzXYcLUMATDTN0mUTollwohlwkh1rI7mgDu/dFkx7W1j9LSN0dk4iOlwF7OTJjJLs4hLjqL90ACVMVGIldm4BVBFqmhzGMnPSEClkKOQy4iWK9B55tK6NCGdUtUaZbDvnHXKxMBuSdtyrGeCqSH9B2twYea47zv/ZtszkoN2/qkV1G9tY7x/mppVpejHDdS/0UrVihIqlxdz4U1nfMSj/WRQUJvLl39zJS/fv4mU3CSQyWjZ10v50iJSchIZaBlBppAj180t5eRqBVJ4GNw2F7OTJgBGeiaZGpnF6/bSc6CH7IwEugP77KrFOezplRKplyYlMfp8O3VOD6W12Xi9PpoODlCxpgLR6cI4ZaL27IX0H+4mpywDv89Py64O8qtzyArINLxfwgZ3HJhnQ1KD3N650nyrk9EeaWnS3zrMHa/98CMZ3ycRuVzOFT+8iEOvNwbd+Vf/8gq++ONLACheWsxzT9fR1G+k5oIl+Pwiw6NGqmqymIl2wCoVRepierb0UH5qFbYZCwN1fUTG6hBCBH+8IS4FwerBHah5M83aGB+S/Hut9UNo/B6cVidj/dPkF6QGG4Jc+eNLuPaXJ75TChvcMdDbNMh9tz7KeN8kxfNyUKqV2E12MotSsFtcREZrSUyPQz9mIKc0A4vBSlRcJF6PD79fRHUSUoI+7VhD0rcSUmODt7WJMegD8bepWQfjI5K0uunQAMb/U2FXeOA6OCVhKW0HRpDJZSy5fCXNB/qZ3NfPojMrcM3YmH61g4WrsnGl6TB7PWSVpTIzbCA1ORKfx8fUuJGU1GhsU4bguZ0haV2JIT3oToTwN+EY2PdyHa0BYZu41Fg6D/QC0j7NbrQw3TuGNlJLybwcmrY08pWq7/K52y/jxcf2otap+P6fvkBhRcZH+RY+9vzsme9y3y0PU7q4iNWXzWXl5xWmEJcYiUFvJTk9BsOsFafdTUSUhimlJ5jzZJmVjMPv82N3+XHapRlMHDHSc2gAAE3dBIeWSlXe8gqB8uZZDj/fhzpCTe2qcho2NRGVEMm8ZQVMDU7jcXkonJ+PLlLNnhcOsPDMGtLyU07ofYYN7j0wz1iYGZ8NpgZFRM85Q7QRaizTRkDS8BjrklrkzY4b2PlaE1Nj0mPbXqwLG9x7kJafwq9eeqtXt7Q6i/uf/QbfvfZBGg/0k5QaTdHZ2eyrHCU7IgGtQolSkMPZPmKfiCApNRalToVap0L0+4nQqRBkAqJfJDIxEpCcIQJgCDRedNlcTA9M4feLmKYtuG1Ohjuk/V750kKatks5Hj+94Pf8o/muE3qfYYN7F3obBvjW2p/htLkonJeHTCGncWszZctKUGjVGOxeamvyGDrYSVZxGiJg0ptJL0xDG/BSCoJAZOxcsFQUxffViPCzjC5CzVCf1L10esKMI1+FSenEZHWyID6Hw7ODkArLL8mi+wGpmjuvJI3Z9iEObmgguyQNdXUGhywmFupS8EcI+IxeEj6/jPFNrWScWY1co0TomSQ2MQqVZs4s1CFdenQnwfMcNrh3Ybx/KpgapB+dxTglecPa93aSvKCUmUkz4yNGSstzaHpDynqYf84C6oetjLeOUbu2lKlpC488tINpk504pYxXH9vNedesZslp5Tx77+tUryzhrC+ufMcxfNaZGJrh6b9tprImi5bGYfKLU/AbFHTFgNIvQzXlD36LlY657BHRL2IOqHeN9Eyiz9UhItDeM0Feejz9Y7P0AIuvXUNd8zAAC68/lY6/vc7B4WmqVpfjsLup39ZG1ZoKskvTufwk9EMIG9y7ULakkHmnVtK+v5vcikymY3SMdo+TlJuMIiTJ1uOY0833inOzl93tYyywrNz6ahOOPikc+687XmHDP7cyOahny1N70UVpWHXB2xYIf+b57U2P0NUoxebmry6lfkcH7INzLi5nYFMXI9MHOe3aKkS3nPGdA1TUZGG3u9H4fRTVZNPXOkLZonxGIiLotdmIidQQusDwhnRi9bm9eN2Soph5xsJwoCi1/UAff9zyU2SyE1ckCRvcu5CQHs/vNvyYr9V+j4atrSiUchZduoLGQ4OoDTbmryhiumsYff8EJYsLUamV2CdmyUyJwykKRMZoSUyORj9lJjszltEZE1aTA7lShiuk2DK0uWCYo7GFNNwIbWfsHXZgGJdWHLY9MwyPSp7Mjj1diE7X/7d35uFRluf+/zyzJJN9D1nIBmQnIYQ1KIIsgoC7opZqrVYpaltU2p72HNueU/Wo9JwW16O2olRrN1vrr1qwruxIICEb2UP2nUwyk0xmMjPP74+ZJBPKEshKfD/XNVcmb5535r7nzT3vs9zP90Y6dxPMSo+m4FA5ao2K5Xct5lBrO01tBhYlR2Fq76WpqZOkWWG4WfqwFdYRlRhOR3MXwZEB9BjMtDfpiU6OpKfLNGRocKkoIkIXQAhBu1Mn39pnw2AwY7Pa6TGa6evp5VROJaeb9Nj6bOTvO0n58Uo6jhbT0d7N8cMVGA0mUqIDKNlbjEarJnNxHF4WE1qsJGbGkjI/jj9tf4+Giiby9p7klR++hb61a4K9njz85xv3k3FlArMzo7F0dRMa4c/06EDUZhM+AZ4IAUHB3ri5ObJG/IK8ES5rbv2yCjarHaO+B3OfjR5zHzaTjZKyJto7uunt7qX0xT2Ufl5IY1UrNpuNYx/l0d1hYM6yJKqL6tk8/8eU5ZwasT/KHW4YPPz8fbyybRcL1mYQtzCR6vIWdDot7lo1KpUYyAPsR+eto9v5Ddtr6htQINa3GenyUnO6SQ9A6PQg8j51LKz+/PZfUllQB8DePx/h7Yrnx9HDyUtkXChZK1N46Qe/AyA6fhpVh4o4BfiF+BIS6EH2+0cIiwslakkKJUVNRKfH4qYClbsbIDGbzITHBONmsuKuVqFB4Gu0oBJgl+Djrh3IvdR5uWN0Zqf0GEw0VrYipaSt/jQ1xfXEz40dkT9KwA2Dq29fwrLbFg/04afHBvPE3S9xtLqZGYsS0Wi15B+vJWXFHNQWMy117aSG6miyCMI9BGq1hkJ9D3HJEcyaGUTx4VKEADeX3EvXPMwpvNHikrC7jLNcpRX6zH00OnsDTVUtqMOn0WM0c8rYSsq8WIpyHGO/2WnTyXdmsWTMi6WhrJncLhMp6dFoIwMoe+sgqctSwWqjp8/OTF8PqnIqiU2LRqXV0FJ3muDIAEzGXkaKEnDDxHXAbDFZBlKDOpq70J92bBMpOV6Nn07Q3nCapsoWkhfHk/e5o1TTzY9uYMv2uwBIXDCDt5/4C9kfnSBtaRIqtSPbPW1pEvrWLnwDvdm983PWfnP5uPo4Wbnx26vQ6rR88e6X1JQ2kr4inbbqZgIjApF2SeGBYhIWxqOd5k9zsxGtmxqVy25x10UYabXT7RQoaq5socfZTSzOqSF8VhhNzjSv5Iw4Cg46kqUzV83mxN5inn9kF7WljWzZ/vVL9kUJuEsgeeFMMlekUny0gmvuupLsT05SWVBLRFwItq7B8Vf/jBeAX6D34PMgX5qqHN3M6qJ6jM5/gPx9xYRMD6K2uIHCg6V4B3hx5Y0j22E8Vbj6lkU8/+hbAOhbDYQG6SjY59hOk3n9IvIKW6C9jvnLkijLr6U4p5qMxTPo67NRXd5CalYCZpMZja83s+bEUFPSQPz8mbTVtVNf0oB/mB/CRTW6z+XaWS02bM67bK0zueFSUQLuEggK8+epdx+hx9CLp4+Ou35oI+9ACXOWJtHb3curP3iLgn0naa1tI3VJAqlXJLHuWysHzo+MDyN8xjQaK5uJToqgtqwJQ0c3bjotll6Xapte7md7+68khYdK8AnwwtDRjUarxtwzuBTT0zsYHGaThU7n+luXvofKYsforMJixWyxQYPjb9FzZpJX2OSYeb5lMSeOVmO1qZi7cjadzXo62o3Ez5uJu06DxWonYuY0eo29rLxzyYj8UAJuBHg6BWU0WjWZy1MA8PL1JCjMn5qTjgmQ+Mw47n9605DzopMieSXnWX507RMU7D+JX4gvNz68htu3XU93Vw8vP7qLXqOJd556l/C4EJqqWjjywXG+9u834+nryaH3s1m0PhOd51cjIJ/Y9Bz73j2Cf6gf85YnU5VbidZNTWJMKLqIUMx2QXCYDW+dGnWvCS8fd0ymPgJCfdFUtmK12AgI9qG5sXNgfKzvcAwDrH02urrM9Fms9FmsWPtsA5NXfkHeFB13jAO9/T15u/AXI17CUQJuDAiNDh6YvQyY5n/WNh7euoF8vc7WLuYuTyUwzJ/AMH9Ss+J54/HfA/DkHb+k7HgVAAf++iXWPiunm/RExofz3MEn8Q26dI3Ey4X+xHF9SyfGVj3tDY5lmtDUGRTkOz7DGTOCKd+XDzi0UnSRYWQfriA8KpCwMD+KT9QSlzgNrZsWaZdotCpq7XamzwjBXadFo1Wjc9eg02kH82Z9BgtDevl6jMp66XCUl6OEEJ8JIYqcysvfO0ub5UKITiFErvPxk7O91leFtfeu4NlPfsrMjFg+evNzfnbzs5hcFm3bGzt4Zdsu4tKiUalVxKRG0VTtyBW02exD1uE0LrOXNpttYEmhvqxxyDhjKrPm7mWo1Cqmx4fj4QwCIQR+wYNfNlrt4NSIzWof2NLTWHua6vIWek19A93L0oI6inJqiEsM52RODbmHKkhIDsParufoR3nMSo8iMSOG/INlpCyYQcrCGbi5a3njifdG/JkP5w5nBR6TUh4XQvgAx4QQ/5RSFp3Rbp+UcsOIrJlChMeFUpF7CoAD7x2lu7NnQIDm+Yd/zYG/fglA5uo55HxawEtb36D4SBknj5TRWNlC+vJUsEsq86tJvyqFznYDnr4ehM+YRuHBUpIXx1N2rJKgDfMwdBhpb+ggNjVqotwdU+75z414+nrw6397m9riOhZvmMe3nt5EVEI4f/vtAQ78LZtTBwuZnRWPvs2Ab4AnYaFBnCxqIiEjCpvFRkebEZ2nGyr1YGC6Lr/Y+2yDknrNnZx2puQVHa3EP9gHfZuBP+zYTeK8WLKuzbhkX4ajadIINDqfG4QQJ3EIv54ZcAou6Lx1xGfGUXa8iujkyCHfxibD4MZGa9/gGlNDRfPAInltSSMdjY7Nlnl7iwiKDKK6yKFWPPvKJAr2F/P4Dc+y4YFVfPrOAcwmC/c/s4lbtq4fD/fGHYPLbnuVWkW0U+pg6epUXrxnBwD6Zj1BEYHUnHBoTKbft5a8okaEgIXXpnGiookCvYG5V8bT19pJTW4VybMjsdlsyD4rcbOjaKhsITojDjfPBprKmwkO98PuIjrrH+I7Ij8uagznLNIxFzhTeRkgSwhxAmgAtkkpC89y/ldGedk30IfnD/83BfuLSV+WMmRLzg93fYeXtu5kenwEi66bx0tb36Cr3YCnjweh0UG01LQTlRiO1WzGcLobdw+3IbOXvS4LsDUlDfQ4Azj3s8IpF3C9PWbee2E3OZ/kE5UYgdlkQa1R0VLTRmh0MFJKvP29MOq70bprhuRbdpucm1Al9FhtGE2Oz7C7z0LFUUdQirJG9G0OuXMhBKFp0eTk1uHmriFzRTI5HxxzJJdfl8lNW64hef6lV2aFi6gPJ4TwBr4AnpRS/uWMv/kCdmfBj3XADill/PleT6kPN4i+tYvbIzcjpUTn5U7krGmUH6/CL8SX+MwZlGaX4+njSWBEIEI4qnh263vwC/bB08+TyhPVWEwW7n92E9dvWTPR7owqhz84xk9u3A6AX4gPhtPd2G12PH09eKN4B/4hvrTVt/Pyo2+S90UhXn6eeE0LwG1GJBa1hvY2AwGBXvj6e1JQ1UKfpY8F4X7kfVaM1WJjZup0KovqB7qX2oggLM4a5HH+WiqPOCZs7nvyDjY+dt2wbB5xfThn1Zx3gbfPDDYAKWWXy/MPhRAvCSGCpZRtZ7ZV+FeMHcaBC97bbaah3DG472ztorOtk652I13tRkJjgsnbWwxA/Lw4So85vqWnxYbwetH/4hc8su7OZMS1y+3p40Fn62Dxjf7yUcGRQRj13ehbutC3dJG+KIW8MsckVGJKBCVFjpnMyOkBmHIryP6sk8ikCG78zjrWblpCwZEKfv/cR/T0WHD396K2Xk90TBBqgwGNVo23vxc2OTqbhoczSylwCL2elFKedX+5ECLM2Q4hxELn605pqfPRZHpCBN994T6ikyN58Jf3cNN316HWqJmRHoO3vyNDRaNV4+ay7ubmPjhFrdaop2SwAVx540L+4/dbueHBNTy9+9/59i/uZlpcKOmr5vCPN/dht9s5ebQCjc7x2ag16iFLJVrtYPaItEv0Tkm9+uIGVm9chJu7lsyrklDrtFScbKDoUBmxEb4U7ismL7ee1DWZmISGXds/4Kn7XxuxP8O5w10B3AXkCyFyncd+DEQDSCn/D4e8+RYhhBUwAXdMZanzsWDD5tVs2DyoZemmc2Pnf7wDQMbKNBpqO8k5VEXGmkyklFQW1TNnRRpGQy8eIQHsfucQa+8cXkncy42rblnMVbcsBuDm760jZ38pRz8uoOBwBQWHSjn8D8du+2WblnPff93KtJhQ/vTOIY4cKOdUZQtpc6Ix6Lvx6u7Bf+EsSrIrSF44i4oT1cy+IhFgyBhb2lxmLxH0ObuYtaVNjJThzFLuZ2j+59navAC8MGJrFAboahtci7OYLLQ715Uaqttod4rfFByrJiA6lOrcGopzawic5svCFakTYe640p98DGB01hcAcPfSER7nUNW6Ymkiv37xUwDyc2vwqaylxtk2edEsig6X8f1rnuSHO7ewfGMWP33tXl5/5u8U59RQW9FM0twYBBJLdy+xSRG0NelZs+mKEduuZJpMUtZvXk3hoVIsvRauvW8lhhc/prGqhYjoQCwmMwa9CU8fjyELsZ7eIys0cbnwo99s5vltb2HSGzE0nyZyZihSgsXYQ2tdO8GRgRTuL8bDXYPJbEXnrsZsGpzlNTg1MO12OfDcXefGrNlRvP/GfsChyNZU4liGESrB23nPEDCCyqf9KAE3SYlKjGTHgScGtgUtv30Jj1z1OLl7juMX7Mvt313LbY+sR99u5Le/+JCsNemkzI+bYKvHh5DpgVx94zye+tqvHL9HB9PeoKcur5Jje3KJTAin9FgVQZGBpC6Ip/SLAgJiggkID2DtPcvw9vfiuYdfJyjcn/LjlfQYTKjUamorWlCpVdhtdnwDvAY2pWq06lEJNlACblLjugdP5+lOXX/uZVsXGVcl4e3nibefJz966Z4JsnDiaKkdnAD39NbR1i8739UzkHvaXn8aL986jB3dGDu62bB5JSvvdHQL7/35bTz99ec4efAkZbmnaLNqMeh7iJo5DV9/T4pP1JCQlYi614Sh6TS/2vIam7ffhccIexFKwF0GNFY284dn3iNhwUwKD5QQlxZFdWEtc1ekTbRp446hw8iPr32S4i/LSc5KwM1NQ01xPWlXJtHe0EFgRABCpaLgQAmzMmLROasbad21RCUOivH2Sx4CWG0Sg94xvmuobqO2wpFZUlpQT4Svmpr8Gk7l1zAzPYbrtlwzIvuVgLsMeO6h18je45iJm7tyNjmfFFCes5OGimYe/NU3z3pOzqf5/HH737jypkWsvnsZe3Z+RmhMCIvWZY6n6UM4/kk+f/7fv3P17UtYffeyS3qNpqoWir8sB+DkoVLUGhU2q52O5k5mzImlYL9jnTJzVRo5nzmyD1fceQXfeupOgsIDMBlNvLLtt+z98yHSliajcdNwy2PXs+e9XLL3ljBzTQzdVd3UFjThH+SFyjI4KeOrjOG+GrhK6lktgwvBhg7j2ZoD8PPb/gdDRzfZe07w0ZufU+QsIvnYr7ew9t4VY2fsefjpTdvp7TZzdHcuYXGhpC1NvujXCAjzJy4tmqr8GlKXJNJc3Upb/WlUatWQCaRel8/My9eDoHBHueGa4gY+ePWfABTsL+Yf5ndQa9QsWpvBvf/8DR+balAvF6w5Oov8X+3HqBbMuyadzlYDLz+6Cw8vHQuv/ZdyicNGCbjLgMf/9Bivfn8XM9JjyVyVxnMPvobdLll//6qztpdSDsnQcK1M0+uyU3ossVltHPowlzlLE/EJ8Ebf0jkgUwDg6etxnrPPTXBEIC8efZrynFMkL4rH0GHkg1f+ybKNS1CpVfzftl2kLkkkeXECOx76DQgwdFs43dyJX7A3RYdK0Hm509ttJiQqCLWLrEKTcErqCYne3oXV3IcV6DNbqThxCoDfPfWXEQXcsHMpRxsll/LSGU59grqyRl557E06Wjrp7THT19tH8uJ47n3ya4RGBY+5jQ9k/YSa4gYCw/xYcdM8/vbCbgKm+TM9IZzrvn0NizdkjnmNhfL8Gr6z+mkAfAK88LD10lDeREhUEOu+tYpbHlmPh/dg4H/eVMLP8/4f4R7+eDfZqXvoIG6oSclKIHvPCew2O6u+fhU/2Pnged93xLmUCpOL4fyjTo8PJzI+nMN/PwbAso1Z/Nuu7461aYDj7lZb4qwk1NTJofez6e0201jZzK2PrifrunnjYkf/RAiA1dJHQ5Vjor+1tp2rbssaEmwAy8MSaezR81TBh+AOaTsXYtx0hC8/zCF2dhTf+NlGllw/Mkl6RXl5CuOqeRIYFjAu71nW1cL3j71H/N2zUWtUzLlmOtHzHSK5Ht46AuPHr0eVviSBe358PbPSo3j4mTu5bssaVCrBkhsWEBIVdNZzOvsGs1iwM7Ap9XSjnituWDDiu7LSpZzi7N75GRqtmqvvvAK1Wn3hE0bI7Z//htzTjgyNu8M8mB7yVwDUBVdhjclF+BiYHbCJecHn75aNFV3thvPqwPRYzWwv3EPZqTo832nG7VQfNSUNpGYlcO8TdxCfeeH9cEqX8ivM2m9ePa7v12sbnCnU+riUEZ7fRUuvU2ek59i42uTKhUSXPDXubItbxY1zvzFwLDIhjOzdOeR8nMczHz3OnOWXnq+qdCkVRpXXlnyNNZHJzAuKYm9TED3WdALdExAIPDWhqIQb0d5LJ9rM82IymIYoN3e2OPbg2ay2ITvvLwXlDqcwqoR6+LAkZAY/zf0AgA/rU7g1xiH5pxEe3BzzR7y0oRNp4gUJjgzil3v/i78+9yHrH1iNoaObl7fuZNH6TJIWnVfI4IIoAacw6mhVg2PFALdBmT8hVJM+2PpJyUokJStx4PelNy8alddVAk5h1LklNgM/Nx013R1sjM2ktjuEauOnpPpvuvDJU5wLBpwQIgrYBUwDJPCqlHLHGW0EsANYB/QA90gpj4++uQqXC6sikgaeJ/vfSrL/rRNozeRhtIRgrwXinY9FwMvOnwoKCi5ccJZSStnYf7eSUhqAfiFYV24AdkkHhwF/IUT4qFuroHCZc1HLAucRgo0Eal1+r+NfgxIhxANCiGwhRHZra+tFmqqgcPkz7IBzCsG+C2x11aG8GKSUr0op50sp54eEhFzKSygoXNYMK+AuJAQL1AOulSSmO48pKCi4MCpCsMD7wN3CwWKg01kEREFBwYXREoL9EMeSQDmOZYGz7/tXUPiKM1pCsBJ4aLSMUlCYqijJywoK48iE7YcTQrQC1RdoFgxMlQo8U8WXqeIHjJ0vMVLKs07DT1jADQchRPa5NvJdbkwVX6aKHzAxvihdSgWFcUQJOAWFcWSyB9yrE23AKDJVfJkqfsAE+DKpx3AKClONyX6HU1CYUigBp6AwjkyagBNCfE8IUSCEKBRCbHUe+5kQol4Iket8rJtgM4fF2XxxHv+OEKLYefzZCTRxWJzjmvzB5Xqcckn3m9Scw5cMIcRhpy/ZQoiFY26IlHLCH8BsoADwxJFu9jEwC/gZsG2i7RslX652Pnd3tgudaFsvxY8z2vwP8JOJtnUE1+Qj4Fpnm3XA52Nty2S5wyUDR6SUPVJKK/AFcPME23SpnMuXLcDTUkozgJSyZQJtHA7nvSbOXSQbgXcmyL6L4Vy+SMDX2cYPaBhrQyZLwBUAS4UQQUIITxzfNv376x4WQuQJIV4XQoyPQP7IOJcvCc7jR4QQXwghFkyolRfmfNcEYCnQLKUsmxDrLo5z+bIV2C6EqAV+AfxorA2ZFAEnpTwJPIPjFr8byAVsOMSIZgIZQCOOLsyk5jy+aIBAYDHwfeCPYqzrNY2A8/jRz51cHne38/myBXhEShkFPIJj3+eYMinX4YQQTwF1UsqXXI7FAn+XUs6eMMMugX5fgOuBZ6SUnzmPVwCLpZSXhbiL6zURQmhw7OifJ6Wsm2DTLhqXa/LfgL+UUjq//DqllL7nP3tkTIo7HIAQItT5MxpH//p3Zyh/3YSjazDpOZsvwHs4Jk4QQiQAbkzyrPtz+AGwCii+nILtHL40AP3FxlcAY949nkzKy+8KIYKAPuAhKaVeCPG8ECIDx+D2FLB5Au27GM7my+vA60KIAsACfENOxu7FUP7FD+fxO7hMupMunO2a3A/scN6xe4EHxtqISdmlVFCYqkyaLqWCwlcBJeAUFMYRJeAUFMYRJeAUFMYRJeAUFMYRJeAUFMYRJeAUFMaR/w/5RoQ58soR7QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gdf_count_h3 = get_h3_vector_statistics(\n", + " \"../../datasets/raw/h3_raster_QA_calculations/satelligence data/rasters_indicators/Deforestation_IDN_2021-01-01-2022-01-01_downsample_count.tif\",\n", + " f\"{FILE_DIR}/satelligence data/AcehMills_indicators_50kmbuffer.shp\",\n", + " column='def_estimated_count',\n", + " resolution=6)\n", + "#save\n", + "gdf_count_h3.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/deforestation_count.csv\")\n", + "gdf_count_h3.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "754a4e3b", + "metadata": {}, + "outputs": [], + "source": [ + "#gdf_buffer50km = gpd.read_file(f\"{FILE_DIR}/satelligence data/AcehMills_indicators_50kmbuffer.shp\")\n", + "#\n", + "#geom_sum_ha = []\n", + "#for i, row in gdf_buffer50km.iterrows():\n", + "# filtered_gdf = gdf_buffer50km[i:i+1]\n", + "# h3_gdf = filtered_gdf.h3.polyfill_resample(6)\n", + "# \n", + "# #h3index_list = [f'0x{h3index}' for h3index in h3_gdf.index]\n", + "# h3_list = h3_gdf.index\n", + "# hex_area = []\n", + "# for h in h3_gdf.index:\n", + "# area_ha = h3.cell_area(h, unit='km^2')*100\n", + "# hex_area.append(area_ha)\n", + "# #print(sum(hex_area))\n", + "# #h3_area_sum = sum(hex_area)\n", + "# #geom_sum_ha.append(h3_area_sum)\n", + "# break\n", + "#h3_gdf.head()" + ] + }, + { + "cell_type": "markdown", + "id": "a0200390", + "metadata": {}, + "source": [ + "#### 2.2 Deforestation as a sum\n", + "\n", + " 1. Downsample the deforestation area raster by summing deforested pixels\n", + " 2. Translate downsampled result to h3\n", + " 3. Compute deforestation in area" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "453c8de3", + "metadata": {}, + "outputs": [], + "source": [ + "##Downsample the deforestation area raster by summing the deforested pixels\n", + "!gdalwarp -s_srs EPSG:4326 -t_srs EPSG:4326 -dstnodata 0.0 -q -tr 0.0833333333333286 0.0833333333333286 -r sum -multi -of GTiff \"../../datasets/raw/h3_raster_QA_calculations/preprocessed/Deforestation_IDN_2021-01-01-2022-01-01_area_ha.tif\" \"../../datasets/raw/h3_raster_QA_calculations/preprocessed/Deforestation_IDN_2021-01-01-2022-01-01_area_ha_sum.tif\"" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "31427e34", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FIDgeometrydef_estimated_sum
00POLYGON ((98.47767 2.24508, 98.47550 2.20109, ...669.573853
11POLYGON ((98.44488 2.31416, 98.44271 2.27017, ...860.595276
22POLYGON ((98.40582 2.39111, 98.40366 2.34712, ...1122.991089
33POLYGON ((98.36445 2.43594, 98.36228 2.39195, ...1416.131958
44POLYGON ((98.51418 2.45678, 98.51201 2.41279, ...1104.849487
\n", + "
" + ], + "text/plain": [ + " FID geometry def_estimated_sum\n", + "0 0 POLYGON ((98.47767 2.24508, 98.47550 2.20109, ... 669.573853\n", + "1 1 POLYGON ((98.44488 2.31416, 98.44271 2.27017, ... 860.595276\n", + "2 2 POLYGON ((98.40582 2.39111, 98.40366 2.34712, ... 1122.991089\n", + "3 3 POLYGON ((98.36445 2.43594, 98.36228 2.39195, ... 1416.131958\n", + "4 4 POLYGON ((98.51418 2.45678, 98.51201 2.41279, ... 1104.849487" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANwAAAD4CAYAAACHZ4ihAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACTz0lEQVR4nOydd5hcZfm/7zN9dmd7773XJJvegUDoXRGVqjRRsIvy068dRUABCwgICigKIp0QAults7333md3yk5v5/fHmcxOgEBCQp/7unLl7MyZOe+UZ973fcrnEURRJESIEB8Oso96ACFCfJYIGVyIEB8iIYMLEeJDJGRwIUJ8iIQMLkSIDxHFR3Xh+Ph4MTs7+6O6fIgQHxh1dXV6URQT3um+j8zgsrOzOXTo0Ed1+RAhPjAEQRg62n2hJWWIEB8iIYMLEeJDJGRwIUJ8iByTwQmCEC0IwtOCIHQKgtAhCMLKt9wvCIJwryAIvYIgNAuCsPiDGW6IEJ9sjtVp8gfgVVEULxEEQQWEveX+M4EC/7/lwJ/9/4cIESKI95zhBEGIAtYBDwOIougSRdH4ltPOB/4uSuwHogVBSDnZgw0R4pPOsSwpc4AZ4G+CIDQIgvCQIAjhbzknDRgJ+nvUf9sRCIJwnSAIhwRBODQzM/O+Bx0ixCeVYzE4BbAY+LMoiosAK/CD93MxURQfFEWxRhTFmoSEd4wLhgjxqeZYDG4UGBVF8YD/76eRDDCYMSAj6O90/20fCQdequOur/yZ6eHQLBri48V7GpwoipPAiCAIRf6bTgXa33La88AVfm/lCsAkiuLEyR3qsdG8s53bz72DVx95g+urv/tRDCFEiKNyrF7KrwNP+D2U/cDVgiDcACCK4l+Al4GzgF7ABlz9AYz1mDDNmAPHgkz4qIYRIsQ7ckwGJ4piI1Dzlpv/EnS/CHzt5A3r+PF6vTxy25O8/NA2KteX4rQ6uey2Cz/KIYUI8TY+suTlk41pxsy/f/c8AM072nm4/fdkFr/NURoixEfKpyq1KyJGilYolHK0Os1HPJoQId7Op8bgYpNj+GvrPWz4/Goi4yL47qk/pfNgz0c9rBAhjuBTY3AAcSkxuJ0u5iaNjPVM8MaTuz/qIYUIcQSfKoMDSM1LDhynF6Z+hCMJEeLtfGqcJoe57s4rqFhXSkJGHPnVOR/1cEKEOIKP9Qxntzp48cHXmR03ADA9rMditAbu93p97/i4lefWhIwtxMeSj/UMd1XxNzFMmXjk9n+x8fOreOXhbUQlRHLVTz/Plse2Y5wx892HbqRkRcFHPdQQIY6Jj+0MZ7c6MEyZALAYbTTtaMPj9jI7buC1v2+ndXcno13jPHnHsx/xSEOEOHY+tgan1qr40u0XoVApKFmWR0xiFADhUWFHOEbiU2M/qiGGCHHcfGyXlDKZjCt+fAk2k5Vn7nkRgA2fX8Wtf7me8Kgwlp5RjdfrY/2lKz7ikYYIcex8bA3uMCb9QjKyJkxNeJSk7rDukpChhfjk8bE1uLlJA//46X/oPNhLVlkGkXE6zr5+0zuea9KbkSvk6KLfWogeIsTHi4/tHm7vc4d48YGtjHaN4/V4uXv7zyhe9nZv5P/ue4Uv5dzEV8q/SfPOt5bpHTtej/dEhhsixDHxsTU4mXxhaFHxEUc9b98LtTisTmbHDdRvbT7u63Qe7OEbq37IVyu+RfPOdp6992VuP/fXDHeOoR+b5YlfPoN+bBaAnsZBLCbb8b+YECH8fGyXlGd95VTCI7UMto1w4S1nveM5ta82oFQpAVCqFai0yuO+zrYndtGxX0py/uv3/kHnwV4Aug/1YTFYcbs8PH3XCyzavIS9rzQRnxrD//3z6+RXZr7PVxbis8wxGZwgCIPAPOAFPKIo1rzl/g3Ac8CA/6b/iqL4sxMd3PrPrWL9Ue576rfP8dAPHgegakMpQ+2j/O32fzHYNsIPn7j1mJ7fPDuPNWjGUoerA8cqrQp3IA5opa22DwD9uIHRnsmQwYV4XxzPDLdRFEX9u9y/SxTFc050QMfKzMjCUFx2N8ZpyZt5rMvKph1t3H7Or3FYnZSvLcbj8tD0Zhvla0vweX1YLS4qNyTR3zRATkUWglKBSW8hOSuenLL0D+Q1hfj087FdUr4X59+8ma5DfbgcLs667jQsRisjXePkVmWjH5slPi3uXR8/3D6Kw+oEYG7cwHjfFACtuzqITo3HPGthBChanEmL3xlz3tc2c9M9VyFXyD/Q1xbi08uxOk1E4DVBEOoEQbjuKOesFAShSRCEVwRBKDtJ4zsqGUVp/GHPL3ig4XdsvvoU/tJwJyUrCmjY1sJXK75Nx4F3Lz4tX1NMRlEqSrWSlIJUYpKjAYhKiEQUF85zOdyB46i4iJCxhTghjtXg1oiiuBiph8DXBEFY95b764EsURSrgPuA/73Tk5xs5WWZbGH4Ko2KsZ5JQNpz6cfm3vWxORVZ/KXhThJKsmmqG8GrDWfp2TU4XSIKpZzKdSUULs7BbnOTXZ5B2eoiOmt7Ge0eP+Fxh/jsckwGJ4rimP//aeBZYNlb7jeLomjxH78MKAVBiH+H5/lAlZcv/MZZKJRysssyGO+bQhRFvF4fPfUD73i+XKlgZtwIgM3iZG7KjMvhxjBlQhRFuusHmBzUo9RqaNvTRe0rDdy8/LaTPu4Qnx3ecw/n7yMgE0Vx3n98OvCzt5yTDEyJoigKgrAMyZBnP4gBvxtf+n+XoNFpePB7j/PwD5+k82AvA+1jTPRPs/aiZfzo8ZsRhAWtSplM4AvfOpN/37uFpaeWk5CoY7B1BJVWiVqzEGLQBHkv1VrVh/qaQny6OBanSRLwrP+LqgCeFEXx1bcIwV4C3CgIggewA5f5tSo/dOYNCwWqU8MzTPRPA7D/xfojjA1AEAS+/L1zuejG0wiP0AKQV5HBA9/9B7Wv1FO2pgR5TBTdbeNUn78K+6wRITKCJ+99jYu+sp43nj4IwFlXrP2QXl2ITzrvaXCiKPYDVe9we7AQ7P3A/Sd3aMeHw+bkuT++Su2rjWSVpmO3OIiM0ZGcncDk4Az5i7KZHTcQlxrztsceNjaQMlzm5ywATAxOYxqUYnGtjSMkpEQz0zZOb9s4jdvbaNnTDcD06BxX/fD8D+FVhvik87FN7Tpemne28/AP/0lvwwBTwzPMjM5Sv62F2dEZSlcU0HGgl+tqbqN1T9dRn6PjQA/7X6wjKScRQS4jsyiV6HgdAGERGjxB+ZZOuytw7HZ5PrgXFuJTxafG4GYnDIHjsAgtok9a0bocbqb9QXKLwcp4/9Q7Pn5ycJpb1vw/dj69H8OkkazSDJq2t+McnWTJhiJ8UeGIUeGU12RTlBWJeWSajIIkCqsyGW0dYqx3EqfdxSt/ezNQqR4ixFv5xAa+D+NyuPi/i+6idksjJSsKUKqVzE4YqViXynjPBOkl6QhyBcZpM/H5Kcw5fYiiiCAIDPXPkJUreUuNM/MLz2l3MTko7f2sBitGgw2bzYXN5iItXEb7nk4Asssz6DgoLSsbtrUQFqFlbtJIZJyOP+z8KWkFoSawIY7kE29wc5NGarc0AtCxv4eErARmxw1MDExTtq6M1vphACrPW05jzwyPPLiTjs5JZqbM9HZNsn5TGQUFiTz7+D4qL12HvrGbuJRYZDIZbfu6yarIJCI+EkaMKBSyI7yU6rAF76UgCMxNGgEwz1qwW5wf2nsQ4pPDJ9rg7FYHb/5rLym5SUz0TxGXFotCuZAJ4gmS0fPKZIEMkolRA4P9UuB9x9Y29r3WisftxaC3kJcST+ueDgCqz1pC45AJGoapXJLN2PAsh7pnKTtnGTKTmd6GQSrWFjFvsKIJU6NSK2k/0Muqc5eQkpf44b0RIT4xfKIN7mtLb2OkaxylWsGysxbTuKMDtdPL4tMqME6bme6bpKg6g7zqHDZ8bgUP/ukNJseMxGrlOFKimJwwkZWkY95kx+j2IgjgtjkCzx9ckupyupn1LzuH9DYs+6VlZcvODtIKUhhsHQXgxruv4MKbN7/n2A+91sRTd77AsjOrOfeG03jt0R2ERWo57UvrmJ0wMNE3Rfma4pP3ZoX4WPCJNripIWmWcjs9GPXzeNxePG47HpeX/pYRAFJzk/j6nZcD8PuHsrkw9QYa9jpRhampqsmh8eUD6KLDWXRaFWMNfZhmnJSuKGDJaRXUnFvDH3/3KuYpExqjkcTYMKbnbGTlJDDWH4Vx2oRKo8QV5KWMTog8prH/5qo/YdLP07SjnX3PH6LVvy+se72ZnU8fwO108/nvnse1v7r8ZL5lIT5iPtEGd8NdV/LwD59k2ZmLyK7IYrBtFJVWdURmSGLmQtWAw+LA6a8QcNmc6Ackj6XFaMU5Jc0qAGWrivjS7RcD8NPffZ7L0m5gXBRRh6koPGs5Hc1j6LIzWLa2jJ7xeZDLKMtMQCbA079/mYyiVPKrs486bvOcBU+QkdqtC7PqzMgsbqeUMN3pr8EL8enhE21w596wiTOv3YhCKb2M7PJ07rz2AQ6+2kR+dTaXfuts1l28kPYZFqnla3d9mcd//T8yi1IRRB8T/dNEJ0YeYaTB3kWLwcrhpBmnzcXkqFG63erCotRgMkshh5ScaFpeqQPgd199gL/U/vodx/zsfa/w6E/+gy4mnNzKLNwuD1azjbT8ZCJidYgixKZEY593sPr8pUd97Yc9rSE+WXyiDQ4IGBuA6BWxme0ATA3r2fAWzUpBEDjv+tMY6hzjxb++AUDl+lJad7ZT+2ojZauLuOYXl1G5rhSAV//2Jv/81TNUrC1mYmCalNxE5BEqWu1ucguTKSxLo7NlFEEQUKsXxhEZqzvqeHc+cwC7xYHd4iAlJzEg6VCwODtwHJUQyT/67n/H5+ms7ePhH/8Ht9PNN+6/mtZBPS3tY9xwzXpkHi87/r2XTVesJzwy7P28nSE+YD7xBhdMwaJsSpbn01M/QEF1FsOdY2QWp2GcMeN1ewNpXcH5lj6vD49bco9YjdaAsQE8+N2/Mz9nYbxviuLlBbTskApRL7z1HG66+0oASivSeOyX/6N+Wztl60qR+bz0NfTzwHf/waYvr+OZ379EVmk6l3zrHOq2NgdmUoVKgTIoQVoVvnCsVCmOarQv/207Lf5smft+8E/qPdLs29k1juGfO3HaXfznrhf5a/PvCAtKWQvx8eBTZXCJmfHcte3/8fUVt3HolTpufLOZ8752Ji89sh2lSsE1v76cgw2jdA+aKFyah8znxWVzkFWaxszoHMk5SYx2jwf6yqm1Kg6Hw4P3XFFBxhAZrmLSX4fX3TqOc0paYj5994vUvtrIULvkvWza3sbBVxoBWLypksH2Uepfb6FyQwmamzUMxo2y+PkKTPvn0V2h46XxNzgjcT07/rMfuULOhktXYDHaAlXqAIpwNZik/Z8gioF0s+lhfahQ9mPKp8rgAORyGTPD0pfe5XDTvr8bp82F0+bizacP0DoqJSZrE8MZef0QAIJMRlRcBPtfqKXh9SZ+v/sX5C/K4YGm3/HAt/9OV20vc5MGSlYUULqikLO+emrgekkZcaRkJzAxOENOcSoTXicm/TyCTAg4PwBs8wuOEafNGdBgmRiYxhUvGXPf+aPEXBLFoHuMRwf/w67bD9LwzzYA6l5vYc+L9djmHVRvKMUaHU6D0UZVeQYulwe320PpZWvoe/4gRTV51L3WxKp32QOG+Gj41ORSBnPFTz+PVqehcGkeYRFhyBUyVBrlEY6R8KDlnEwmYJyR8h+ddldgpoiMjSA2OZqh9lHmJozoosO54e6riEmKDjw2LS+JP22/ncUbS+ltGUGIjGDpmdUkpMXicnooXp5P5boSrCYr6QUppBemoNIoiU+LQRAEKk8rIUIhKUarZWrcvoWZ1DZlDxxPDs4EjNYwO0+z3oLb46OpdYSe/il6B2ZoNNjJWF1C884OfnLR73j5r9ve8f0RRZFXH3mTm1f8kNcf34VJP8/ff/Y0da+3ADDUMUZf01DgfLO/eiLEifOpm+EAzr3hdNxuLw9893FghOJl+Uz0T1H73EHyFucSFhdJx+42ytaXo9HI+dx3zme4Y5THfvwUay5aTnaQKldsykI5T3L2O2ePaMLVjPUdDjHYsVucTI9I9bfJWfE075BmqaTsBKYGZxjtGkOr03DP9p9QsrwAg8vEHv0h1icsx+Kx8cTQsyyOqSDpJwncM/YQ8WkxnPbFNYwPzmCetVC1oYzR7kksVicJkVpMQctMu2HBOJwOF++EST/PXV+Vqqt+c+X9ZJSkM9Y7iSAInPLFNbzxr33IFTIu+8657HvuIGO9k9xw1xWcec0p7+PTCBHMp9LgAOZnF754HpcHk96fJdIyjN/PQEdtP39488cUL81j8akVnHvD6W/b+1z4jbPILEnD5XCz4pwlb7uO1Wzn+YfeJDkznunRORLTYtBGL+zxNJELjgtNuCZwbLc4yPPH6mJUUZyTKi1TI5Q6vlN8vXRSEjxY/+uAdsvyMxfhtLuIT43hEv08f/x//6Hx5UYyUmMIq8nBES7H6Y4n3uYkKTWe7v45jLMWlCoFe7a0sO6sKjRhKsZ7J5HJZfj8qW/zfiMVRZGxXkmawuP20ri9ld7GQQCe++OWkMGdBD61BnfO9afR2zTIxMA0Wp2GrNJ0hjvHKFqWz+yUicnBGbQ6NTLFwqr6aI6GJZveVn8b4E8/+Bdv/OcAANXri2ne1cXUyBxVZy5h3uyg8dAIlWcuBZuV0e5xKteVoB+b48JvnI1K/d5K0cFCSREx4UTESMvPxPgIJttGcTncTPRPU1iRSqt/6bdkYxldr3TS1W+gp3UM46wF67yDf/35DUpzo9n62HbSC1KISorCarKhVEvL7cSsRGRyGeFRWpRqJdoI6X+3001CRhw+n++I8YQ4fo7p3RMEYVAQhBZBEBoFQTj0DvcLgiDcKwhCryAIzYIgLD75Qz0+4lJiuP3JWxjpHKdldyfDnWMULM2n7UAvsxMGlm2uQi6Xc9t5d7L3hbr3fZ3gEIPX7cPnr8Ozmh0Md0vey/a6Qdr2dDE3YaR5ZwfffPAGLvj6mSf2AoH8igxA8qZGpEQFblcFfawiYPXv/SaGZ9n97EF8Xh/DnWN4XB4G20bpqR8gKTuR1r3dNO/qJDk7EYvRRu1rLSRkJ1K4JJcDL9XznVN/hmH66LV+oz2TvPzIm4HGKP3NQ0c997PKyVJePhMo8P9bDvzZ//9HisW4YAyiTwwUhrqdHqxGW6Axx76XG1h17tuXi8fC1377Be791uM4LA7sswbS8xIxG6zEpsRgtTiZGTeQUZDMbKcd86wFQRDQxZyctlrf/ePVbLhoKQVVWUTG6ijfUo9GreT0FUX8M+11GnZ3I9htlFal0902QeGiTOxTEfRsbyUiIQqFZqHUSAhqniKTCYEwyOyEkXGz9D627u5kZlgf6EYbTP2bbfzo/Dvx+UTeeGofznkrXbV9LN1cze3/uhVt0HL6s8zJWlKeD/zdLxy0XxCEaEEQUkRRnDhJz/++kGa5b/D4Hc8RmRIHPh/zc1ZSchNQh6lQKOWIoqRp8n5TpZIy4vj81zfx7Q0/AUChVqJOT6F+Tw+aMBWVS7Np3NJARKyOJadXMTWo5xeX/Z7vPnITZauKTvg1Lj21PHB82ZkLPxrXfv9szr/z2UDcruScZbR2STPuius209wyRofJw6LzarAbbPS0T1CxvowVG8Y4/dI2XvlXOk/eYyNvUxnWvikG6gaIT4/DEZRR47A50fhrAicHZwKz+/ToLJPdYwDUvtqIw+IIGZyfYzW4w8rLIvCAKIoPvuX+NGAk6O9R/21HGJxftfk6gMzMD6cZxtqLlnNgexfbnqkFoHxpHo2v1gNQuDQfw6SBZ+56nv7Gfn754m0oVcf/G3S48BRAG67Gbpfibw6bi6l+yQlhnp3H7fQw1id96Z/705aTYnBHw+vxHhGstwRpsNg9Ig7/GG0+Od0N0tKvv2OM3z7yKgCXXt1CveY6trX5kJUnsHZ9EbvnDNzwx/9x42lLaf5PA4Ndk1z/4/NxGuZ55bHtFFRnMz0yS0p2PApBZLRrnNyKTCLjjt5u7LPGsX671oiiOCYIQiKwVRCETlEUdx7vxfyG+iBATU3NhyKjJ4oi88FLy6CiVJfNyYzffd+wrZXjneC8Xi+/vfJ+tj+1l7LVRXg9Ppw2JxGJMQyNmskpTUPwupnsHSc6MQq1bsFjGR0Uy/sgkCvk3Lvrpzz4gydx2l24TWbiorXEpcYgV8jQRWpw2t1EhStRqhW4nR4S06PweuXI5dIebMy/XfMBc9FqvLMiXo+Xgzs76a2VxHWfvHcrY4c6A9eNjFTR8FoTCqWcb/zxWs7+6mnHvXJo3ddDam4isUlReD1e3C5PYCb9pHNMBhesvCwIwmHl5WCDGwMygv5O99/2kdJV28vvrvkT0yOzlK4qwZcWw6DcS8GaIuYnjIQtyyFLIWOoaYiSVcVMDOrJKEg+5uc3z1p448ndALTt6SI5J5HJgWlgmMrTF9N6QCqvWXTeSlp2tlO/p5eKUypxeuGFJw/gFhQULcnmv3/expqzq7n8W2cdUbF+ouRVZZFdlsH//rgFgOLVRXS2S1LtKSlRKCfnOPTyOMlZ8SRlxtJ+sJ/vX/s5brxjjOfcmdiXxhPrsJMVHoNalKNVKVAiI0KpRqGU43F7iYoJY1wQEEURmVyGWS95Sj1uL9mlGcdtbL+65i/sfPYQkbE6PnfLZl54eDuCAN/9y7WUrXh7B9xPGu/ppRQEIVwQhIjDx0jKy61vOe154Aq/t3IFYPqo928A9a+3MNg2gs1swzw1x26PlSGng0N50fSsyWav10lrVTIV59TQ3THB1zb+nAOvLbS7MunN/OHGB7my8OvUbW2iaUcbd3z5Xrrr+vB6vOz+7wESMyVFd6m0ZmHS9voWjj1BCdJms4O+Num36NUn9vCXH/2bkZ5J/vn7V2nYuTBTnAw8bg+WoEC4IigM4fP4ArHJySE9A21juJ0eOuqm+MXWxfy5X06jZYyk5RG0to9R1zJMfng04QMODh4aIqE6k+LSJDrfbCK/KouyVYWkF6ZQtq6MmORoKk+tZO+WZlxONzNTJt54uRmfT1pdTI4cve9DZ22/9D7NWdj7cgNTw3omh/S8/q99J/W9+ag4WcrLLwNnAb2ADbj6gxnu8ZGan4xSpcDt8hCZGImAiIhAuEYV2NN4IZDX6HK4mRpZUGhvfKOVFx/YCsBvrrgv4OXc/tResssz6GscRB2mYvm5S2k50I/TK2PRqRXY5+1M94yRV5qBUiXHNWsgNTseg95CQlosdoeH2UkTiemx2OYdOP37qeh3aa18vHQd6uOnF9/J7LiByg3liHIFQ12TVKwuxmRxofN5ia/JobNugKIlOXhcHsxzVrQ6Nd6EBcOUuxd+kwWviN0mvW/jsxbGD0o/EL3Nw2QWpzLSJf3GVqwtpmVfL60HBxjsn6GpdxaPx8trLzSAzUXT/j7WnFFBzbpCnn5oJ4tW53PxVWt45cGtJGfEop8wkpQZd8QyMrPo06GAdrKUl0Xgayd3aCfO+ktXklaQzO+u+RPNW5qoXpqH4uxKhk1WslNjMektZM25UCRGMTtmICE1Bv24Aa/Hi1whR6FSIPiXS7ro8IDBeT1epgYkGT2nzYXZ5AjkYPpkikBdW1i4ii5/tYBCpUCXnkT9G21odRoWrSumaU83kTHhrDtvMRd8dSMFVcfnSPL5fPi8viNqAg/TdbA3sD+dGZ5hckbKy2x94RDhkVpG/HWD5auKaDsgjXfR56vZssKMVaVndXw29IuMH5ilsigNp8uNHBkFpSkM9kxTWpaG2eNipL6fqHjdEUkDYtDs7nD7AgK6Y8Oz6Hul9233lhZaa/sxzlkZHZih6/V62ndJ5U9LzqqhaW8vEwMzLDmljKt/cvGnpuPspzbT5DCJmfH0+dOTBmr7iKxKZ8rtYmpuntUOOR1bpTzHipUFtOzr4d9/eJXuhkHu+O+3WH3BMn796o9o39fN+Tdv5tCrjTx73yucd+MZzBssPPLDJ8lanI8uPgKZXIZCKUcbVIOm1S24wuUKOfNzkvPGbnGgnzDg8/ow6ucpXpxDSU3ucb2uAy/V8edvPYZKo+TmP36Vxr299LaMcNMvL8Vpd9PVOkZknA7zrIWEzHjmLJO47G5UYSrstoXcS6t5IUHarPNiVLpBhHmbk8ltkrhu18AkTteCpFJFVhxNjcPIZAqWfW4lzc8fYqxvkkUby7AYLAy2DlNSkwOCgGvGSE5eAlNjRlI1AopkHZOTFuLy4vC5vOBfXbqD+vB5Pb7A8tzj9n5qjA0+AwanVCkoW11E254uErMSpADv4c/WufAlCnaZmoLyMJdsqgqkdp1y+VpOuXyhcYdPpebhX70Ag0ZK15YyNqjn0IFBSjYvRWG10Hmwl7LVxbgUCoS0RLRKOT3bmslfko8yXM1I7zS6qDB8QelS83MWIt6lYvwwWx7bzliPtIR77P/+TXuHJKj0k6seYKRbCkVEJSaQnZlE874+kjLjSV9XRn/fDFGx4ShdTtRyAY/HR3RCBDEJkYRNuYlwK7ArvGSMapiVy3B7fcRHhTOuNwdkBk1GyUh9PhHLvCPQtNLlcNFdJ+3B5sZmmRyUxiTIBGJiwqjfP4dSraTkxlPZM28kTB3GkkXpGKetTJusFK6So44OxxIdSVphClajFV1qLFPjBpJSY+htGCAxK+FdK+o/7nzqDU6r03L3jp9x/y2P8srfdiD/Zy0bL16KoXWMocEZypbmIIRpMTpFCpbkYJoycfFNm47puc1GW+DY4/Vh8s9go/165rslt3nbnk4yzlrBaK/05as+tZqW/ZL3svr0KjqbR3jo7i30dk7gnNCz/+UGzrpmI9ff8YVATNA2b+f5P76KLkbHOddvYqJ/Cq9nIbyhDMoYUSoVgdnBanNhGJJmqalhPdrMZExzVkxzVsqLE2jeJpXjFC3No+tgNxyEqoZkPOkpdE12k5cVR3R6OP3/PUTF4my8+YloDR7kGgGX3Ul6SgwaRFRaFXItJJ+tov2AgM8tEhmrCxgcosicX4re7XQzY7Xh9YnM253YEhT0NRkBiK3Ko71nCqbn0SbGIPPI2LO3n4ZL7qc6M4Jd/9lHbEoMP3/uexQuOb4VwceFT73BgZQAbJ614PNKex7v0BzDzZIis3HCyKiwUBz6310/OaKbzrtxzhVr6GkeQT9pRKNVk56XyPjADLnFyYzZzOhHZ9HqNHiD5k+PeyEY7fH4AgHozuYRJg5IArQvPvQGV/zoQpRx0i/57675I7uekRKkG99sYdczB/B5fVSfUo5pxkzDq/WUb6xAFhHBzLiBihX5jPVPk5oZg8caR/v+XjKLU9Hp1P73Q0AmW3DXB4civG4R/aTkRBofmsXePojT7GBoeyfFukg62v2OkSVZtNRJAfPCM6qI/E49475DrHsjA/2PoujY20thTS4C4LLa0YZrGGofJaskHcHsojtcQBemPqIPX7g2uF5Rwbzfs2uzOOnYJ4Uz5iYMDHeMhQzu486q82qoe70FpVpJ2apCumr7cLs8RKXEMDZpRwSUSvkxGxtAYlosP/rL1VxafhujvdPIFTKy03U0Pb8PrU7DsrMW0b63G2ttBxXrK/GZbcw29ZNTkIJCLkO0O0hJi2FWP09KUgSOpEgMU2ZiEiMhKHxlnDEHjg1TpkBZjcVoZaBF+uHo3NuJLzoWgKmROdLSIgMz2JLTKqh7vQWha4Il5y1jfNxEW7eeRWdUU74slzOuWMeTdzxHw5ttxKZFE5sQR1fXFAUFSfiGRYzjBpRqxRExNSFogKLCh80nLcP1snFad0q1gd2H+snMT2SwVUpCqlxfSrNfF2bl2YuoTZOzq3uIijXpaGa8NLUMU16WBi4PtvYRsstTGRwxkJUWhTitZHbMQHx6LPb5hX3nJ43PjMGdctkqKtcWo4sJRxOmZsOlK7jv58/T2TZBXnEyYZFa5iZN/PLWJ7n61k28+eRuzLPzXPWzzzE7ZqBxRztnXr0BuUJOb+NgQHfyiGoBj49pfxMQu8XBvMEaSKAWp+doPyDtb1JlApOz0pdGqVIQpRWo+99+wqO0LDmljKZdHdy44nau+snFvP737ehH58guzyQ8LxVvZASJhUbscxZiC7OIHDNgnjKSVprBjMkTyJ10BH0p7RbpWBRFHBZ7IA6mt3r50g8vBOCW+6/hc+k3MO7fF1aeVkHzM7uQyQRqNlfTXdtDzwt7qT5/FV6ZnNGuCUor07GIPsRUHRFTFViT2kmdLWAuz8p43xThkdojjPRwHA4k8Sanf7afmbdh7ZLG1No2RtLkHMZxA2MtIxSVJtH070ZA2k83vNHCvV/7K0PtI9x837XH/T0QRZG5SSNxQYXFHyafGYMDiE+LDRynF6XS2SotU/o7JsjMS2R8aJbxoVkMPSM0b20CYKB1hOYd7fh8Itue2IXL7qT7UD9LNlVSs7mK//zuRYryU3DIlJxz1TocegN/u/2fpBemEqbTIpMJCDIZYRELsnVhkVrwG5zX62Nm2AiA1WRHP2HA7fSgHzew5dHtNG2TAvGFK4poH7PCmJXIjHREjZn6uhEiMtNZtGERrQ0jxKfGUZwSiX7CBAJkR4cTEavD6/ERkxyNWqNkxRmVDI+YsJjtFFcFJweBNWhPavGX4fh8Io55eyBWOd89zIBZWiJbLA7m8qOgy4LQraGaYrb8rwOFSsHSTRW07OxgamSWRaeW47Q5Ge+blJaZggzR4yU3IZrxuXmKBC1jcTqmZi3ERYUhTCzEQt3Bffic7sDsPtQxetyf/1D7CL/8wu8Z7Rrn6l98gUu/c95xP8eJ8pkyuCMQRUoXZ9FeP0RMQgRKVVAcKajxotvlCWTBz4zOMeVXa67b2kxvwwAm/TxzEwZu/9etrL90JSCFAP5069+AIUpWFaEfN1H7eitFNbmotCp66gcoXV6I3e1DrVGhkGXSvquN/MosNOFqBEFAE65GFZSZr47QgkEal0ohx+Df+80b7YyNGhBFkZkJE/GxYYz62yyX1WTTul0Ke+SWp3Pfm/8PuVzGxouWMT1uoHRx9hFvyW9f+xF//vY/0ISp8Xi8RMTpiI6PRKWVClRddhfRaXHIbXN4PT4i43WHvfqIIug7JMeIx+XBarRitzj8f3vp8Mf6VBoVU35nimxXJ7lrq2mb6ESjVbJqaQ5N+/qQx0RTXZbB/JSR+dl5cquz0YZrcLvcJOckYjPbOeULa477I2/f1x1Ygr/80Oshg/swUamV3Pn3r/LAr1/i5X8fZN5oY/GybAydw/TX91G+Wsrkt5psFCzOYWpsjrQlBWjCVAy1jZBekobX45UUugSB8KiFGWw+SHTH7XAzO2EEoK9pKJDi1fpGC9kriulsHwSgcl05jVsbAaheX0LX3g5qX66nfG0JYmw07RMWKhZl4nJ6cLu8pK3Mo69phNMuXILL5WbLfw4RHadDHXakx/Iw4ZFhyP01b/HJUcQnv72mrWxVEYtPLedfv30egOKleXQe7GGkc5TU/GRISqShQ09GXgJxCZH0to9TlZ6ENVaDVqtEnhGPXW8hLSseTZiUbynIZGSWptO2twtRFImMjQgYnOjxoZ+W0sscdjdzU2Y8bi8mow1vRgx9/v4QeaUptO2W9n66mHCeHP7LcZf7TI/M0tM4RFikFpvZTkpuMm6X531Vh5wIn1mDA8l7abU4AkbgMMzTWy/ts2bG5gJfDID45WU0N48jk6tYdO1pHJgwopbLWFqRxVjzEHdccT833XMlYz0T7HxmP3nV2VhNNnQx4aTlJzHWO0V+dRb60Tn0E0ZUGmVgeQTgcS8Efl0ON1Z/cez0sJ4Zu/QxtTQMEx0bhnFOuu+2Oy5l4xkVAKTnJ/G3v7xJfccki04tw2Jz0TQ0R8W5S/HanRhFGc89dYANp5bwv/teIbs8k/WXrmSocwyL0RZIDDYH7UllQUWpTrsL47T0QzLSN4PV7MBitmM5MEj2OaU0d0nL88WXr6Lr/tcAKF9dxI+e+AZxqTFs+NxKhttHOePqjex9/hD//f2LiD4RTXosvWNmcrJjUcllyGQCmjAVGsXC3k8T1JNPq9Mct7GN9U1xXc1teNxe4pKjSS/LpG5nF99Y/1N+9vQ3SQjaanzQfGYNzufzsevp/ZiHp9CEqZAJAmFaZSALPjohkukhfaAw9XDMzecVMYjSl8Hp9eFQypnwtzF++u4X6amTYmxqrQq3083kwDQKlYLipfl07OtCq9NQs6mc7to+jH2jlNUUIbrdzPaNk12ahkwmQ4ZIck4iMyOzpFdk4XYpMM5ZiYjUHBF/iw6qHHe4vIEfDpPTQ3+/VJzf2jkZWBL/6Xev8tIfXmTA32pr7wvr2fmcVBt4ya1nUr+zk+HuCao2VSL6QD9lpmx9OdMDk6SVZBAvU9LbqycnK0Yq2QFkcgGCUrmEoIwUQSYE1K6rN5RRvaEMgI2fX8X/7nuZ9gNdUNtL1cYymv69QzrvrBp628ao7R6hdFkeoggd9f1UnlqFy+HCFR/LE3/bxYWX1vDao9vRhKnZ/B7iRrPjhsB7Y9RbmJ2U9qf9LcPMjM6FDO7DYMvf3uRuv1Rc7uI8pvqn2F/XSlpRKnGZSbQ3DJG3rABthBaLoCQsQsvMhIHkgiQ8ceGo5+aJ0GlQq2UBBazgDJHwqLBAYarH5UE/Ju127BYHVqMVo98pkW400bpbMoCkrHimhiRDUWmUpKyromnATHikhqXV6bS+UocuRkfJhgo2X1hD9dKcwPVqVubz2gsNmI02YuJ0REzNM2+2k5Ieg356Hqc/G8RuWGitPD06GwiStx/sCyzhJkcNzIxJ+7HJYYiJj6B5Tw8A1euKaHi9BblCTs2FKxgYNjKxo59lq3IQnF70nTMUb6jAOq5HpVHStq+bspWFR7z3dqsDZ1B6mdcdtGeet2L3a7DMjBmY8b9vbQ3DRC0vxjA5z8CD2zn03AFan5dik3OTRi7/4UVH/awLF+dw1jUb2fnfA+RVZuKwOumqGyC9IJnk7PijPu6D4DNrcIdLUwB8LjdWfxnLePcE03NORJ9If8c4eatLGe72t7FaX0jtmB6m5igvSaWzZ5K9Hh/5l65C2TFCwxutFC2T9nljvZOUrS5idtxAYlYCMpkM47SZpOwEtDoNgkyKZAXnW4YFSeq5HG6m9NLyzmp2YOifxGlx4rQ4OSs9ijUbj2zWWFyRzn1/v45rLryXur29RMWEU700h+b6QRISI0lOisDQNogoF8goSiU6MRK8PqLidAgKBWHxkWh1auwWJ/FpsRimpf2UIBOOKOA1+983r8eLw+5GP+WvtBg109cphRTmlHLcPZOMdE/QsK2VB+p/Q1appPW54997ufdrD+Hz+ajcUIbX7WVmdJa86mwEAWSCQEpmLDOTZtILU/B4vBimTISnRuERgpKiTQse1WCDfSc04Wpuufcq+luGaPKXQH359gu5/HvnfegqZJ9ZgzvvpjOY6JtktGeCS759Lq88tI3aVxrYdOVGRkeNtB/sIyo+Am3EgkH4grIzRFHKFAEwOj3M+5WKu+v6iU+JkvZqo7OUrSmhZZf0IVdvKKNxexujXeOUrixkdmyO2lfqKV5egDYumoGuSarOWMzc2AyaJdnIkmMYeKWLjKUZqLVyqOtHqVWhSHznMh6324vFPzuYDFbGhmfxeUWmJkzEyTwM+peSZauLA2PKKMtE71NzaP8gcakJZCVE0NkxSVppFvHRGiZH59BFanGYrcSmxOLziYRHhxMRr0PIiEDVM4PL6SEqSoNMJuDziURGh6H3z5w+n4gyqA7vwCv1mGclo/V5vLT5G1GSTWDPrFQrSV5USOPeXsIjtRTftIYdchORGjVVcwmILRPMD06SWZJGeHQ4vc3DTA3NoIuNYMdLjazdXElE9Nu7BxmmFxIIkv0/gh82n1mDC4vQ8s0Hbwj8vfKcGsyz80TGReDz+TiwpZlF60uQyWX87a5XaNvRxsBLtVScV4M7WsV0opd8IYmJISM5MeEYS9IY7hgjKTvhiLQpX9D+Jjjwa5+3M+kPMXTX9qKIj8fn9dFWO0DipYs4ZLXC2BRLP19BbccIOGH5LacyMDjHfc8fot/q4LavHdnaOComjIu+uJIX/lPLxs0ViMDWF5vQRWqOzLcMCjcotCrcBikAPae3Mud3yIyNGFAL0UwNzzIFVKzMp2Wfv7XWiny25wmIzFFwZjqJWwepe/JNcpbks/i8ZVxyzTra93Tyr988x+lXricpOyFwvcIleWx7fJf0GQTN6LrocKaQDM7j8jDtX9JazXYmfQ4cogeHxYNDJWfwdSlGWrA4h87aAWCAzto+fAkJWMx2nrhvK/c9ewuxiVI32tY9nTz8w3+iVclJzoojLima2pfrWbqpAq/Hx57/1XL6letRBzlnPig+swb3ThwWu5HJZKw8szpwe0FuPP/9pZTnOLelkQM3ZEkVB8mwatsMrf0zyOQyas6poWFHJyqNiqUXrEBvE5mas1J2ahVytwvznIXcyizMc/NEJUSSmp/MeO8kudU5mJ0wN2lCrpDhCsq9dAd5Mp0iGP3lNLVB2v+HUSoVXP+tzVx54ykBz15WfhJ/f3gnjSNmqq8+HcechdYZK5XnLMVjd+NSaijL0zLQOUF+WToOh5vu5hHik6NQBYUYjpgN1ApE/KrNLifW5kEABup6+emTNxObEMGaC5ay5oK3NxO54OYzSctP5p7rH+Dgyw0U1eSx+sLlnH/zZrY/tZfnH3wdbUIMSq2ajroBckvTwS5DCBNRKxSohYV4abCByNVKzP73Zm56Hm/Q+/bcH7cE9skVa4tp8UvPD7WPMtI5hsvh5tl7X+bBpjvfsbbwZHLMzy4Ighw4BIyJonjOW+67CriTBR2T+0VRfOhkDfKjxGFzMtw1HvBexqTHIrBQzjPvT/T1eX2YjTZEUXKhexQqRvqlbIjYKDV9OyWDlSvk+DxeZoZmUCjlVKwroWVnB2FRYdRsWsxA5zi+Hf3UbCrGm6jDMG8jJzUWvCJqZCQnRDI9O8+qoORd27wdQRAC+8FgN7rL7cXhd5iY3SIDk9JetU3vRD5rweeTnDe5Jak0H5RCIjXriqjf08PstJklp5YxO2ag41A/FSvzcUWqGMpSUxWvY3xkhooxN/aKTPpbhskoTsU8ZyEpKwGfz4fFaCUy9u3LX3WYOlAc29MwwH0Hfo0gCJz1lVPZ9kIT7YekSouqNYU07e6GxiHOPKecvVk+XrcbWPGLzUS/0k93XT+V60pwuH0IUZGk6TR0NY1QWJFOW90gG86pBo7cJyvfonZ9uLRocmD6Azc2OL4Z7hagAzha1/inRFG8+cSH9PHBMGXi+mU/xKSfJ70gmQtv3szmK9dxcGKch//zBspXhtGWpTExqCetJA2FVo1KM4FWp0Gtkge8l7qIhSz4sEgtZn+nHo/bG/ji2Uw2bPN2Ziek+xLHzOw1GKXjaB3GETNjzKJWyfnLry+n1N8W+eWHtvHX7z+BLiac6++5ir1vdDE+OMM3f/N5pob1dO/tIjZOh8XqICInmrApEzazg7i0KMxmOz6ntJy0WRYqJuxWZyBGaLO5GeyUYmzjQ3qaNsaD1QXWeSr+10/b6ByCILD41HLqt7XyzQ0/5bLvnssbT+5ibsLAjfdczdTgNLufPcB1d15BzelVJOckkr8oh96GAVaeuySQb+lyurEHNSZxO4MqK2wujHbp72GcjO3pBqB5Zwdxi4sxdkgOm9LFWbTVDdJWN4hhxsyFV6/j1r98ldyqLOJTY1m6uYpHf/xv2vZ143a4KV1VxEDzECUrCmna0U7V+lImh/Q47U6yitOAI/U3T5RjMjhBENKBs4FfAt86KVf+BKAfNwS8maM9k5x2+WoUSgWrMjN5cfcs9bWDAJSfWkHLgBGA4lXF9L56kP1PjpKztABVmI6mFw5QWJOLWqtGPzZLZkkak32TpOYlI8gE9KOzJOQmo43WBSQdtLHh4JCuHa5SYvSPyenykpe54Mre+fR+LEYpSfq5h3fS2iwtMn77zSfpr5diguGxOjwbs9k5OEpcUQTFCVnUDU6QdEYeuTaYSRawykSSdsnQFSXgiFITPhiO4HQTphJQa1U47S5iU6ORI+nAwELDFFEUA++T2+mm4Y0WRjqlcTx774v0NUrL3x+fdwcvO/5JYkY89+3/FWM9E2SVSvmcu589wH03P4xPFClbWgwiGCdmySxMRiaAyuklEzVjOCmZkzERH8G8fp6wqDBcroWkAYctSH/TKh3LZDIuCNrvXvnTz3Fe9ILsTnZZOg1vttG4vZ3N157C6//ah0wu8MUfnE/tliYG20e5+e4r2Pi5lcf1/XknjnWG+z3wPeDdVG4uFgRhHdANfFMUxZG3nvBRCMGeCCk5Caw4axEHX21k3cXLA79yVpPtiF9fIVjPw+3B5U+4ne2fZN4fMO8+1B9oVzXRP03ZqkKad0rpStWbqmjrNTFzYJDi1cXMe0Ua9g+zoiYLeaSKiboJlhUmMoaHuPgI/vViHV+6YBmtuzoCyyCFUo46aOmk1ix8tIJKhsFfPTBrsqFSKnB7vIzqTUQsSaPOJM1gK8/O5NDBMZiDnEWJWJ/cx8GWHhJzksgpT6F9Sz01ExmoVmVj395HWGEKFqONhAwpcKzVaQiP0gbSujxuL5FxEQu6MEFxSoVSETA2gL3P1waKVDMsNtrrJSNNyopjalS6XbNPxfL0GHp7OoiMDWfpmjI6W8fQaRRkFSdjSQ9jVuYlye4kKkLLYGM/c1MmwiI07H2hnpVnL0Kr02C3OJAr5IEeCIelL0RRZLh7Aq/Hi9cDh15rpnWvNJM+dfdLH47BCYJwDjAtimKdIAgbjnLaC8A/RVF0CoJwPfAY8Lbw/0chBHsi6KLD+el/vsncpJHY5GgAdj93iLtv/htup5tFG8uwy5UMTFoprc7A5/Hhc7nJX5rPSNswedVZzE6YGOkaJz4t9ojcRq8nWN5BWKjSdrgZHZeWld2HhgJfXOM+C+lrcmjqHKWpc5T2vV3U//5lABadUc24wU3d3j7Kl+YgCAK9bWNUrC1hXm9CHaYmITWB+kk9pTnJyOUCE3oz4RoVCq0M/IKvKl9QJyGnN1DqMz0wxezIjPSFbBomVxQYbZP2p8E1bsXL8+k60MP0wBRZpenI5AIN21rJX5RDeHQYY90T3PHle7n5vmvRRS9kyfTU9+O0upDJBESRI0IxWp0WkAzO5XAx0S95Ms1zVuZmrdgsTmwWJ1GL0zjgMgJQviGFrt9upwvo2NuFy+HGpJ8nOTuB379xOzGJUfxh10955PZ/YZ61SClsMkjJTUapUaHVaZArZGgjNIH3P/4kZaMcywy3GjhPEISzAA0QKQjC46IofunwCaIozgad/xDw25Myuo8Jh40NoHVfNza/N8xud9Hhj+2MDc5iCpS3qEjNSKBhWytyhZylm6up29qMSqNkyemVzE2amBjQU7KqCIVCgdVgJSs7FqPJTqxKxJUQzuSMlazceMwmO4ZZKzKZgMu7MKvag3IenW4fs/4A9Gj/DEb/Uq/l0CDxsVoGO8ahboAlX1lFbZ+011mxKJt9jgn2TI6yKj2d8AYrQ2/0UbMqC5tMxOtwU7Kpkr7dnRSvLMRustNT10dscvQRjocji1IJ6jlnDcxYvQ0DxKfFoh+bY9sTu6g5o5rTvrQOgDee3MWvv3QvAKWrijBMGjj4/EFK15WiDtPS3zxE+bI8jHMWInQq5GoV7YcGyC1PJzxOBz1TKFUKZHEaMEnLWk1w9yBxIclhcnAmECQvXJKLLjqc+m2SxGrlxjJa/WGPvKosRrvGOfhqE+mFyeiiwqjd0sQPL/gdP3jkhhPSVDkWmbzbgNsA/DPcd4KNzX97cOOO85CcK59KylYUsuUfu/C4vOQvzqHn9W48Hi+RkZoggwPjtBGQZjLz7Dw+rw+H1YnL4WHAn0IVnRjFULvkGZTJZShVMuqbXag0SqpOW0TTG02Ex+hYsqmKsa4J3PVjVC7JJMzlxTZiIKM8E6/DhVatID5Rh37aQnpOPF6vj3mjDZVGidu5sKexeRdmVZvPg9kt3WeetDB2UBpTzxu9WHPD8YpAtJolq8toa5RKWpZfsJyGHZ3M90xTc9ZizAYrvV1TVJ5SSUpmLGd95VSe/NUztO7uIqskncjYcAbbpEqD4ETohPS4wPGEX24QwGF1MOEvLerc24WgUiOKIi072sgqTKKtTkovW3zmYppqh4AJqs4oZ1+Wj9d8MywvTscnijTpp1n8rbXI3hxFGx9NUlEaHTvaWH/RMqITFnx+wdJ+wccCkqMEYGZkjlF/27G611uYGZ39YA3uaAiC8DPgkCiKzwPfEAThPMCDlNN61fse0cectRfUULAoG7lCRkJaLJuvnODhH/2TltcbyCvLQJGTik+pQFGZysjWQ6QvK0ITG4mydQS1WoFWt5CRERGzkA2h1qqwz0sG63K4mRmUguJWgwXX7DxTg1KOZdLkPO11gwDEJkQwOzLF5PAcmnA1OaXpNL9cS1RiFIs2L6ZzzIBMo6QQEVm0DpPBTWp8JBEaNbpZLwnhGoxeJ5leLf1hKuw2F3EJEdhkgH+mspqCKsdt7oXKCpePvjZp7zc9YeJ3W34IwM+f+wFfzvsaDW+0SLHJM6qpf6MdlVbJqV9az6XfPoe8quzAc55y+RrqXmticmiGmLR4UqxOJnonyV+Uw+yMBcOUCblCfsSe2RV0bPd6mPb3RR+2mhk3SjP9LkxU2n0MNUtL3x/84+us94cJDvO9v91IdnkGydkJLN1czUO3P4Vh2sz515/Gs3/aQtOODs6+diOt+7rprhsgPjWG+NQTW1oel8GJorgd2O4//nHQ7YFZ8LNActaClzC/OIXu3R247C56D/VRlJdOtz+nsPKCNTTXD8GkjeILVzP47G4OvFBLdkUW2ogw2vf1ULQ0D4VKjlk/T1RcBmM9k2QUpyJTKpganiU2KRqNRhlwPAS7p7XaBYUuh9XJmL9ExjRtwuBwYzLZMZnsJFdn0uSfpXJzExjsHmYSSIrSki4TaJvpJj4hgsKaTA5NTZMaH0msIEfZq8cXriY+JZqEtBjkSjnhUWGIPh8RUWGBJiDp+UlHvD8Gf9L2Yd1NURRx2lyk5CYdYWwAKTlJ3PHa7VyQdAOz2ztQaZRUnFJJ274ewqPCqNlUwUDjAE6bg5IV+SiUSiwzRlIyY1GoVGgQSBZUTOMmMzaKeYeDeYeLMEEeSNgGiEt6e/2fXCHnC98/P/D3rfcteC4Xn1KG1WQjPCoMr8fLoddbWHxK+QnXz4UyTU4CGcVptO/rRhOuPqIANFjs0ucTAxXQ00PT2G3Sr3JXbR+puYmM900yAlSsLaHZHySvPqWc1tpBZl6qo2RVEQ4PNOzqoqQmG7nbzXjnKBVripga0pOYEYsgl9O2v4eMwhR0SmkJJ5MJRAXlFaqD9l+iKDI34xf/mZnHnRGOw+1leMJAqqii06/BUrI0lw6/5n9GbiL6ET0Ht7aQkpPA5d85l1M+vwKAhjda+Nvt/yS3KouZkVlS8pKQK5Sow1SER4bhdrrxen2BQtjDzBtsASeSy+Fm2h+btJps2Ey2QKVFcnYiLbuk9yY1P5kRo5uR3kliIzRory9jf/8ICbowVhPF6Ms9RCZGEhkdjkwu8MT9W7n1V5eSlHbsWiaHi4rlCjnLN1cf8+PejZDBnQTueuPH7Hx6P4tPLUej0/Lw/Vvp2dvF4Iv7KNm4CI8ICouN/GWFDDUPULS6FP3QDKPdE0QnRiIPlqnzeIKOfQtOiNl5xvxZIh2HBlFa53HaXOhH58ivzKTZL6WweFMl9VuboaGfVVdu5PqffY709Fief66O+XkH55yziP89U8uO19uJEr3IotS0DsxSlBWLV5Qa+2nUCqJUC3mOyqDxCTIpswVgYmCGDZcsCxjQk798ho790j4r2HtZsqqQnkMDPPXb52jf18Xd2396xPsXlxzNLfdexVN3v8QZX16L6BN54o7nSMqKRxPkzdQEFZ6qw1RgXOjDN2g0AgIzFhu2ZhsWkx2LyU5cYiQt/tZaD/zieX785yuP89M9uYQM7iQgl8vY+PlVgb8XFSXx7PcfA8Dz0gGcSumLIggCmUtLaKkbRq6QsfzC5TQeHMDjFFhyVg1mvYmJESPFywuQy2U4rA6ySlKZmzSRUJCCRznL1MgcqTkJWAbdOP1BXpfjSKGdwyjMVtLTpT3HeecvdEe98tr17HzwdTr6pH1i9dpimvySehd9dSNfue18IsM1PFv9BhFRYaw+p5rHf/sSrXu7kPm8FC/Jprd5hOIl2XQc6KVybTGGaVOgeuJtiAT2fpMDM+94ylnXbOSsazYG/o5Ii+fPv36Jyc5ZKs5ehqFnjENbWyhbXYxcKWe0e4Ly6gxmpi3ExYWRNadie6yLSiGKyEjpPZArZOiCZvfImLdXEHzYhAzuJOP1+hjuGA0EVqMSo5g2SB4vURQDMupejw+LzYPH5ZX+CTL6WqQNfmScjsGGBe9l+Mpy6rtmUCnlVJ1eQWPjMOFZqSxZVsDUlAWb3U3R8gLUGiU2s430ghR8osjpV2446jjtQalcjqDjaJWSmEjpi3nJjacFbr/+55dwdvQ1gaVf4ZIcWnZ28L1dnZx97Ua2PLwNr9fH4k2VWI1W+hoGKFtdhOgTcbm85C/KYbxvkuzyjCNkBo+G1RrkXbW7GfXL93XV9gUSkw1TJjJL0mjd2Q474fxLV9O4vwsTsP6cKq7+zlkkpETx34d3IsgEzrpsxbte88MgZHAnEdu8nRsWf5+J/ikyitOIT4um80AfueVZyMPDkCvlyOQCbreH9PxktOFqFCo5SqUCrUYR8F4GCxIpVQqsVr92v9uL3mhHRMBic+MKD2d8VDLS+MJ4mrc2SMdpsTw+8Me37ZWCuePZb/Gn7z8pqT9bnSSmxxKbHM2682ve8fzZScMR/e+CszMGWoZx+rNrHFYnXbVSStnkwExAQAmkxiq1rzbSsK2FO1//MeVrjiyiBSmf8uWnDnJgeycZeQlYjDaiozQkZMQxMzJLdnkG0yOzzM9ZkMmEwHUBXPaF5bg2XB3Yr13y1Q1HfR8+bEIGdxIxTJkC+iYjnWOY9WbsFgfd+7so27SYzjppL1GxqpAWf3fUoupMhva3se/fQ+QuyiUsUkv7zlaKl+URmxzD5793Pn1jJv7xlzfZcEY5kVFhPPnwTqKiw9AEVUBrgiTDddFh72psAJmFKSzeWMYjP/svAKXL8rj75e+/47n/ufsFnvjlf0nLjSc8SgeCVDzqSIoiMSMOpVaFNkKD6BPRxUYs6MIkRh1hcIdlJTxu7xGGEkxb/RAP/PpFANQaJZ4pPQ2dHtRaFRXrSmjd3UlUfARLTq9ktG8aECisyUMTGYbDME9iciQKhQzHrBnjjJmo+Aga32yVinyPU3zogyBkcCeR6MRIlp25iIOvNLBkUyU2ix2Tfh6FSgEE7W+CZMw9bi8Wf9bIWOdo4IvYeaCHP9f9lvxFOZQCZ1+0JFCTlhSt4Z5r/sRBl4fSDeW47C4aXq6jbHUxMhnMjOh5+LYnuOKnn0OpOrIcJZhg1bB3C+ZueXQ7NrOd4bZRyteW0ObPLyxbXUT7oUEAMovTmZswUbeji7TSLKKjtbTv6yZ/UQ5xKTFc+u1z0I/N8cB3/8Gq82ooPEp7ruB4m1arxOCS/nbaXf52zlLmiN3mZtqvIJ2QGR9okJKen8xY+xRjTQPUv95CfLSK7rp+UvOT+c1r/4/k7MSjvs4Pg5DBnUTCI8P45Ys/YNxfCeD1+njkR0/y2qPb6d3dRsXaMjxOF0MHOiiuzkehUXHBtev4r9tO255OCpflMzs2x3jvJFHxEQHFKziyANRhmMfj/yIaR2YY9zs/2vf3oA1TYDPb+ddv/kf5mmKWn72Eo/H5W89EE6bGNGfhguveWfnq0NamgDiSQqVArlgYR3D2CKKAxa8zMtY/w7jLicftpbdhgOt++yWq/Ipdp1y+5l37fi/bUMwP7voCLz22k9mhKdJXFTDSM0lGbiK43cyOz5GYmYBWtxCPVGuVRxwH8lLnHcz1SUvu8d5JjNOmkMF9GknNSwYk76VCIQ8spSwzBnrqpWWlzdjEC5bHAVh1ZjW3rrmdlh3tKJRyvvDDi/jCbRcedQm0+NQKCpfkMtozQXJ2Ah63l+lhPUnZidhMFkBy20fEvXsLY0EQuOD6U496/4Pff5yn75aWd0s3V9PbMEDLzk6q1pfg9foYahulbFkuVqsLbbiaoiU59DQOUbwok/kZM4NtI+iiwyQpPT8+nw+5XH60SwKw/qxKHrrtCWbGDIz1TlFSnUGzX/J98aZKmnZ1MT1honJtMcYZM/Xb2qhYXQRyGRMD01SsKmRicIbktCg8tnja9nRSurIw8Ll8lIQM7gMmf3FuQCY8pyKLvqYhfF4fsUGzlyAIgUJUj9tLdlnGu+430vKT+cOun3J59s3Ub2tFHaZiydlLaNrTjS46giXLCpmbtXLn1x/jO/dfTdny/MBjp4f1vPb3nZx5zcYjZlCQ8j5FUQyU/Iz1Tgbuc1gdgZbLhkkjw/5+3q27OpCHaQPL08LyVFq2tyHIBJadtYiWHW3cfvavueoXX6BtTwctuzr5+v3XIggytjy6ncu+fz55i7LZ8rc3WXRqBVkl6UwN6wmeBI8oRHX7AjoxVrONYX9xbGdtL4fFu/TjRtLSo2jyK1l/5Y4v8vnvXfDuH9SHRMjgPmDWXrScvKosPG4vmcVpnHfTGdRtbebcG08/4ryrfn4Zf7r1bySvK6HD4WStx4tSceRMYDFaA2UtPp+IwT9zOm0uZqdM+Hwi5jkrHgSGuyWDeOZPWwMGZ56d56qSb+Jxe3n2vld4qOV3xCRKKU97/neQv3z7McIitNz0h6s5+FI9cxNzxKfFoo3Qoo7SoYsJx2q0EZcaw+SQHpfDTVR8BPOWBQfI4cx80SdiM9kC4YedT++jfW8XAH/+5qPox40A1L7aQFJ2AhP906g0Ss74ymlseXwPmnA1i9cVY5gyYdRbKFiSh0otx2G2kJqTgNVsJypKS0xiBIbpeTJKMpgc0gfkJoJbWgUnS3/UhAzuQyB4KVO0NJ+ipflvO+f0KzcwnxTFXX97g+ZXG+mfMnHXDxbETX9/w4O89uibrLpgKadfdQrP/OEVKtaX0tfQT25lNkqdltG+aSKiw47It0wOqg43+rUmQSqfCfZkbnn0zYBT4rGf/JsWf3FsTlU2I9MOxg8OEZWUgC7KSt1rzaTkJZGam0hXbS8Z2fGowsNQyKVZ0mqMICk7EbVOizpMjc/rRRcdhiATEH0ikfERAYPz+cTA7O5yuOmsG5Cew2TD7XAz4O8tFxUbTqs/rSs8KgyXzUHt0CThUWFUnLaI1toBYhMiKV6ax8S4EblCRm58BDqdhm3/3EP52hISMz5c0dd3ImRwHyNMQQFoV5C4qcvp5qUHtwKw49/7GOyYYMRfMlK5tphmv8Zk1anldDYOcWhbK+UrCvjcLZtZtknqPfDmU3v512+fo3JdCQNtI+SUZbD9P/s57wapvXLwlzG4a49KowKkcbndHmb95TMTfVPg82ExWLEYrJSvKQ5SxiqlvWEYmCC7NIvZ4UkOvtxAVmk6UQlRtO/voagmD2SSdLxaq2KgdZjs0gzUkVrkCjla3ZF5qWFB1eyacDWWOWkmtZpsjA9JBjs3M09SZlyg/11peQrNr0mxyZ9//h7u2/vL4/9QTjIhg/sYceHpVfQOzTA8okc7aqL1QC8lNbnseK6O1KI0xrvGpKB4cFghqHLc6/Hhckj7HbPBEjA2gPu+/ggWf71e0dI8mnd20LyzA4fFwee+cy4333ctGSVpPHf/K9S/3kzl+lIAJgZnKKvMYGp6nqS4MNzxGtr39ZBTmYlarWSifwq5QoYQ5EWVBXkyvR5voLfcUPsocuUkXo+PrkN95FZl0e+X+6vaUErTdmlWrdxYTl+7lMpVVJOLoFDQ3jhE+cYKRJcbq8NLenk2fQe7OPOaU3CrNLz42G7iEnSogmKTQSmgR/Tn+ygJGdzHiJjIMP7v5jM5P/dbzALff7mZosXZdBwaQKlSsPz85bS82Yp+WE/VumKcVgdT/ZPkV2ciV6vxiVIcSj8+R2pOIpPDepIz45kamT0irHBE0DnIeBPS4hjxOyEGWoax+Gvh9KNzpOQm0twspZstPq2C+tel3MulZy6iv3mIjv3dVJ9Sjs8nVZ2XLs/HYrKhi9RSsCSXvoYBSlYUYp6zMNI1cYSMAnCEjqTX68PhT+2amzCi91c0dDSMEJMYiWHazEjfDD/4602sv0DKjEmI1fLw9//BZIOXRadXY5w20bClkcr1pYg+kcmBKZ697xUuuHnzEWGJ7ro+PC4PpSuLTuSjO2ZCBvcxwxJU8OnzicyMSzIFbpcHi8ESyNT3OF10HJAy81UaFZNTUixOrpARFRfB/pcaaN7ZwcbPrWTLE3vQRUWwaHEORv08douDvKoswiK0NGxrY/V5NWh0Ghq3txGVEIlpxkxKQQojneM4LA4EYaFCACQ15MM4rE5m/eUzhikTI/6uPcaZeQSZEPBeFi3Lp21vFwqlnOVnLaJ1TxcT/VNUn1qOxwtTI7MUryiUNBFkcjKLUpkcniG9OBWZWs/06JzUDyGImISFsId1bj6Q52mZNTPgnzl76voDjps/3foo1RvKyKmQBKz+8bP/8Pf/+zcymcDX7r2W82464/1/cMdIyOA+ZsQmRvJ/j17P43e9hFqrRhAkI0xNi0KjlQeWb9oIbaAoNTwqDKYWmkDO+d33tnkHbft78Hp8mOaseHMTGGyX5OsKF2fT4t9zfWfTLzDPWnA73UTEhlN+4Wrah4wk1JRQqvIx1j2OSqMiNjkaXbQOt9NNTFKU5L0MUwWaHMalxjAxYvCrdekwzy6M6fCy0uP2YjXbAv3v3A4Pnf7iWLlcHuiWI5PLSCzJoLF+BLVWyZJTy2ja1UV4hIZVZ1dzztXrqVxdhMft4bXHdtC2t4uk7ARsZhtR8ZFExkdg1s+TmpfEWO9kQBApKkhiYaBVuq7PJzLWM8GHwclSXlYDfweWALPA50VRHDyJ4/xMsXxTOTuer+PN/x4CoLw6jcZXpc1/0bJ8podmOPhyA/mLsgmLCqPrYC/Fi/PQRIdz8c2bGe4a5x93PEdueQYqjYrh7knCI7VowhecEJogXX+lWhko65mfszI0I6WazRjsxISJgSYbFWuKAzVueVVSTHG8d5K41BhikqOp39pMemEKiXmp9DUPkVuZgSiCRqNA9HiYn7OQlJ2AWqtGqZYyQsKjwxAEaWLTxYQHDM7n9THjF0Zy2t0Ypkx4XB5MsxYKqrJYtL4EkFo/33Od1HYsKj4Cl8PDoS2NRMZFULlOKuZNzIxnzYXLuPTb5xKbHI3VbOeFv27DMu8mKjEStVaN2yvisDrRhKvpOtRHfnX2ETonJ4uTpbx8LWAQRTFfEITLgN8Anz8J4/vMEhzsFb1BvQac7kAAeqBlOBAEbt/byR92/5yS5QUs3VTB3JSJZ/ydSKvXFdNZN8Chbe2UrS1hvjyZvWOzLPnCSuTjJmwOL1UFqfTW9pBXnoE3UkO7zU1KegwpkXK69knxM23EgpEqgqQGnFYns2OSp3C0ewKfTMH8nJX5OSuly3Jp9Wv5V6wpDsyq+YtymJ0wcPDFQ+RWZROZEkvnwT6Kl+ai0qi4+OYzmJgw8fe7XmH5aWUkJUYw2D5GWISWwkVZgWsHlxaptKpAHNA8O89Qu5TWNT2sZ9V5S8mtlB736t938uhPnwEgtyKDwfYxXn50J407O9GFyenY30Pxsnx+/sIPiE54uzTDiXCylJfPB/7Pf/w0cL8gCIIYXM8R4rj41j1fIjImnKGmAab6Jilelo/VbEMXF0l2eSZDbSOULC9AP2lkamAarU5zROaIKWg553Z5AkuquWkzXWNS7mGt20Xa0FxAKKigOJWmNyVnyCXfv5Cv/OIy5HIZyzdXk5qbRGFNLv+841nqX29hZkRPxZoixvqmyChMxWlz0nmwh5IVBWhjIpkc0iOTy1AFS+oFOW7cLndA+2SgeQh5vx6f10fHgV5+t+WHUqoWcPaXVgd0RNadX0NSVhzhQYa/7tKV3DxjpvHNVi799rnsf7GO5/74KnnV2ZJE3u4u4lJjcNoXJNQPp9qBJEh7eJ9p0s8zMi7N5p0HezHp5z8ag+O9lZfTgBEAURQ9giCYgDhAH3zSJ015+aNEG65m3VmVfPceqcH97PgcokLJ+IgRQZBEV9v2daPSqrj4m2dz+W0XEhGzkPH/5R+cz8zonN/ZIZCam4h+wkBidSazGtAbrCRoVQhBbkqHZcEZEhMbHgiMn3r5msDt5914Bo/9+ClAaoCRlJNIk3+Z+bU/XMMFXz8Tn8/H1sd3U7GmiLiUaB6+7Qn6moaY6J/yeyrniYyPJLcqi4HmYUpXFWEyORjvn0YTpj7CSINFe3LL09/2PgmCwPlf28z5finz0pVFDHeNsee/BwFYunkR9a838dsr76e7ro++xkHa9nZRvqECBBnGGTNlKwoY7Z0kqzAJS0oEPXX9pBemMD9nedv1TpT37EgXrLx8ohcTRfFBURRrRFGsSUhIeO8HfMaR+ZvMA0TE6gJZ8KJIoJ2xy+4ipzzzCGMDSMqM42t3Xk5P4xBt+3uYHp1DvrmMXXYrdoeb9RGRiK91o1QrqFxdSF55Ol6FmpzqHMpWF9O8s50Jf/+6YNwuT6BNlJRCtbCkS/RntchkMs64Yh2puUmotWrWf241zTvamRmZpfNAD+O9k7TsaGegeYjiNcV0NAwzPTrHsjOqUKgU/PDC37H3xfr3/b6ZZxa62zrtTrweH6Io0ra3i+Yd7XjdXvoO9dK6t5vRnkna9vegVog0vNZIT10/NadXMdo9wXdP+T9ee2z7+x7HO3EsLSAPKy8PAv8CThEE4fG3nDMGZAAIgqAAopCcJyFOgIo1xdy9/ScsPWsxQoSO4hUFZJakUb62hOSCNDQ6DRVrSyhf/c4xpMPeSpCcEFMOyTisdheGnik8Lg+GaTOiT6SvdZTxQT3a+Bja9nRy4KV6vr3hJ297zriUGP7ScCcX3XI2f225i58/932KlubxxdsvpmqjVIIz3DnGU799DrtVut5w90TAARERF4HoW/jhME5Ls4jH5cE2b5Makxis7Hvp/Rvc1++/lsKaPDZdsZ7zbz6TxMx4ImJ1LN1cHchFzShOPaIxpSVoNpv3t5/2uL0Md4y+73G8EydFeRl4HrgS2AdcArwR2r+dHEpXFDIxOY9pzorJ74Ro8/dx23zNadxy11s/Com/3vYkLzzwOqU1uTidXuQyEWKjaLHYKEyOJcZrZEQYJyxCgyqoWjwsqM7saC2a0gtTufGeqwJ/37//V4HjrkN9fGPFbfh8Ii8/9DqRaYn0NA6RsSif2HgdQ91TFJdl4TCYiIyLBpmA2WAhOTcZdUwkCqUcn09EFyQz4bS7jqs7aU5FFn88eEfg7yWbKpHJBLQ6Ledct4nuun5WnlvDUMcYL/z1Dc68aj3zs2buv+VvxBRngVpFeO8UEdFh1JxRfczXPRZOlvLyw8A/BEHoRVJevuwkjS8EEJMYycTgjFSyEvQzFnWUejevx8szv39ZWkbt6iCrNI3e9jHY38PSMxfTsrOJYaB6Yzmd+zo49HoLlWuKOOfqDaw+p5rn7iuidU8Hl/3gwuMeq350NuA5tRgsTM1I+8KR7kmcjjiM+nmM+nlKl2TTukfyflaeWkHLyDyDnTMUrq9gtm2Q/973KkPto2SXZ/Dyw2+y5vwabrrry4QFOUyOlfDIBeONT4sjPk2qHsguTefr91wRuG/Trefz6L2vA1B90Vp++ecrT3po4GQpLzuAS0/mwEIs8JtnbuXRXz3Hnpca6G8fo2pNIZWrCjnv2g1vO1cURfY+X0tCegzTI3OowtR4xQXHiNe9kELldnuxWyTvnWHKxDq/lN5Ft57NRbee/b7GuujUCjZfvZEDrzSQVZKO3eWjt3WM9LzEwBJOJhNQBCU6ikE90Z1uL3p/dk3D9nbq32hFFGHrE7s569qNlC4veF/jOhZM+oVlpc6fRH2yCWWafAJQKOVExIQxOSxti70eH5d/66x3PPenF9/Jnv/Vog5Ts+yCFXT1zzEPVJxWhddiRd87SnZ2EjK5gGgykpwRi37KRFpWHLPjBuJSYzBMGVFpVYGZQRTFd5VFCCYsQsu3H76Jq0tuofFNqTPNkjOqqdvSiFwh55Qvr+fy2y4kLjmav972T4a7xpnpn6QwPw2LzU2k4COrJI2hznGKNpQzOzjNdN8k6jAVat3xz27HwvSwnruue4C2fT2Ub6xEBEZ3NrPrv3msvWjZSb1WyOA+IaTlJgW0/OOSIvH5fMhkMrwe7xG/xIfrx5w2J1a3L9AQUkwMo82/hEsRxUCXGpVGSUxKDPv+d5CWHW2cdvkaXvzLa0QnRnHNLy/j9X/sYG7SyPcf+3ogcHwsmPULnsJ5fymN1+MlNiGC9HypPnDjZav4zulSyczUkB4BGPOJCDKBkotW09ExgToqmqVfKKRjcI4ffPfffO/H57N0Rd77fBffmc7aPhrekILzI3U9gcSCn1/2e57ov++kFrAei5cyxMeANecs4g+vfo+MtAi2/XUL397wE5790xauKP02P//iffQ3D/HHbzxCQnocaq2KnJoCtJFS0adMLhAW3OQwKK1L0kORZk6LwUr91mZJ339Yz0sPvs6hLU30Nw3x9/976rjG++Onv012eQYV60pRqZVExOpIzIz3t+ySKgEEgUDYIzI2PLD3E30is37dS6fDjVWQY7a5MBpt7N7e+f7fxKMQkxSFJlxyEMWlxhzxA6aLCT/aw94XoRnuE0R0XAQDfkXm1t2d6Kct6Mfm2D02x+yYnrbDLYzPXU5rxwwje3oprspgdtrMobpRik9bjNrtoLu+n7LVRdjnHajCVKg0KjoO9JJflSkVnLaNoI3QHOEZDE76PRaq1pdxyhfW8siPngSQSnQaB3nuj6/StKONvzbfTfmqIn732o944o7n6G8ZpnhpHlabi+jiTNCqMZnspKTFoNWqkMkkf5EucsFz6nZ5TribDUjhlwfq7uDuG/5K8452MopTySnP5NJvnXPStSxDBvcJQhOmonpjGY1vtpFWkILa77ETBCEQ2wIguPbN4WFmQloi9Q7M4e0fkryXe7rIrsiky98Vp3JtMY1vSHuuRaeW013bz6HXmqlYX4bX5WHrYzvQReu45pdfOGZngj0oc0UulwVSqA5XDgCUrSxkvH8Kw5QJw5SJ0otX09IhVbNXLcmiqW6Iwb5pSirTmZ618u/H9zM6NEdmmJyXHtnBKZcu5ys/u+SoIYxjJSU3ic6DfYgiDHeMc9PdV1K45J21M0+E0JLyE4RWp+W3r/+Es244nYlRI6M9Eyw9vZLknASGuyepXFdK5foy9J0j5OfEkpwZS1hWNBn5khZjQW5soFe1SqMM6JvAkU1A3A4PVrO095sdm6N9Xxdul4d/3/ncEXVx78WXfnwpl377XM7+6mnc8pfrOOXyNcQkRfHFH118xHnR8VJ4QxAEZEHGHBzJdTo8zPgN9eDeXv7zh1exzdt58ZHtAQWxE0EURSrWStLrcakxpOQmvccj3h+hGe4ThiAIGKYlJ4TH7cVhcwYcIFarm756SYFY3j+F84xq+oZnkKsEKtO0tL9aiyZczdLN1XQd7MY8bWTRxlLWXbySkpUF3HPdA7g8PoT0eJJzE9GPzpGck4jVZMXklw0Pbq31XqjUSq67cyHOddvjt7zNyQNw55Yf8dJDb7D4lDLi0uP48+9eYbJ7nJkDbeSX5GBxelBlRZLm8zE2NEt+aQpzBiOz4waUagWasGMPih8NQRD41Qvfp3F7G6UrC4/I5zyZhGa4TyCnfmE14VFhxKXGoAlXB+JbkbHhAfe9LjYcrz8x2esTmR2WsuAdVidWowXTzDymGTOJ6XGc9ZVTyCnL4FuP30KvRkfz2DxzWWnEp0ZTv7UJn9dLzRlV2C0Obqj+Lj31/e977O+0HFWqFFxw0+lkFqcRrtNw6rp8mv61nbHmQQaf201bnIfdM5N0RDrJ3JTDXp+RkTXpLDmnmrAILT+86B6adne97zEFU72h7AMzNggZ3CeS9Rcv5/bHv45x2kTtlmYSM+PILkym4fVmciszqd5YhlKpoMpmJyspkq9ds4GLbjkbtVZF0dI8KtaVIpMJyGQC+YtyAs9rCaotc3sWCk/n56zMjM7hcriZ6J+iyd/88YNk4YdDh+j/4fD4RMaskvfS6vVisTgw6efRTxjZ88IJ59Z/KISWlJ9QHFYHXn8DRLPegmlCqpTuaxoiKSsB/dgc+rE5vvOldZxxwVIATvviWiL96WCrz1+KLkZHekFK4DnLytP5+q1n8OI/9xKmn0WxrkTqebCuAk1EGENtI2h1GhRBDUKcdidq7Yk5LN7KolMquOO1/8fBl+u56NazOTQ2w9/+vYvUISOY5zFFyclRaQhTOhEEAUEmoAsKdbzTsvXjgvBR5RjX1NSIhw4d+kiu/WnAPGfh3lsepXF7Gxd97QwObWmkZWcH2WXpKLUqeg5Jy77fbPkRi0+rPK7n/vrKH9LpFyhadO4yWrolY160JJPObY1YjTbO/uopOMxWdvx7L5d+5zxKVhbyzN0vsvai5Zx748kX4/nl5X9g+1N7pXGcUUXzPun1lS3PY7J7lOnBaTZ+YTVJmQm8+MBWNl9zClf/8gsf6PLwaAiCUCeK4js22gvNcJ9QImN13P6Pm3E53ajUSi773nl07O+hdGUhbpeH5/+0hcWnVhxXdghIorPBsgXuIHkHl9uL1Z+50rCtldEOSYTniV88ExASatjWQlpBynEb+bshimKgpReALygf1GGxMz0oOY32vVAXGPvTd7/A6VeuJ6fi+F7/B03I4D7hHP4Fl8lklK0qCtx2yTfPebeHvSN7/neQe7/2EKLPR/naEmQROsxeORm5CUTF6th8QTX6lgGmR/QkZcZhmppjfs5CRFwELtuChEF49MnLzmjf38091z3A7ISRstVFyOVyjJMGsotTcDjc6GLCSclLYqJvitzqHMZ7JjBOGVFplB8b8ddgQgYXIsCe/x1kbkLK1E8vz6K9TzrOKkjizn9cB8CqMyq5vvq71L3WRFRCJDVnVNO6p4uY5BgyS9I4+7rTTmrAuPbVRgbbpCJQl8NFj7+LbFiEFhcyJvumUKoVlKwto/NQP7rocJads4TexmG+d/Yd3PDbL3JwSxODbaPcev81ZJWkHfVa5jkL4R9QlcBhQl7KEAFyKrIC3svE7IXAb3TcgnyDQqVg4nAn0hkzU8OzOKxOJgdnWHJ6FavOW3rMlQXHQmpuUsAAkjIXZDnCo8MC2TVup4epIUk+x2K0YjE7Mc5amByc4Zl7X+Xlh9+kfX8Pv7/5kaNe54lf/Zcv5nyNb6z+f+x/qY4fX3gn/+/83zDr/wE6WYRmuBABLv32uZStKiQyLoL0wlRWv9rC6KCe8764EpCEU//56/8Fem0XLclFFaZmpHMMdZjqpOQ1vpVNV6wnszQdt9NN+epiDrzcwH/vfZnRgRnKVqYzO2EkIS0WEJk3WEkvSA4kagsy4YjuqFHxR29Q+frjO3HanPTU9/Ov3z5Hu7+t8hO/eIZv/PErJ+31vOc7JAiCBtgJqP3nPy2K4k/ecs5VwJ1I2iYA94ui+NBJG2WID41gjf21myuOuO931/6Zbr/383BOJ8CS0yvpPtTHfTc/wkT/NNf99p1lH94vRTUL5TjLz1rE77/xKIZpM7MTJopqcmjxlx1Vry+m4Y02hjrGqFpXwsTgDIe2tlC+uoilmyo59/rTjnqN3MosxnqkurvgNl7RiR++TJ4TOEUURYsgCEpgtyAIr4iiuP8t5z0liuLNJ3V0IT5WOG0LTUAOl9iApBw27y+nqXu9+QMfR1hkGAZ/XqU3KB80ODfUYXMyPSwtM0e6xrnrtR+963P+v399kyd+9V+euecl2vZ0s/SMatZ/buUREoEng/fcw4kSh2vPlf5/IYGgzyC/evk2Vp67hIq1JVhMdtKLUsmpzEIZoSMuPQ65Qk5acTrzRsn4zHPzuIKSok8W9+/8CWdeuZbklEimescpXpJNxcp85mfMZJWkkZydQFi4yr/UhOySNEx683s8KyCKzM9Z8Hq8uJxuTr9i/Ul3oByT00QQBLkgCI3ANLBVFMUD73DaxYIgNAuC8LQgCBlHeZ7rBEE4JAjCoZmZmfc/6hAfCYkZ8dScUUXLrg6G20cRRZGRUTPN+/twy1QklWaxb2s7N679GQ/d9gRfzLqRr9V8n6H2kZM6Dq1OQ7hOw1jvJMZpM16Hi+Yd7Qy2jTA3Mctk7zj1W5sxTxsoqEincVsz11V/l/7moaM+Z9P2Nvqah4mM0yFXyPxqza6jnv9+OSaDE0XRK4piNZAOLBMEofwtp7wAZIuiWAlsBR47yvOEhGA/4QjCwlcmWEHL4/EyPSp59GYnTez530EcVieDbSOBRosni8nBaQxTkgI1QJx/JgPQRS54Lx1WJ2M9Um2dYcqE3t8o5K00bW/jO6f+jF1P70epURGdGMW2x3dxY833j21mPA6OV7XLKAjCm8BmoDXo9mDR14eA356c4YX4uHHuDZsIj9Qy3j/FuTduYuu/9rP1yX2EhymQq5S0HRogryQFJV5Gu8ZRh6mPEFz1uD0olO/fm9m0vY3vn/FLvB4vxcvyuf7OL1O+pphdzx7kxb9uY7R3iooN5UwPTpGYHgcCtO3pIqM4jakhaVXl9XoZ65kks1iKyQUXxIo+H3MTRgBGOsePaKpyMjgWL2UC4PYbmxbYhNQdJ/icFFEUD1cBnofUZSfEp5RTghwJl3ztdN54bDutO/yewg3FNPi7o9acUUVXbS/3XPcAI51jmGbn2f3MAb54+8Vc+p3z3le8bqJ/OtB40Wq2Ub5GKhpde+Eyfn+z1FZZPzZHfmU6zf6uPUs2VVC3tYV7b/orHQe6advdyUT/NBfdchY33H0Vqy5Yyue/dz77XjhEREw4ydmJdOzvoWhpHkPtI8SnxWK32JmbNJKWn3LUsR0Lx7KkTAHeFAShGahF2sO9KAjCzwRBOM9/zjcEQWgTBKEJ+AZw1QmNKsQnBrfLc0QVuMOykOLltEneS1EUOfByPa89uh3bvJ2/fv/xgNEcLzVnVLHo1HKiEyK54ObNgdsHWkckPRY/LvuCs8YVNEuNdU8w3jeFKIrsfEZytCtVCr7y68uxme207e2mfV835WuK6DzQzW2bf8kfb32EL2bfxFcrvs0Lf97yvsZ9mGOROm8GFr3D7cFCsAE59BCfHXY/e5A/fevvIEDJigIUSjkWg4XU/GTUWiVypYKYpChM+nniM+LQj81hM9tJSI9738vK+LRYfrPldtxOd8DAHvjBkzx7/xbCIjUs2VTBRN8UVouTkpVFKJVyrGYb6YUpeNxetDoNscnRzE0aqT7lSFeELaiVss0vMSGKIv1NQ4FOOgdfbTihaohQpkmI982Op/cHHBHJ2Ym07JIk7DKLUxhoGQZG0EWHE5caQ/1rzcSlxvC5757HRbe8P1XnwwiCcMRs1ravG1EUsZrsuGwuxv2SE4npcTTvlFwNcakxGCaNTA5MExap5a4dP6VybekRz3v3jv/jT998DNEn4nK6iE2JISYtFmVSHGFRYbjtLqo3vNVfeHyEcilDvG+ySqR+bTKZENB1BFAHKWh5vV5mRiSf2uy4gVXnL0N7khWUN1y6AqVKQUJ6LGqtMrA31AZpcYZFaAO6lzazneJlb5dMz6vKpmxVIa17Ouk+1E9ifgp9Sh11I2ZiNy7msd77ufh9VGEEE5rhQrxvvnT7RaQVJPPI7f+k9uV6ytcUowjTMtA1TtWplcyNzRKVEosgirTtbKNgSR6DrcPklJ/cZpwX3byZyJhw7rzmz0z1TlCyqgiXKKNx/wAVpy9BjsjkhInqM2sYbxskOTeZlx96g/NvOp3O5hHMBhvLNxTj9fowzy4oRiu0apiXau8EjeqkKDCHDC7ECaGLDmPSv4TrbRzELZOShVsPDZGak0hHvVSkWnlKJY3bWvjVF+9janiWy753/kkdh81sw+d3xFiMNiYmpT1XR91gQCJeP24kOz+elt1dtOzuoqlhhP17pdzQM8+vpv7ZPUwOzlC1oQxfRDhDNi8VVUkYjVZiYnXs3tHJmvXFJzTO0JIyxAmRkptEqr9XQNX60kBGvkIpPyLf0mFdqCIP7jtwslh25iLK1xQTnRDJ6V9eS3q+VF6UnpdImH+JKwgC7iDvpTmoe+tg6zDjfVNS48phPc1TNkzzTlqahpmbtdDcMMRPf/g0TQ1Hz1Y5FkIzXIgTIr0ghQcafstI5xgFi3Mx6ud54HuPU7+lERwOihZlodSqsRmtJOckosmIZyoyjDmDlchILfsO9lGzKAutRsW8wUpYhOZ95S8mZydy15s/we2UWiJf+PUzueOqP7Ln2VoiYnWcdukKLrllM0qFnHu//jAeUYZTbyIpOQIBAY1KRlRCJKYZMwmlacxaRFw2Nyq1HHtQipdGc2IaKSGDC3HCaMLUFCyWqryj4yNwztsDPciTClJp3ScJEmUuy6NLLqN7Xy91HeOoVQomp82kpURzSmYcL/zhJTJL0vjh379OSm7icY9DJpMF+iGotSrG/Wld83MWihZlkVWUCsApX1rP3Tc/CkBKTgKTg3omRJGI6DASr61mp9NBcm4Ei4Rw+rqmiIkJQxem5vSzqsgvSD6Rtyq0pAxxcump78fr7yEgCBzREEQZ5DX0en1M+lOqxiaMbH9mPw6rk+5D/bTuPTFRV9u8nX//7gVikqKQK+QkZMRhM9kC93tcC0F3tVbFYeU6m8VBt1OKxU3OzaOfmcdksjE4qGf9aWWcdd4i5IoTM5nQDBfipPHq397krq/8BYCqDWVMD89Q+0ItFadUIlerGGwcYvFp5eh9IpGRGmSCQEvbKKXZSSjlAjNd46h1GpSRJyb+89BtT/Lig9sAqVC2aUc7D/3wnwy2jfC9v93EWVetQxDgzacPMD4wTeXqQiaG9cSsyCE1K5rGnnHy0+MJl3qgIJfLCFOenLkpNMOFOGmM9U4Gju0We6DnwUBDPy17u5mftdDx1H7cLg+t7eM0t41Rk5dKb90wHdN2ar5yOsrFRfzmN6/wnyf2vu9xHC6GBfB5fIHqgcMBcYDTv7SGlr096MeNNO/pxrsmh30uG4094ywvyWRgQE/tnJ7FyzKJnZzmD5f/nn/f9cL7HtNhQgYX4qSx6cvrKKzJJTUviU1XrCc5R9qHZZakoYuSZi2F6kgnhN0alHvphXmzA6/Xx8G9ve97HDfefQUrzl1C+dk1OGKiyVqUQ1RSFHF5KUz6g/BdDYOE+8ckkwnYvAvLTHtQ0axjxshs3xQet5cd/3mryMHxE1JeDnFS8Xq8IAjI5TLsFgc/PPtXtO7uIjoxkoKlBfQe6kOtU6NbW4o6LAzXnB2TxU5EpIbomHB6Oiex25x8+asb+MKV71/eoL1xmG99+QFAClHIbA7cDjfacDU1G0rY9VIj0XE6cnPjGGkZRBBA2FSCJjkGp93NnMmGxuYix2Cne3cXVqONC7+xmRvu/PJ7XjukvBziQyPYpa/VaRjuGAekmjPztBHDlBGmoKowjZYxqaIrrzSF3h5puRefEMGf/34dicknJt4TLO2gDVNh8fcZt1uddDVKsTTjrAVbfBiTfdJSuLQolf3+5WheuBb9P/ZSL4pEJ0byp9pfkXecKtbvRGhJGeID5ayvnIJMJlCwJJe86mxAWsIpg/Ip3yqvd6LGBlC9PI/b7/4Cp5xTza//eg03/ORCouMjKF+cRVJKFDKZQFJaDBrNwg+EKmrBWaP1+gLeS5fDfVKMDUJLyhAfAjOjs4E8xFceeZN/3vUi02NGKjYvApWKoeYhspbkMjfvIEYlY/MFSzj14qXs2d2NNkzFkiU573GFY+POrz7A60/uAWDxpkoad3Qg+kQq1xRisnoY6Z2m+NQSRI0CfcMIyUkRjLcPk1qQwlnXbGTj51Ye03VCS8oQHynBSb8RcREB7ZORul5MDukHv/W1ZuKSImmbMtO2o5Ote3o41DSMIMAtt27m3HPfVpJ53JhmLYFjj9Md8F7abB6Ge6YAGNzXF3Dk6McMJMWH0by7i+bdXcgVctZdtOyExvCeS0pBEDSCIBwUBKHJX9X903c4Ry0IwlOCIPQKgnBAEITsExpViE8t6QXJJGZIBpien0K4PxiuUMmxB+lemvxV5KIIRqP17U90HAy0jvCdM35Jf/MQhYtzKF9diMPqJDUvkZjESKJiw4lNjAQgLS8RrU7KvZTJZdgtCwHzYG2W98vJEoK9FjCIopgvCMJlSJonnz/h0YX41JFdms6f9/6MH114F617u4hJjmbJuiL62sYIi9CQVpQMWXE4fCLx8RFERYcxNmNm3uJAo1ZycE8PS1flozoOWfV9L9XT4m9JHJMUReseScZcFx2G0+Wl7vUWwiK1lC3Np622n7jkKIqW5zM870Qpg7gZA9rkGF7c2U3+sgISEo4umf5eHIvEggi8lxDs+cD/+Y+fBu4XBEEQP6oNYoiPNeGRWoY6JVV8w6QR46wl8K80P5Hafml5V5SfRGfvFJ2TszR3j8OoBf20mey8RO5+8Cp0/tmxq7aXx37yFBGxOm685yoOvFTPRP8Ul//oYhwWBzMjCxqoYVELrbQ0YWqsFsl7aTPbGfUHxmcnTcSUpjPp70lXuSifxqZhmO7nt79+gTvvvvx9v/Zj+pkQBEEO1AH5wB/fQQg2DRgBEEXRIwiCCYgD9G95nuuA6wAyM09uEWKITxabr1zP//60lcLF2WSVptHXNoYgE1AEdSxVBoUYPG5vQM5usG86kK8J8PjPn6b21UZAqio/3IO840A37Xu7cVidFNbkIWSn0jRupvScpciN8xjNDiqK0xnpGCOzJA1RpcQ8ZyU5Mw5NUNW6Mih/UheUD/p+OCaDE0XRC1QLghANPCsIQrkoiq3v8bB3ep4HgQdB8lIe7+NDfHq4/leXcdFNp5OQLom4FlRl8vSft9H6SjPLTinBmRLJ4LCeqrJ0jCYbMYKClIp0OltHKS5LZ7Bvmqol2dKTBant+XwLhmifd+DwO0BmJwzMqiIAgbYxMwnzFgzTZsYHZylalEXLoUEAFp9eRX3jCOP7+1m6Op/JeTsNDUNUV2dSUpbOxZcsPaHXfVxxOFEUjcBhIdhgxoAMAEEQFEAUMMunmM7aPub9S47DWvQhjo/DxgbSMnN6zIDPJzLdMUFT6ygms4OmtlFs/QY6a4foaBmlrCqDjtZRvnfT33ntxSYA/t9T3+KiW8+mZEUhQ22jlKwqpPDcpbjKssldkotGpyF1YwmJudL1YtOiELULc43btSCj5xLFwH7JbnEyMjKHzycyMjrHV766gZiYE+vuelKEYIHngSuBfcAlwBuf5v3br6/6Mzv+e5C4lGgu+cZm/veX11FrVdzo77Y51DHG1++5gpSc46/p+iwy3DlG/asNxCREYJiZJzkrjmnRi83hRq1S4Jhb8BRa5qUZSxTB7C+5UWlUlK0q4r+/fwkA+ZiGqagoGDciS4pDtyGX7RYbaqWbpRcVs69vlPD0FGqW5WDtMzA/7ySvOgutWoFrbp7ktBhcLjfhPjdRWiUmu5uMaA12qwNt+Ae/pEwBHvPv42TAvw8LwQKHRFF8HngY+IcgCL3AHHDZCY3qY07rPsnLNTthZMd/awPdN5/87fMBb9hdNz7M714NSXW+F9Mjer5a/k18PhFdTDhZxZk0vVhLXG4SlRtL6X+pgejoMDS5qajsTjwzs8RGaYhLjmJkYAarxYFSKWewYxy5Uo7X7SUqNYYp//P7RJhxSEbqdHuZttvx+nyYbU7ssREMdktnxpamBD7XuORo5joHmHF7iYjVUVqSTvMjW7lhZwu/fOmHpBe8f/XlkyUE6wAufd+j+IQwb7Dy3F+2kpafjGHKRFJWfCBmA6AM2vCHR338Grp/HDFOmwLydRaDFWerJDo02z9FRJiS+Ukj85NGKhOjaPG784s3ltPRMUFvxwRdraOYDnYwN2UiozSL6MRIOmv7KK9SI5Zn4hJAHqem22wgJyUOlUKOQi4jQqMmIqg5jiZsoVBWrVEG+s7Nz1kYaJCEhsZ7J5ke1n+wBhdigT9++x9sf1py0C4+pYyGN9uZGJihal0x+nEDDW+0UbG6iPJVhVxw06aPeLSfDPKqs7n2V5fz4gNbScpOAJmM1v19lK4oICkrnsHWUWQKOfKgHzNFsKS5083clFQpOtI9wdSwHrfTQ+/BXjLT4ugxWKEPStdkc6BPCkUszU5h4skWmmxuiqsz8Xi8NNcNU7amGNxuDNNmqs+sYaCuh6ySNHxeH627O8mtzCLDL9PwfgkZ3HFgngtKDXJ5Fkrz5x2M9UpLk4G2Ee585Qcfyfg+icjlci77wYUceq0p4M6/8ueX8aUfXQxA4YpC/vufepqGzFSdUY3XJzI8bqaiOhOT046wRkkBhfRt66VkZRFWo4XB1hF00WEIwWEFYcGlIDp9uG2Sk8s0Z2ViWPLvtTWPofW5sFucjA/MkJuXTPMOqdXW5T+6mKt/fuI7pZDBHQN9zUP88dbHmOifonBRFkq1EpvJRnpBEjazHZ1ORWxKFHMTJjKLUpg3WIiI0eFxe/H5RFQnISXo044lKH0rLjk6cKyNj0Lvj79N23xMjErS6q21Axh/rcbmdcE1sCZ/Ge1bxhFkMpZdtJLWhmGma4dYvq4Q16yV8Re6qDwjFzFMgc3rJqMkmdmhWZKiVXjsOmZmLCSlRWObnENKrgKnZaHXQHxQD7oTIfRNOAb2v1hPm1/YJjY5mq6DfQCERWlxGC3M9E+ijdBQVJVFyxstfKXiO3zu9kt5/vF9qMNUfO+eL5JflvZRvoSPPT95+jv88ZZHKF5WwLpLF7Lyc/KTiInXYdBbSEyNwjBnwWFzoY1XMe1bcOdbTH7vpU/E7hFx+Gcw76yVLn+MLezNYQ6tkMqC5GUCpc0G6l8aRBOuZtH6chq2NBIRH8GiNYXMDE7jsjrIr84hLFLD3ucOUnN6FSm5SSf0OkMG9x6YZ+eZHV/onBkWueAW1oapscxI+wf7vINxv6bH3ISBXa80Mz1uBGD78/Uhg3sPUnKT+MULb/fqFldm8MAzX+c7Vz9E08EBEpIjybouk7rkMTI10WgVSpSCHPFCHxHjDpIjolGFKdFoVYiIhIerkcll+Lw+dPE6QHKGCIBhUvrsHFYnU/2T+HwipmkzLrOV4fZRAEqW5dK8U1pW/vj83/DXlrtP6HWGDO5d6Gsc5JsbfoLD6iR/UTYyhZymN9soWVGAPEyDweqhsjiN0eYBMopSEQGT3kxqfgpav5dSEAR00QvBUlEU31cjws8yYeFqhvulfMiZSTPzqWrMLgdmi4MlsVnUzUkV3DXXZ9Lzo0EAsgsSmOsep/aVBjKL01BXpHJo3sjiqCR8OgHvnJuEL6xkYmsbaadXItMoEXqniEmIPKIzT7DMX9hJ8DyHDO5dmBiYDqQG6ccMGKelX8SO/T0kVBUwN2tlcgyKClJp3ik1fV189hIaRixMtI1TvaGY6Zl5Hn14JzMmGzFKGS8/vodzr1rH8lNLeeb+16hcU8QZX3r/2h2fdiaHZ/nPn1+nvCqD1qYRcguTcLrU9ANKnwzVtC/wLVbYg37IvGJAvWu0ZwJ9lgYRga6OSXJSYxkYn6MfWHb1eupbRgCo+eopdP7lNWqHp6lYX4bd6qRxRycV68vILE7l8yehH0LI4N6FkuX5LDqlnI4DPWSXpTMTFcZYzwQJGXEoNSpA+kDdzoWAjkdc+NBtLi/j/mXlmy83Y++Xlpx/v/MlXv3bm0wN6dn21D7CIjSsPf8dC4Q/8/z6pkfpbpJic4vXFdOwsxP2w+ZrSxn5dzejM7WcenUFokvOxK5BysvTsFocaPFRUJVJf9so/7+9M4+Pqjz3+PedJZlM9pXsG1lIAgHCFlA2BUVEpdqiVuu1bhS1rXu3q/beqnW7bVGrV7kVpVq72dreqmCvKyIgSxKykIUEsu/JZGaSyWSW9/5xhmRCESIJSYjn+/nkw+RwzuR5cvLMeZfn+T1ZC1Jp8PenureX4AAD3gMMp1cnVpfDidOT5mXuNFPv2RQ//HkNT7//EBrN6BVJ1IA7BeGxYTy+/SdsnHM/hR+WotNrWXD5QgqLGjH09DE3P4WO8no66zvJXJiGj6+evpYu4qeF0i8FAcF+REQF0dFmJjE+hMbOHqw9NrR6DXavYkvvIYzKcHq9Gm54NwSRBVa6m5URR9/OduqOd8vZewTZb0d6qgnSchMp2X0ErU7Dim/ls7u9k5YOC4uyErB19tPS0sOMtGh8Bhy4ShtIyIyhu9VMZGwYfdYBOpu6ScyKU1ajQ0aXRwmqiNBpEULQ2axIAjgdLswWO26XpM9qx9HTy7GSOrpaTLgcLop3HubIwRq695XT3dnLwT3VWC02shNDqfikHJ1eS15+Cv4DNvQ4ycxLJnt+Cn966i2aqls49MlhXvzBa5jazRPs9eThP165lTnnZzAzL5EBcy9RsSHEJ4ahdTsJCgtAoxGExwTj42myERweoCRaejguq+ByurGa+rA7XPTZHbhsLiqqWujs7qW/t5/KX++g8qNSmo+243K52P9eEdbOHmYvz6K2rJGN839MVcGxUfujPuFGwJ3P3syL921jwZo5JC/IoO4X2zEY9BgCDGg0ArdbDkvlMgQY6PV8wvbbHIMKxKYOK2Z/7WCji6j4cA59oKyA/ezqX1JToqyMffLnvbxe/ew4ejh5iUuJYvGF2Tz/wO8ASMqMoWZ3CceA4KhgIsKN7HtrD9FpMSScn01FSSNJc1PxERKNn7Ki3G8bIDYpHB+bE1+tBh2CwAH34L0L9NVzXDPa4O+L1VMFYrP003KsHSklHY1d1JU3kj43eVT+qAE3AlZevYTl38gfHMMnpETyyA3Ps6+2lemLZqDRCEoKG8laloNOummt72BmaigtVicxwb5obAOUmvpIyYolbXo45XsqEQJ8vIstvV5P4UKLM8LtNc/y8WoX5egfoNmzkNVypBltXAx9VjvHKlvJnpdMWYEy95s5K45iTxbLnHnJNFW1UmQuZUZ+Or6hRqpe+4yZK3ORbhc2hyQt2I+afZWk5CYjdBpa6zqJiAvFZu1ntKgBN0K8J8wDtgEG+pWN1a7WHkye8pHKQ40EGwSdTV201rSRlZ9O0XtKq6Yr71nHJo9qb+aCVF5/5C/sf6+IWUtnoNFqOXa4kVlLZ2BqNxMUFsD2rR+x5tsrxtXHycr676xCb9Dz8ZufU1fVzOyL8mivbiQsNgzplpTuKidzaQ668EBaG7rR+2jRaIful/cmjHS66TUrGSTtJfWDXXUOHzhKTHoMLZ7Kj+y8NIp3elaeV82k6JNynr17G/WVzWx66voz9kUNuDMga+F08i7IoXxfNRdffz77PjhMTUk9sSmRuMxD8y/vwsbgsICh1+FBtBxVhpm1ZY1YPX8AxTvLiYwPp768idLPKgkI9ef89aOrMJ4qrLxqEc/e8xoApjYL0yL9KPEExLwNyyk6UAdNdcxfPoOq4nrKC2qZk5+Kw+Gi9kgbOYszsNvs6IICSJudRG1FE+mLM+k42kpjRRMh0cEIryB1eBUUOwdcioQ7SoL0aFAD7gwIjw7hsTfvps/SjzHQwPU/dHFoVwWzl86gv7efLQ/8luKd5XQ2dJCzOIOc82ew9pYLB6+PS48mJnUazTWtJM6Ipa6qGWt3Hz4G/bA2vQZ/35P9+K8kpbsrCAz1x9Ldi06vHbZi2efVRthuG6DHs/9mNvVRU67MzqoHnNgHXNCk/F/S3DQOFTYoK89X5VO0rxanS8OcC2dhbu2mq9NK+rzp+Bp9cLgksWnR9FtsXHjtklH5oQbcKDAe11TUa8lbkQ2Af5CRsOhQ6g4rCyBpc1O49fHrhl2XOCOOFwue5EeXPELJp4cJjgxi/R0XcfX9V9Br7uOFe7bRb7XxxmNvKh06j7ax9+2DfPMnV2IMMrL77/tZdGneMKGbqcwj1z3Dzjf3EhIVzLwVWRwtrEHvoyUzPwpDbBR2N0REBxMQaEDndhIQ5Ietz05oZCD6mg4cA05CIwJpbe4ZnB93dyqB53S4MJvtOAacOAacuCSDi1fBYQGUefIwA0OMvFb69Ki3cNSAOwtEJUYMroCFTgs56Tl+AQbqy5VGFz3tZuaunElYdAhh0SHkLE7nlQd/D8Cj1/ySqoNHAdj1189xOpx0tZiIS4/hmc8eJSj8zDUSzxWOJ46b2nqwtpvobFK2aaJyUikpVn6HqZnRHPmgAICIpEh8YiLYv7eGmPhQomNCKS+qIyVzGnofPdIt0ek01Es38SmR+Br06PRaDH4+GHy1CCGQUg6K1AIYg/zGZL90JMrLCUKID4UQZR7l5e+f5JwVQogeIUSh5+uhk73XV4U1N13Ak+8/zPQ5ybz36kf89MonsXkNgTqbu3nxvm2kzEpEo9WQlB1PyzElV9Dlcg/bh/OWjXO5XINbCo1VzcPmiFOZi29YjkarIS5tGgZPhb0QguCIoQ8bH5+h2jeX001nu6I32dzQTe2RVvptjsHhZWVJA2WFdSRnxHC4oI7C3dVk5MThbO9i37uFpM1KIGNOEiW7j5C9IJXshan4+Op55ZG3Rv07H8kTzgncK6U8KIQIBA4IIf4ppSw74bydUsp1o7JmChGTEkV14TEAdr21j96evkEBmmfv/B92/fVzQGkqUfBBKc/f/Qrln1dxeG8VzTVt5K7IAbekpriW3GXZ9HRa8A8yEp06jbLPKsnKT6fqQA3h6+Zh6bbS2dRNck7CRLl7VrnxPzbgH+THlh++TkNFE/nr8rjl8etJyIjhb7/dxa6/7efYZ8XMXJRKd4eV4BA/ooMCKa/tIWNOAq4BF90dVgxGH4RXYHrLGbtd7iFJvVYTXZ4slrJ9NYREBGLqsPCHzdvJnJfM4kvmnLEvI9E0aQaaPa8tQojDKMKvJwaciheGAAPpeSlUHTxKYlbcsE9jm2WosNHpGNpjaqpuHdwkr69oprtZKQs69EkZ4XHh1JYpEgGzls6geGc5D17xJOtuW8UHb+zCbhvg1ieu46q7Lh0P98Yd72p7jVZLokfqYOnqHH5942YATC3dhMeGUV98DIDcm9dwqKwZIWDB2lkcqmmltMvMnFVZOJtMHCusIWt2Ai6XG3e/ndSceBqPtpMwJwVf30aaj7UTGRuKy6s7akhk0Kj8+FJzOE+TjrnAicrLAIuFEEVAE3CflLL0JNd/ZZSXg8ICeXbPzyn5tJzc5dnDSnJ+sO27PH/XVuLTY1m0bh7P3/0K5k4LxkA/ohLDaavrJCEzBqfdjqWrF18/n2HL1H1e+YV1FU30eQK48MPSKRdw/X123npuOwXvF5OQGYvdNoBWp6GtroOoxAiklASE+GM19aL31Q1bvez1rF5KCTaHC6vnCWZ1uji6R9kfbS5vxNRhGbxmWm4ShUWN6PVa8i7I5uDb+/EP8mPZ5fNY/51VZM1PHZU/I+4PJ4QIAD4GHpVS/uWE/wsC3J6GH2uBzVLK9FO9n9ofbghTu5mr4zYipcTg70tc2jSOHDxKcGQQ6XmpVO4/gl+gH+Gx4QihdPHsNfURHBGIMdhITVEtA7YBbn3yOi7fdPFEuzOm7Hn7AA+tfwqA4MhALF29uF1ujEF+vFK+mZDIIDoaO3nhnlc59HEp/sFG/KeF4pMax4BWR2eHhdAwf4JCjJQcbcPhdDE/JZLitwtxDriYnhNPTVnj4OqlPjacAbsyT0sJ0VOzV1mwufnRa9hw72UjsnnU/eE8XXPeBF4/MdgApJRmr9fvCCGeF0JESCk7TjxX5V+xdlsHb3h/r32wcryn3UxPRw/mTivmTivTkqIG6+4y5qdSuV+Rb5uWHMnLZb8gOGJ0w53JiPeQ2xjoR0/7UPON4+2jIuLCsZp6MbWZMbWZyV2UzaEqZREqMzuWijJlJTMuPpS+kkoOvF9E3IxY1n93LWuuW0LJ3mreeOY9+vsd+AQZqW80kZgUjtZiQafXEhDij0uOTdHwSFYpBYrQ62Ep5Unry4UQ0Z7zEEIs9LzvlJY6H0viM2L53nM3k5gVx+2/vJGvfW8tWp2W1Nwk/IOVDBWtXouP176bdx6mVqedksEGcP76hfz77+/iitsv5vHtP+E7T9/AtJQoclfN5t1Xd+J2uzm8rxqdQfndaHXaYVslOq9GHNIt6WlU5sWN5U2s3rAIH189ectmoDPoOVLaSNnuKpJjgyjdWc6hwkZyLpqLTejY9tTbPHbrllH7M5In3HnAt4BiIUSh59iPgUQAKeV/o8ibbxJCOAEbcM1Uljo/G6zbuJp1G4e0LH0Merb+u7IXN3f1bBobeijYXcPsVblIt6SmooXZF8zC2m3FLyKE7W/sZs21I2uJe66x7Kp8ll2VD8CV319LwaeV7Pu/Ekr2VFOyu5I97yo9BpZft4Kb//PrTEuK4s+/28Oez6qorWln1uxEzN1WAvpshCxMo2J/NVkL06guqmXmeZkAw+bY0jX0p+t2g8MzxKyvbGG0jGSV8lOG53+e7JzngOdGbY3KIGavibzd7qSz2QRAc4Np8HXJgVpCEiKpLW2m/IHfEzYtiIUX5EyAtePL8eRjAGvPUN8BX38DMSmKqtaSZRlsef59AIoL6wisbaDek/KVtSiNsj1V3H/Ro/xg6yZWbFjMw1tu4uUn/kF5QR311a3MmJuIcLlx2Owkz4ilo8XExdedN2rb1UyTScqlG1dTuruSgf4B1ty4Astz/6T5aBuxiWEM2OxYTDaMgX44vOc4AaNrNHGu8KPfbOTZ+17DZrJiae0ibnoUUsKAtY/2hk4i4sIo3V2J0ehDX98ARqMPdq+VXYtHA9PtloOvfQ0+pM1M4O+vfAqAn58PLVXK3E9oBK8feoLQUXQ+PY4acJOUhMw4Nu96ZLAsaOWGxdy97EEKdxwkOCKIq7+3hm/cfSmmTiu/ffodFl+cS/b8lAm2enyIjA9j5fp5PPbNXwEQlRRBR6OJhkM1HNhRSFxGLJUHaghPiiT7/BwqdhwkMjmC0JhQ1ty4goAQfzbf8RvCY0KoPlhDn8WGRqulvroNrU6Dy+kmKMw4WJSq02vHJNhADbhJjXcNnsHoS8Px3MsOM3OWzSAg2EhAsJEfPX/jBFk4cbTVDy2AG/wNg6u8veY+jhQouaedte34G6vo7TDT22Fm3cZVXHitMiy8+ZENPH79M5TvLqfyQA0d0heLqY+E1CiCQo0cLqwjY1E6WrsdS2sXv9q0hY1PfQu/UY4i1IA7B2iuaeUPT7xFxoLplO6qIGVWArWl9cy9YNZEmzbuWLqt/PiSRyn//AhZizPw8dFRX9HErPMz6WgyER4bgkarpWRXJdNnJw3mXup99SRkDonxHpc8BHA4nFisytC8qa6Teo8GZmVZM7F+burKGjhWXMf03CQu23TRqOxXA+4c4Jk7trB/h7ISN/fCmRS8X8KRgq00Vbdy+6++fdJrCj4o5o9P/Y3zv7aI1TcsZ8fWD4lKimTR2rzxNH0YB98v5s+/+Acrr17C6huWn9F7tBxto/zzIwAc3l05OATsajGRkptMiac/X96qXAo+VJKdLrj2PG557FrCY0KxWW28eN9v+fhPnzFrWRY6vY6r7rmMHX8rYt+uChJvTaWv1ELL+80Eh/ihcQwtygSpc7ivBt6Ses6BoUUSS7f1ZKcD8LNv/BeW7l727yjivVc/oszTbPDe/9nEmpsuOHvGnoKHv/YU/b129m0vJDolillLs770e4RGh5AyK5GjxXXkLMmktbadjsYuNFrNoKYkKIWox/EP8iM8JhSAuvIm3n7pnwCU7CznXfsbaHVaFl0ylxs/eZlPTLVoUwSrE6dT9vNd9GoF8y7Kpafdwgv3bMPP38DCS/6lXeKIUQPuHODBP93LS/dvIzU3mbxVs3jm9i243ZJLb1110vOllMMyNLw70/T32c+6vaD0Pd/9TiGzl2YSGBqAqa1nUKYAlPqyMyEiNoxf73ucIwXHyFqUjqXbytsv/pPlG5ag0Wr47/u2kbMkk6z8dDbf8TJoNVhsLrpaewiOCKBsdwUGf1/6e+1EJoSj9Wpp1TagbMW4pMTcaxnMX3XYnVQXHQPgd4/9ZVQBN+JcyrFGzaU8c0bSn6ChqpkX732V7rYe+vvsOPodZOWnc9Oj3yQqIeKs23jb4oeoK28iLDqYC6+cz1vPvkvotBDiM2K47DsXkb8u76z3WKgurufO1T8HIDDUH4PTRnN1K5EJ4ay9ZRVX3X0pfgFDgf9RSwU/O/S/xPiFENDipuGOz/BBS/biDPbvKMLtcrPq+mU8sPX2U/7cU+VSqkKw5yAj+UONT48hLj2Gis+PUFtST3peCj/c9r1xCTaX00V9hSK209XSw2f/e4D+XjvNNa3kr8tj8WXzxqWhidnrye5yuGiuVqTL2+s7WfaNxcOCDWBFdCa3pC2lqLueXb6NBG1diHPAyefvFJCYFcfDf76X+1/eNCqb1ICbwnhrnoRFh47Lz6wyt3H/gbdIv2EmWp2G2RfFkzBPEcn1CzAQlj5+I6rcJRnc+OPLSctN4M4nruGyTRej0QiWXLGAyITwk17T4xjKYsHNYFFqV7OJ865YMOoPCnVIOcXZvvVDdHotK689D61We/oLRsnVH/2Gwi6lUPaBVAc6fyW9SluyDGdSISLQwszQ65gXceph2dnC3Gk5pQ5Mn9POU6U7qDrWgPGNNnyO2qmraCJncQY3PXot6Xmnr4cbdXmOyrnLmm+vHNef1+8aWin0C7TgUBTfCZ9vpq1fqeJq7jswrjZ5czrRJaPOl/tSVrF+7r8NHovPjGX/jkIK3i/mifceZPaKM89XVYeUKmPKliXf5OK4LOaFJ/BuQyxGXSphvhkIBEZdFBrhQ2LA0ok285TYLLZhys2mVmWT3OV0DdMNPRPUJ5zKmBLlF8iSyFQeLnwbAK3IZmXMPwDQCT+uTPoj/vqoiTTxtETEhfPLT/6Tvz7zDpfethpLdy8v3LWVRZfmMWPRKYUMTosacCpjjl4zNFeMMAz9iQmhmfTBdpzsxZlkL84c/H7plYvG5H3VgFMZc65KnkOwj4G63m42JOdR35tKrfUDckKuO/3FU5zTBpwQIgHYBkxDUfJ7SUq5+YRzBLAZWAv0ATdKKQ+Ovbkq5wqrYmcMvs4K+TpZIV+fQGsmD2MlBHsJkO75WgS84PlXRUXFi9OuUkopm48/raSUFuC4EKw3VwDbpMIeIEQIETPm1qqonON8qW2BUwjBxgH1Xt838K9BiRDiNiHEfiHE/vb29i9pqorKuc+IA84jBPsmcJe3DuWXQUr5kpRyvpRyfmRk5Jm8hYrKOc2IAu50QrBAI+DdSSLec0xFRcWLMRGCBf4O3CAU8oEeTxMQFRUVL8ZKCPYdlC2BIyjbAiev+1dR+YozVkKwErhjrIxSUZmqqMnLKirjyITVwwkh2oHa05wWAUyVDjxTxZep4gecPV+SpJQnXYafsIAbCUKI/V9UyHeuMVV8mSp+wMT4og4pVVTGETXgVFTGkckecC9NtAFjyFTxZar4ARPgy6Sew6moTDUm+xNORWVKoQaciso4MmkCTgjxfSFEiRCiVAhxl+fYT4UQjUKIQs/X2gk2c0SczBfP8e8KIco9x5+cQBNHxBfckz943Y9jXul+k5ov8GWOEGKPx5f9QoiFZ90QKeWEfwEzgRLAiJJu9n9AGvBT4L6Jtm+MfFnpee3rOS9qom09Ez9OOOe/gIcm2tZR3JP3gEs856wFPjrbtkyWJ1wWsFdK2SeldAIfA1dOsE1nyhf5sgl4XEppB5BStk2gjSPhlPfEU0WyAXhjguz7MnyRLxII8pwTDDSdbUMmS8CVAEuFEOFCCCPKp83x+ro7hRCHhBAvCyHGRyB/dHyRLxme43uFEB8LIRZMqJWn51T3BGAp0CqlrJoQ674cX+TLXcBTQoh64GngR2fbkEkRcFLKw8ATKI/47UAh4EIRI5oOzAGaUYYwk5pT+KIDwoB84H7gj2I8WsicIafw4zjXcm483U7lyybgbillAnA3St3nWWVS7sMJIR4DGqSUz3sdSwb+IaWcOWGGnQHHfQEuB56QUn7oOV4N5EspzwlxF+97IoTQoVT0z5NSNkywaV8ar3vycyBESik9H349UsqgU189OibFEw5ACBHl+TcRZXz9uxOUv76GMjSY9JzMF+AtlIUThBAZgA+TPOv+C/wAWAWUn0vB9gW+NAHHm41fAJz14fFkUl5+UwgRDjiAO6SUJiHEs0KIOSiT22PAxgm078twMl9eBl4WQpQAA8C/yck4vBjOv/jhOX4N58hw0ouT3ZNbgc2eJ3Y/cNvZNmJSDilVVKYqk2ZIqaLyVUANOBWVcUQNOBWVcUQNOBWVcUQNOBWVcUQNOBWVcUQNOBWVceT/AT77wjr32cHcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gdf_sum_h3 = get_h3_vector_statistics(\n", + " \"../../datasets/raw/h3_raster_QA_calculations/preprocessed/Deforestation_IDN_2021-01-01-2022-01-01_area_ha_sum.tif\",\n", + " f\"{FILE_DIR}/satelligence data/AcehMills_indicators_50kmbuffer.shp\",\n", + " column='def_estimated_sum',\n", + " resolution=6)\n", + "#save\n", + "gdf_sum_h3.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/deforestation_sum.csv\")\n", + "gdf_sum_h3.head()" + ] + }, + { + "cell_type": "markdown", + "id": "90ca988f", + "metadata": {}, + "source": [ + "#### 2.3 Deforestation area corrected\n", + "\n", + "Based on the two analysis above (ingestion of deforestation as count or as area), we can determine that there isn't that much difference in the election of the method selected to replicate the raster calculations. However, there is an importat area correction that needs to be done to either of theingestion process in order to mitigate the h3 error generated during the raster to h3 translation. Therefore, we are going to try to:\n", + "\n", + "- generate h3 file with pixel area/ h3 area ratio for correcting the calculations\n", + "- ingest the data as count * pixel area\n", + "- correct calculations and get zonal statistics\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "7296ba66", + "metadata": {}, + "outputs": [], + "source": [ + "#clip area raster by Ache, Indonesia extension\n", + "!gdal_translate -projwin 90.0 10.0 100.0 0.0 -q -a_nodata 0.0 -of GTiff \"../../datasets/raw/h3_raster_QA_calculations/h3_area_correction/8_Areakm.tif\" \"../../datasets/raw/h3_raster_QA_calculations/h3_area_correction/8_Areakm_clip.tif\"" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "1ba9155c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FIDgeometrysum
00POLYGON ((98.47767 2.24508, 98.47550 2.20109, ...330.380831
11POLYGON ((98.44488 2.31416, 98.44271 2.27017, ...424.847104
22POLYGON ((98.40582 2.39111, 98.40366 2.34712, ...554.695722
33POLYGON ((98.36445 2.43594, 98.36228 2.39195, ...699.823710
44POLYGON ((98.51418 2.45678, 98.51201 2.41279, ...545.733333
\n", + "
" + ], + "text/plain": [ + " FID geometry sum\n", + "0 0 POLYGON ((98.47767 2.24508, 98.47550 2.20109, ... 330.380831\n", + "1 1 POLYGON ((98.44488 2.31416, 98.44271 2.27017, ... 424.847104\n", + "2 2 POLYGON ((98.40582 2.39111, 98.40366 2.34712, ... 554.695722\n", + "3 3 POLYGON ((98.36445 2.43594, 98.36228 2.39195, ... 699.823710\n", + "4 4 POLYGON ((98.51418 2.45678, 98.51201 2.41279, ... 545.733333" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANwAAAD4CAYAAACHZ4ihAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACT50lEQVR4nOyddZhc5fm/7zM+6+7uvptk40ogJLgXSlusLdJCS720fNtfnRZpi7SFIhWg0OKaEELck3V319kddzm/P85kdgIEEhJ87uvKldmZs3PeOTvPed/3kc8jiKJIiBAhPhpkH/cAQoT4PBEyuBAhPkJCBhcixEdIyOBChPgICRlciBAfIYqP68QJCQliTk7Ox3X6ECE+NA4fPqwTRTHx3V772AwuJyeHQ4cOfVynDxHiQ0MQhMFjvRZaUoYI8RESMrgQIT5CQgYXIsRHyHEZnCAIMYIgPCMIQocgCO2CICx92+uCIAj3CoLQIwhCkyAI8z+c4YYI8enmeJ0mfwY2iqJ4qSAIKiDsba+fBRT6/y0G/ur/P0SIEEG87wwnCEI0sAp4BEAURZcoioa3HXYB8C9RYh8QIwhC6qkebIgQn3aOZ0mZC0wDjwmCUC8IwsOCIIS/7Zh0YDjo5xH/c0chCML1giAcEgTh0PT09AcedIgQn1aOx+AUwHzgr6IozgOswI8/yMlEUXxIFMVaURRrExPfNS4YIsRnmuMxuBFgRBTF/f6fn0EywGBGgcygnzP8z30s7H/1MHd/7a9MDYVm0RCfLN7X4ERRnACGBUEo9j91OtD2tsNeAq7yeyuXAEZRFMdP7VCPj6Ydbdx+3h1sfPQtbqj5wccxhBAhjsnxeilvAZ7weyj7gGsFQbgRQBTFvwGvAWcDPYANuPZDGOtxYZw2BR4LMuHjGkaIEO/KcRmcKIoNQO3bnv5b0Osi8M1TN6wTx+v18uhtT/Law1uoWl2G0+rkitsu+jiHFCLEO/jYkpdPNcZpE/+96yUAmra38Ujbn8gqeYejNESIj5XPVGpXZKwUrVCoFGgj1B/zaEKEeCefGYOLS4nl7y1/ZM0Vy4mMi+AHp/+SjgPdH/ewQoQ4is+MwQHEp8bidrjQTxgY7R7nrSd3fdxDChHiKD5TBgeQlp8SeJxRlPYxjiREiHfymXGaHOH6O6+iclUZiZnxFNTkftzDCRHiKD7RM5zd6uCVh95kZkwPwNSQDovBGnjd6/W96+8tPa82ZGwhPpF8ome4a0q+g37SyKO3P8VpVyzl9YffIjoximt+cTmb/rkNw7SJHzx8E6VLCj/uoYYIcVx8Ymc4u9WBftIIgMVgo3FrGx63l5kxPW/8axstuzoY6RzjyTue/5hHGiLE8fOJNTi1VsWXb78YpVpJ6ZJCYlOiEQSB8OiwoxwjCWlxH+MoQ4Q4MT6xS0qZTMZVP7sUq8HKc396BYDVly/jO3+7gfDoMBaur8Hr9bH6siUf80hDhDh+PrEGdwTTzFwysjZMTXi0pO6w6tKQoYX49PGJNbjZCT3//sX/6DjQQ3Z5JlHxEZxzw7p3PdaoMyFXyImIeXsheogQnyw+sXu4PS8e4pUHNzPSOYbX4+Webb+kZNE7vZEv3Pc6X879Bl+r+A5NO95epnf8eD3ekxluiBDHxSfW4GTyuaFFJ0Qe87i9Lx/EYXUyM6anbnPTCZ+n40A331r2E75e+V2adrTx/L2vcft5v2OoYxTd6AxP/OZZdKMzAHQ3DGAx2k78w4QI4ecTu6Q8+2unEx6lZaB1mIu+ffa7HnNwYz1KlRIApVqBSqs84fNseWIn7fukJOe///DfdBzoAaDrUC8WvRW3y8Mzd7/MvA0L2PN6Iwlpsfy//9xCQVXWB/xkIT7PHJfBCYIwAJgBL+ARRbH2ba+vAV4E+v1PPSeK4i9PdnCrv7CM1cd47ek/vMjDP34cgOo1ZQy2jfDY7U8x0DrMT5649bje3zRjxho0Y6nD50p6VFoV7kAc0ErrwV4AdGN6RronQgYX4gNxIjPcaaIo6t7j9Z2iKJ57sgM6XqaH54bisrsxTEnezONdVjZub+X2c3+Hw+qkYmUJHpeHxq2tVKwsxecTsVldVK9Npaeuh7yqHGRKJUadhZTsBHLLMz6UzxTis88ndkn5flxw8wY6D/Xicrg4+/ozsBisDHeOkVedg250hoT0+Pf8/aG2ERxWJwCzY3rGeicBaNnZTkxaAqYZCwAltTk0+50x539zA9/44zXIFfIP8ZOF+CxzvE4TEXhDEITDgiBcf4xjlgqC0CgIwuuCIJSfovEdk8zidP68+9c8WH8XG65dy9/q76R0SSH1W5r5euX3aN//3sWnFStKyCxOQ6FWklaWRWxqLADRiVGI4txxTpsz8Dg6PjJkbCFOiuM1uBWiKM5H6iHwTUEQVr3t9TogWxTFauA+4IV3e5NTrbwsk80NX6VRMdo9AUh7Lt3o7Hv+bm5lNn+rv5Pk8lwa9vXjC4tg4bkLcbpEFEo5VatKKZqfi8PuJacyi/LlxXQc7GGka+ykxx3i88txGZwoiqP+/6eA54FFb3vdJIqixf/4NUApCELCu7zPh6q8fNG3zkahlJNTkclY3wSiKOL1+uiu63/X4+VKBVMjUumP1WRndsKIy+FGP2lEFEW66voZ759CFaaldXcnB1+v5+bFt53ycYf4/PC+ezh/HwGZKIpm/+MzgV++7ZgUYFIURVEQhEVIhjzzYQz4vfjy/12KJkLDQz98nEdu+w8d+3vpbxtlvG+KlRcv4qeP34wgzGlVymQCX/zuWfz33k0sPL2CxKQIBlqGUWmVqDVzIQZ1mGrusVZFiBAflONxmiQDz/u/qArgSVEUN75NCPZS4CZBEDyAHbjCr1X5kWPWzxWoTg5NM943BcC+V+qOMjYAQRD4yg/P4+KbziA8UgtAfmUmD/7g3xx8vY6KlaUIYWF0dk5SvWEB9lkTQmQkT977Bhd/bTVvPXMAgLOvWvkRfboQn3be1+BEUewDqt/l+WAh2PuB+0/t0E4Mh83Jiw9s5ODGBrLLMrBbHETFRpCSk8jEwDQF83KYGdMTnxb7jt89YmwgZbiYZyUP5XjvBAaZ9Fpr+xSJqTFM90zT+8eNNGxrpXl3FwBTI7Nc85MLPoJPGeLTzic2tetEadrRxiM/+Q899f1MDk0zPTJD3ZZmZkamKVtSSPv+Hq6vvY2W3Z3HfI/2/d3se+UwyblJCHIZmSXpxMRK1QlhkRrc3rl8S6fdFXjsdnk+vA8W4jPFZ8bgZsb1gcdhkVpEn7SidTncTPmD5Ba9lbG+yXf9/YmBKb694v/Y8cw+9BMGsssyadzejmtskgVrivHFRCDERFK+tIDiogRMQ1NkFiZTVJ3FSMsgoz0TOO0uXn9sa6BSPUSIt/OpDXwfweVw8f8uvpuDmxooXVKIUq1AN6anclUpYz0TZJRkIMgVGKZMJGYlMGvzIIoigiAw2DdNdp7kLTVMm+fe0+5iYkDa+1kMNgx6GzarE5vVSVpiGG1vSdksOeWZtB+QlpX1W5oJi9QyO2EgKj6CP+/4BemFoSawIY7mU29wsxMGDm5qAKB9XzeJ2YnMjOmZGNBRvqqclrohAKrOXUhDj45HH9lFe/cU05MmejonWL2unKLCZJ57fA9Vl61iuqGLhNQ4ZDIZrXu7yK7MIjIhCoYNKBQy1Kq5SxaceykIArMTBgBMMxbslrmAeYgQR/hUG5zd6mDrU3tIzUtmvG+S+LRYFMq5TBBPkIyeV6FARPJSjo/oGeiTAu/bN7ey940WPG4vep2F/LiowD6v5uwFNAwaoX6IqgU5jA7NcKhxlPLLVyMbm6S7rp/KlcVY9DbUYSpUaiVt+3tYdt4CUvOTPsIrEeLTwqfa4L658DaGO8dQqhUsPGseDdvb0bh8zD+jEsOUianeCYprMsmvyWXNF5bw0F/eYmLUQJxWjiM1molxI9kpEZgNdgxuL4IAHsecMyS4JNXldDPjX3YOjRgw7+4AoHlHO+mFafS3SC3Ob7rnKi66ecP7jv3QG408fefLLDqrhvNuPIM3/rGdsCgtZ3x5FTPjesZ7J6lYUXLqLlaITwSfaoObHJRmKbfTg1FnxuvxYTXZ8bi89DVLBpCWl8wtd14JwJ8ezuGitBup3+NEFaamujaXhlf3ExETzrwzqhmt78Vgc1G+tIj5p1dQe14tD9y1EbPBhsblJDklmskJI9m5iYz0xWEYn0WpVeF2z5lmTGLUcY3999f8BaPOTOP2Nva+dIgWvwEffrOJHc/sx+10c/kPzuerv73yVF6yEB8zn2qDu/Huq3nkJ0+y6Kx55FRmMdA2ikqrQhO0t0rKmqsacFgcOP0VAi6bE12/5LG0GKw4J6VZBaB8WRFfvv0SAH551+Vcnn4jo6KIOlxD0blLaKsfIjInk0Wn19AzoEdUyCgvSEXmcvHMn14jsziNgpqcY47bNGvBExRKsFsdgcfTwzO4nW4AOvw1eCE+O3yqDe68G9dx1ldPQ6GUPkZORSZ3fvVBDmxspKAmh8u+ew6rLplL+wyL0vLNu7/C4797gaziNATRx3jfFDFJUUcZabB30ay3ciRpxml1MDlmkJ432bF4wODPbEktT6X5Walbz11ff5C/Hfzdu475+fte5x8//x8RseHkVWXjdnmwmmykF6QQGReBKEJcagx2s4PlFyw85mc/4mkN8eniU21wQMDYAESviM1kB2BySMeat2lWCoLA+TecwWDHKK/8/S0AqlaX0bKjjYMbGyhfXsx1v76CqlVlAGx8bCv/+e2zVK4sYbx/itS8JOSRclpMAnlFKRSVp9PRPIIAqIOqdqLiIo453h3P7sducWC3OEjNTQpIOhTOzwk8jk6M4t+997/r+3Qc7OWRn/0Pt9PNtx64lpZ+Hc1to9x43WpkHi/b/7uHdVetJjwq7MQvZogPnU+9wQVTOC+H0sUFdB3uo6Aqk6GOUbJK0jFMm/C6vYG0ruB8S5/Xh8e/B7MarAFjA3joB//CPGthrHeSksWFNG+XClEvuvVcvnHP1QCUVqTx718+R93rjZSfVoXM5aC3vo8Hf/Bv1n1lFc/+6VWyyzK49LvncnhzU2AmVaqVKNVzCdKqoKRopUpxTKN97bFtNPu9qH/+zYs0zEqfpaNzDP1/duC0u/jf3a/w96a7CAtKWQvxyeAzZXBJWQncveX/uGXxbRzeVM9N81s4/5tn8eqj21CqFFx3x5c5UDdE94iF4pVlyJxOXDYn2WXpTI/MkpKbzEjXWKCvnFqr4kg4PHjPFR1kDNERasb7JedNd9Mwjgnp8TP3vMLBjQ0Mto0A0LitlQOvNwAwf10VA20j1G1ppuq0EuQrlIwsH2f+pkqM+8xEXBXBq2NvsT5pNdv/tw+5Qs6ay5ZgMdgCVeoAinA1+A1OEMVAutnUkC5UKPsJ5TNlcAByuSygd+JyuGnb14XT5sJpc7H1lXpauqXXtJlxDG06BIAgkxEdH8m+lw9S/2Yjf9r1awrm5fJg4108+L1/0Xmwh9kJPaVLCilbUsTZXz89cL7kzHhScxIZH5gmpzSNMa8L07QRQSYEnB8ANvOcY8RpcwY0WCbMOpynS8f1XjBC7KXRDLhH+cfA/9h5+wHq/9MKwOE3m9n9Sh02s4Pq08uxpMXTODJLdUUmLpcHt9tD2RUr6H3pAMW1+Rx+o5Fl77EHDPHx8JnJpQzmql9cjjZCQ9HCfMKiwlAo5ai0KrRhqoCjITx8bgknkwkYpqX8R6fdFZgpouIiiUuJYbBthNlxAxEx4dx4zzXEJscEfjc9P5m/bLud+aeV0dM4hDwqkoXnLCAxPQ6X00PJ4gKqVpViNVrJKEwloygVlUZBfGoMgiBQtaKUSIWkGK2WqXH75mZS26Q98HhiYDpgtLMWJy3907jdXhpbhunum6Snf5oGvZ3M5aU07Wjn5xffxWt/3/Ku10cURTY+upWbl/yENx/fiVFn5l+/fIbDbzYDMNg+Sm/jYOB4k796IsTJ85mb4QDOu/FM3G4vD/7gcWCYkkUFjPVNcODpneQvLSEsMZr2Nw5TvroCjUbOF75/AUPtI/zzZ0+z4uLF5ASpcsWlzpXzpOS8e/aIJlzNqD+kYNZbsdtcTA1L9bcp2Qk0bZdmqeScRCYHphnpHEUbqeGP235O6eJC9C4ju3WHWJ24GIvHxhODzzM/tpLknyfyx9GHSUiP5YwvrWBsYBrTjIWa5cWMtY5isTpJiAvHGDR72vVzxuEMCuIHY9SZufvrUnXV76++n4ySdMZ6JxEEgbVfWsFbT+1FrpBxxffPY++LBxjtmeDGu6/irOvWfoC/RohgPpMGB2CemfvieVweTDrp58FDPXj8pbHtB/v489afUbIwn/mnV3LejWe+Y+9z0bfOJqs0HZfDzZJzF7zjPFaTnZce3kpKVgLTo3oS02LRBFeIR2gCjzXhc4/tZgf5/lhdrCqac9OkZWqkMoLvl9wgHZQMD9X9LqDdsviseTjtLhLSYrlMZ+a+371E03P7ycxOJHx+Dg4VON0JJNicJKcl0NU3i2HGglKlYPemZladXY0mTMVYzwQyuQyfP/XtiBNJFEVGeyYRRRGP20vD9jZ6GgYAePGBTSGDOwV8Zg3u3BvOoKdxgPH+KbQRGrLLMhjqGKV4UQEzk0YmBqbRRqiRKeZW1cdyNCxY94762wB/+fFTvPW//QDMW1VCw84OJodnqFpXg9nkoLFuhMozahDcLka6xqhaVYpudJaLvnUOKvX7K0UHCyVFxoYTGSstP5MSIpk62IvL5maifYyioiRarNJNZcFp5XS+3kFnn57ullEMMxasZgdP/fUtyvJi2PzPbWQUphKTFIXFaEOpUaGNUJOUnYRMLiM8WotSrUQbqUGhUuJxuUnMjMfn8x01nhAnznFdPUEQBgRBaBYEoUEQhEPv8rogCMK9giD0CILQJAjC/FM/1BMjPjWW25/8NsMdYzTv6mCoY5TChQW07u9hZlzPog3VyOVybjv/Tva8fPgDnyc4xODx+AISezabm2F/gnR70yituzuZHTfQtKOd7zx0IxfectZJfT6AgspMQPKmRqZGB55XBf1ZRcDqX3KOD82w6/kD+Lw+hjpGcTk9DLSN0l3XT3JOEi17umja2UFKThIWg42Dm5pIzkumcEEe+1+t4/un/xL91LFr/Ua6J3jt0a2Bxih9TYPHPPbzyqlSXj4LKPT/Wwz81f//x4rFMGcMok8MFIa6nR6sBlugMcfe1+pZdt47l4vHwzf/8EXu/e7jOCwO7DN6MvKTMOmtxKXFYrE40Y3pychNYMZjxzxrQRAEImJPTVutHzxwLWsuXkhhdTZRcRFUbKpDo1Zy5pJi/pP+JvW7uhDsNsqqM+hsG6doQQ6OsSi6tzUTmRiNMnpuHEJQ8xSZTAiEQXTjBpxGaeZs2dXB9JCO2KRo3k7d1lZ+esGd+Hwibz29F6fZSufBXhZuqOH2p25FG7Sc/jxzqpaUFwD/8gsH7RMEIUYQhFRRFMdP0ft/IKRZ7ls8fseLRKXGgyBg0ltJy0pArVEgV8gAgfBI7QdOlUrOjOfyW9bxvTU/B0ChVqLOSKVuVzeaMBVV8zNpeLOJqPgIFqyvZnJAx6+v+BM/ePQblC8rPunPuPD0isDjK86au2l89UfncMGdzwfidqWXrqC1TdLUXHL9BpqaR+mYcTH/8pXYxmbobh2jcmUp0bEWLrhqgBf+kcmhnTqyr1iErX2M4TdbiStKwa6Z+8o4bE40YVIgf2JgGp+/yn5qZIaJrlEADm5swGFxhAzOz/Ea3BHlZRF4UBTFh972ejowHPTziP+5owzOr9p8PUBW1kfTDGPlxYvZv62TLc8eBKByaQn1L0t7rqKF+egnDDx790v0NfTxm1duQ6k68XvQkcJTAG2EBrtdiqs5bC4m/PqYRp0Zt8PDaI8kVvviXzadEoM7Fl6P96hgvTUoYG73iDj8Y7R6RLrqpaVfX+c4z+zdCEDFvH1c/eCP2DtsRJYRwbJfXsTe/nFuuv8FbjpjIU3/q2egc4IbfnYBTr2Z1/+5jcKaHKaGZ0jNSUAhiIx0jpFXmUVU/LHbjX3eON5v1wpRFEcFQUgCNguC0CGK4o4TPZnfUB8CqK2t/Uhk9ERRxGKa65Aj+uaKUl02F9N+9339lhZOdILzer384er72fb0HsqXF+P1+HDYHERnpjDQN0NuaRqC3cZk/xQxSdGoI+ZSrWLeZVl2KpEr5Ny78xc89OMncdpduM0W4hMjiU+MRK6QERGlweXwEOUvnHU53SRlRCMiR/BXAurMUljBJ4oY8eH1+fD64MCODnoOSuK6T967mdFDHYHzRkWpqH+jEYVSzrce+CrnfP2ME145tOztJi0vibjkaLweL26XJzCTfto5LoMLVl4WBOGI8nKwwY0CmUE/Z/if+1jpPNjDXdf9hamRGSpWV+FJjKA/QiDvggVYBqZRbagkPSGc0e0dlC4rYXxAR2ZhynG/v2nGwltPShUCrbs7SclNYqJ/CpqHqT53CS37pfKamnMW0rK7i7rdPVSurcLh9PDyfw7glikpXpDDc3/dwopzarjyu2cfVbF+suRXZ5NTnskLD2wCoOT0Kjr8y8rU9Fgck2McfuEgKdnxJGfF07q/l/t/czbLbnbxwFgpYadpidslkBUZg1qQo1UrUchlRGjUKJRyPG4v0bFhjAkCoigik8sC4ReP20tOWeYJG9tvr/sbO54/RFRcBF/49gZefmQbggA/+NtXKV/yzg64nzbe10spCEK4IAiRRx4jKS+3vO2wl4Cr/N7KJYDx496/AdS92cxA6zA2ow3D8CS7PFYGDRbqYxT0zkvjwLiOjtwYyr6wjK72cb552q/Y/8ZcuyujzsSfb3qIq4tu4fDmRhq3t3LHV+6l63AvXo+XXc/tD9TbSaU1c5O2J0hSz+sVAwnSJpODvk4pSL7xid387af/Zbh7gv/8aSP1O+ZmilOBx+3BEhQIVwQlSIuiiHHan142OEN/6ygel5eNT1m5q6manVN6GiyjJC+KoLV5lLrGIfKiYwjvsXNw/yCJNVmUlCXTsbWRgupsypcVkVGUStmKUuJSYqhcXc6ejY24nG6mJ4289VoTPv/qYmL42H0fOg72Sddp1sKe1+qZHNIxMajjzaf2ntJr83FxqpSXXwPOBnoAG3DthzPcEyOtIAWlSoHb5SEqKQoBERGBcI0Kiz99y+sTMfi/eC6Hm8nhOYX2hrdaeOXBzQD8/qr7Al7ObU/vIacik96GATThahadW0vLgX6cXhk1p1fiMNuZbu0ntzANlVKOa9ZAWk4Cep2FxPQ47A4PMxNGkjLisJkdOP37qZj3aK18onQe6uUXl9zJzJieqjXloFQz2DBA5bISjBYXkaKHuAU5dNYNULwgV0oOmLWiitMiaOXgd/DK3XP3ZMEr4rBK121sxsLYAekG0dM0RFZJGsOd0j22cmUJzXt7aK0bYqBfR2PPDB6Plzdergebi8Z9vaxYX0ntqiKeeXgH85YXcMk1K3j9oc2kZMahGzeQnBV/1DIyq/izoYB2qpSXReCbp3ZoJ8/qy5aSXpjCXdf9haZNjdQszEdxThVDRis5aXEYTXbSPAKaWRFDmIrEtFh0Y3q8Hi9yhRyFSoHgXy5FxIQHDM7r8TLZL8noOaxOTAZbIAdThEBdmzZCQ7e/WkChUhCRkUzdW61oIzTMW1VC4+4uomLDWXX+fC78+mkUVp+YI8nn8+Hz+o6qCTxC54GewP50amSGyUlpH9vy8iHCo7QM++sGK5YV0epf+pbdupC3SvTYbRMsT8yBPpGx/TNUFafjdLlRyGTkV6cx1DZJWXk6Jo+L4bo+ohMijkoaOKIJCuBw+/D443KjQzPoeqTrtmtTMy0H+zDMWhnpn6bzzTradkrlTwvOrqVxTw/j/dMsWFvOtT+/5DPTcfYzm2lyhKSsBHr96Un9B3uJqs5g0u1ictbM4vBIep464r0spHlvN//980a66ge447nvsvzCRfxu409p29vFBTdv4NDGBp6/73XOv2k9Zr2FR3/yJNmV2UQkRCOTj6JQytFEzBV+aiPnXOFyhRyzv5TGbnGgG9fj8/ow6MyUzM+ltDbvhD7X/lcP89fv/hOVRsktD3yd+j099DQP843fXIbT7qarfYKohEhMOjNJWYkYTOM47S5UYSrsQT3vrMa5BGl9Cpg80mtmm5OJLZK4bmf/BE7X3BK5PC+exoYhZDIFi76wlKaXDjHaO8G8NWVYDFYGW4comZ+NIAi4JmbITY9m0uAgPV6L0hnH+PAsSemxeIOW3W7HXGWF1+MLLM89bu9nxtjgc2BwSpWC8uXFtO7uJDk7EV+kGmalZZFgm0vuDXaZGoPyMBesqw6kdq29ciVrr5xr3OFVqnj0d6/AqJWylWWMDug4fGiYkrU1KN0O2vf3ULG8BKfHCykJhKuUdO/pJL86G2WElpGeKSKitXhlc44F86yFyPeoGD/Cpn9uY7RbWsL987cv0Noo+ah+fs2DDHdJ+ZDRKcnkZCbStLub5OwEMlaV0dc7TXRcOEqXE7VcwO3yEBMfQUxCJBF7zUSuUWBX+Ugxa5mRG3F7fSREhzOmMwWyaIwGyUh9PhGL2YHLbywuh4uuw9IeLGxcz8SAlGkjkwlExUVweHcjCrWSiq+vZYfNQLgijEUVaegsTqaMVoqWyVHHhGOJiSK9KBWrwUpEWhyTY3qS02Lpqe8nKTvxPSvqP+l85g1OG6Hlnu2/5P5vPcZrj21H/tg+Vn59FYa6IUaaOiirzUUWF43R7qFwSRHGER2XfGPdcb23OWh28Hh9GP0z2MiwHku3FNtq2d1B5iWrGBmWZouq9fNo3S0tOWvOqKS9eZRH7nmD3vZxnBMz7HutnrOvO40b7vhiICZoM9t56YGNRMRGcO4N6xjvm8TrmQtvKDVB1eJKRWB2sJrt6Kel804O6tBmpmCctWKctVJRkkjTFqkcp3hhPp0He+Aw1BxMxlaWRl93J/nZ8cRkhNP33CEq5+fgKUlFbfGgtHrxhDvJSI1Fg4hKq0KuhfjFGmT7pKToqLiIgMEBGMak5a3H6WbCaccrgsntxpqsprdbciLFVefT1j0JU2bCUuIQPDJ27+mj/tL7qcmKZOf/9hKXGsuvXvwhRQtObEXwSeEzb3AgJQCbZq2IPhGP3YVweJhRf+cb46yVkcm58pbndv78qG4678W5V62gu2kY3YQBjVZNRn4So31T5OUlMGa3oBuZQRuhCWRgAHiDJPU8PnD6Z4eO+kHGD0tjeuXht7jqpxehjJfu5Hdd9wA7n5WC9Q1bm9n57H58Xh81ayswTpuoe2kflesXIKjVTI/pqVxSwGjfFGlZsXis8bTt6yGrJI2ICLX/egjIgmbVo8Rz7R6M3ZITaWxwBnvbAE6Tg8FtHZRERNHe5neMLMim+bB0Uyn7QjlhX29i2neQxVVZmP8eTfv+bopq85ALAk6rHU2YmsG2EbJLMxBMLrrCBSLC1Ef14QvXzjlJtFoVFv+1slmctO+Vwhmz43qG2kdDBvdJZ9n5tRx+sxmlWkn5siI6D/ZK3suUGIQRM6IISqX8uI0NICk9jp/+7Vouq7iNkZ4p5AoZOSlhNG06jDZCw6Kz59G2pwvz3haqzpiPd0rP7MFOcrKTUWrViHYHqemxzOjMpKZG4UyJZnbCKOUqCnNGesSLCqCfNAbKaiwGK/3NkpR7+7YmfDFxAEwOz5KeHhWYwRacUcnhN5sROsdZcP4ixsaMtHbpmLe+hopFeay/ahVP3vEi9VtbiU+LJS4pns7OSQoLk/ENiRjG9CjViqNiagJBjS3jXdh80jLclDtK624pm6brUB9ZhckM+MdYtbqMJr8uzNJz5nEwXc62wSGqF6WjMvpobB6iojwdQW/F3j1GblEiA5MWstOjEaeUzIzqSciIw26eW1l82vjcGNzaK5ZRtbKEiNhwNGFq1ly2hPt+9RKdrePklaYQHh3O7Jie39z6JNfeuo6tT+7CNGPmml9+gZlRPQ3b2zjr2jXIFXJ6GgYCupPB1QJejw/dsLSMslscmPVWfwK1Fd/IJG17paVkmlzGgF5yTihVCqK1AodfOkB4tJYFayto2NHGTUv+j2t+djFv/ns7upFZcioyCU+KxRsdSXJOEjaLg7j8dKKHZzBOm0gvTmfa4gvkTjosc19Ku/+xKIo4LPZAHExn9fLln1wEwLfvv44vZNzImH9fWHVGJU3P7kQmE6jdUEPXwW66X95DzQXL8MrkjHSOU1aVgc3pxitqSBHymRYHSJkpxFBgY7RngvBo7VHZO76gLB+f14fTLaWeTdlsWDqlpW9L6ygpI9Pop0wMd45TUpVO43+3A9J+uv6tZu795t8ZbBvm5vu+esLfA1EUmZ0wEB9UWPxR8rkxOICE9LjA44ziNDpapGVKf9s4WflJjA3OMDY4g2FkmsaXpCVcf8swTdvb8PlEtjyxE5fdSdehPhasq6J2QzX/u+sVigtScciUnHvNKhw6PY/d/h8yitIIi9QgCCDI5UcpaGkjNeA3OK/Xx/SQAZA8hrrxWTwuD7oxPRsf20rTVinHoGhJMW0mEUwmonKzEGcs1DWME5GRQc3yGFpaJ0lIiaEkLYrpCSOCIJATHUZkXCRej4/YlBjUGiVL1lcxNGzEYrJTUh2cHARWw1wKnMVfhuPziTjM9oAGi7lriH6TNPtaLA5mC6KhzY7QHssCl8Dm17pQKBUsOrOSpu3tTA3NMu/0Spw2B2O9ExQuyEMmkyFYnRSqohn2eiiShzEa72ZyxkJ8dBiMz8X+XEEeVbfTHZjdB9tHTvjvP9g2zG+++CdGOse49tdf5LLvn3/C73GyfK4M7ihEkbL52bTVDRKbGIlSFRRHcs8l/bpdnsAebHpklkm/WvPhzU301Pdj1JmZHddz+1O3svqypQDIlXL+8u3HoAnKlxUzPW7i4BvNFNfmodKq6K7rp2x+HnZRQK1Vo5Bl0bazlYKqbDThagRBQBOmOrrPeKQW9NKeRqVSovcHyy0WJ2PTkqHoJk0kJkUy6q/DK5+XSctOKTidV5HBfVv/D7lcxmkXL2JqTE/Z/JyjLskf3vgpf/3ev9GEqfF4vETGRxCTEIVKq0QTrsZldxGTHo/cNovX4yMqIYIjOSOiKDDdLBmplOFixW6R9sYel4f2/dLsrtKomPQ7U+T7e8hdXkXrVAcarZJlC3Np3NuLPDaGmvJMzJMGLAYbeQvy0GpUuF1uUnKTsJnsrP3iihP+k7ft7QoswV97+M2QwX2UqNRK7vzX13nwd6/y2n8PYDbYmL80H33PKL172qhYLmXyW402CufnMjk6S8aiYjQx4QzW95Fem4/X6caoMyMIAuHRc/G3YHkHp8ONbkxaLvU2DgZSvFp2tpOzsJCOdv8SblUFDZsbAKheWUzXvk4Ovl5PxcpSxLgY2sYtVM7LwuX04HZ5SV+aT2/jMGdctACXy82m/x0iJj4CVZC8gyKo8iE8Kgy5v+YtISWahJR3Jk+XLytm/ukVPPWHlwAoWZhPx4FuhjtGSCtIgeQk6tt1ZOYnEp8YRU/bGNUZyVjjNGi1SlThGmyv1JGWn4wmTMq3FGQyssoyaN3TiSiKRMVFBgzO5/Wh8+deOuxuZidNeNxejAYb3sxYev39IQoqM2ndLqXcRcSG8+TQ30643GdqeIbuxiG0kVrsZjupBSm4XZ4PVB1yMnxuDQ4k76XV4ggYgdPioGevNCNMj84GvhgACYvLaawfQa6QUXPreRzoGketVrBgfh7juzu446r7+cYfr2a0e5wdz+4lvyYHm8lGREwY6QXJjPZMUjgvh+mRWXRjelQaJUHdtPC45wK/bocLq784dmpIx7Rd+jM11w8RExeGYVZ67bY7LuO09ZUAZBQk89jftlLfOkbN+iqsNjeNPZNUnlGFz+HCIFPw4tP7WXN6KS/c9zo5FVmsvmwpgx2jWAy2QGKwKWhPKgsqSnXaXRimJOMY7p3GanJgMdmx7B8g59wymjql5Xnt2fNof2oPABXLi/npE98iPi2WNV9YylDbCOuvPY09Lx3iuT+/iujzoUmPp2fESE5SOGqvE0EAbbgatWJu8xesEaON0JywsY32TnJ97W143F7iU2PJrMzl8LZOvrX6F/zyme+QGLTV+LD53Bqcz+dj5zP7MHYPoVHLEWQCWtGNXCHD6/ERkxjF1KAuUJhq8u9vvB4feqe05HQ6PTiVcsb9bYyfuecVug9LaVIqjRK308143xQKlYKSRYW07elAG6Fh4bpKOg/2YOwfpby2CNHtYaZ3jJyydGQyGTKZQEpuEtPDM2RUZuN2KTDMWokMV+ENqnGLCaocd7i8cwnSVid93VIKVcugPrAk/stdG3n1z6/Qv0+6qex59TR2PC8pZlz67Q3U7exkqGuc6nVViD5piVq+uoKpvnHSijNIUKrp6dGRmx2LD5gFZHIBgsIesqCwhyATAmrXNWvKqVlTDsBply/jhfteo21fD9BD9WnlNL4q7Zlr1lXT0zXFoa5hyhblI4rQdqiP6g0LcPpE3PExPPHYTi66bCFv/GMrmjA1G95H3GhmTB+4NoZpMzPjBgD6moeYHpkNGdxHwabHtnKPXyourzqHyb4p9tW3k1GURmx2Eu31Q+QvKkQbqcUiKAmL1DI1YSCpMg0xUo1apSAyQoM6UosglyF6fUdliETEhAcKUz0uD7oRKfBrtziwGCwY/E6JDIORll2SdHlydgKTg5KKhUqjJHVVNY39JsKjNCwsTaL1zWbCo8MoW13O+i8soWZhbuB8tUsLeOPlekwGG7HxEUROmjGb7KRmxKKbMgfifXb9XGvl6ZHZQJC8bX9vYAk3MaJnelRaBk8MQWx8BM37pBtJ9coiGrY0I1fIqT1/If2jZsa397FoWS6C08t05wTFS4qwzZpRaZS07u2ifGnRUdfebnXgDHKGBMcm3Q4Xdr8Gy/SonulRaZfYcqCP6MUl6Pt09D20jUNPbKXlLSnsMTth4MqfXHzMv3XR/FzOvu40djy3n/yqLBxWJ52H+8koTCElJ+GYv/dh8Lk1OKNu7ovn8/oCS7jR7nEmZh2IPpG+9jHyl5cx1CXNYCUbyqnrkfZcFaVpdHRPsHfWQv61p6M62EX9Wy0ULypEE6ZitGeC8uXFzIzpScpORCaTYZgykZKTiDZCg0wmJUVrg2T0wqLmPJkuh5tJnbS8s5oc6AencNicOGxOzs6NZ8VpRzdrLKnM4L5/Xc91F93L4T09RMeGU7Mwl6a6ARKTokhJjkTfOoAoF8gsTiMmKQp8XmISI0EQCIuPRBuhxm5xkpiZwOyU1I9BJhMwB2nDmP3Xzevx4jDZ0U36Ky1GTPR2SNdGr5Dh7p5guGuc+i0tPFj3e7LLJK3P7f/dw73ffBifz0fVmnK8bi/TIzPk1+QgCCATBFKz4pieMJFemIzX42V20kh4WvRRCQSOoFhcsMG+G5pwNd++9xr6mgdp9JdAfeX2i7jyh+d/5Cpkn1uDO/8b6xnvnWCke5xLv3cerz+8hYOv13PmNacxPGyg7UAv0QmRRyUgi0ExJVGUVLoADFYnFr9ScdfhPhJSo9GNzKIbmaF8RSnNfk9h9ZpyGre1Mtw5RumSAvTjeg6+Xk/J4kK0cdH0d01SvX4+OqMJ1coiVDIF/a93krkwk3CnCxqHUGpVKJLevYzH7fZi8c8ORr2V0aEZfF6RyXEj8TIPA/6lZPnyksCYMkvTmRa1HDo4RHxaItlpsbQ3jZBemUd8pJLJoRkiojQ4zHbiUmLwen1ExIQRkRCJrzwBxagJj91DdLR0E/H5RKKiNOj8M6fPJx7VtGT/63WYZiSj9Xm8tPobUZJDYM+sVCtJriqgcW8f4ZFqir6zip0ePbGCipqpeNx9k1gGZskqTSc8JpyepiEmB6eJiItk+6sNrNxQRWTMO7sHGabnbrIp/pvgR83n1uDCIrV856EbAz8vPbcW04yZqPhIfD4f+zc1MW91KTK5jMfufJWWN5sYfHYvlefX4o5RMZXkpUBIZnzQQF6kBkNpOkPtoyTnJB6VNuUL8owEyzvYzU7G+6R9VtfBHuTx8Yg+kdaD/cR/dQlt49ISdOHllRxsl5Z6S69fRe+kmfteOkSf1cFt3zy6tXF0bBgXf2kpL//vIKdtqEQENr/SSESU5uh8S/Xcn12uVOCxSjPEjM6KXi/NHKMDOlQ5cUyOzDIJVC4toNkfuM9ZV8ruJC+ia5a8S3JIeb6Hw09uJXdBAfPPX8Sl162ibXcHT/3+Rc68ejXJOYmB8xUtyGfL4zulv0HQjB4RE84kksF5XB6m/Pssq9nJSJgXx6yHcTyUm210vtkIQOH8XDoO9gP9dBzsxZeYiMVk54n7NnPf898mLknqRtuyu4NHfvIfNGo5qbmJxKfEcOC1Ohauq8Tr8bH7hYOcefVq1EEFuh8Wn1uDezeOiN3IZDKWnlUTeL6wIInnfid92WY3NbD/xmxwAymwbMs0LW9MI5PLqD23lvrtHag0Khaet5Bpk4cJk4PylWXIBRHjjIW8qmyMMyZiEiNJK0hhrGeC/JpcjDYvs9MW5AoZ7qClkzvIYO0aJQZ/HdvBIO3/IyiVCm747gauvmktGv+XJ7sgmX89soOGYRM1156JY9ZCy7SVqnMX4jZYcKnDKC+Noq99nIKKDJwON11NwySkRKMO8g4GzwZitAYRaQlucbpwNA0A0H+4h188eTNxiZGsuHAhKy58ZzORC28+i/SCFP54w4MceK2e4tp8ll+0mAtu3sC2p/fw0l82oYmPRhUdQfvhfvLKMnC6FXQIoJbLUWnn4qXBBiJXKzH5r83slBlv0HV78YFNtOySZtLKlSU0+fd+Q20jDHeM4nK4ef7e13io8c53rS08lRz3uwuCIAcOAaOiKJ77tteuAe5kTsfkflEUHz5Vg/w4cdicDHWOBTQ8YjPiEJgr5zFPSHsYn9eHyWBDFCUXuketZWRUyoZwpsbQs+kAILnaBdGHbkiHQimnclUpzTvaCYsKY8Hp1Qx0T+J5s4uacyoQtEr0Zhu5aXHgFVEjIyUxiqkZM8uCkndtZjuCIAT2g5qgL6LL7cXhd5iY3CL9E5Jrv3XGhUznRPQ5YGCWvLJ0mg9IpTW1q4qp293N7LSZBWdWMTOko/1QHxXLCrAURDMWK6M6PJoRnYFSiwxvZRZ9zUNklqRhmrVIZVA+HxaDlai4dy5/1WHqQHFsd30/9+3/HYIgcPbXTmfLy420HZIEiqpXFNG4qwsaBjn9ugUcUtp5LdHB6ptWoG2aoutwH1WrSnG4fQjRUaRHaOhsHKaoMoPWwwOsObcG4Kh9svJtatdHSosm+qc+dGODE5vhvg20A8fqGv+0KIo3n/yQPjnoJ43csOgnGHVmMgpTuOjmDWy4ehUHxsd45H9voXx9CG1ZOmND02RU56EIU6PqnJCCwHgRZAKiTwxk6QOER2sx+ZORPW5v4ItnM9mwmWzMjEvey4RJMwec0iySFBOBYdjEKDOoVXL+9rsrKfO3RX7t4S38/UdPEBEbzg1/vIY9b3UyNjDNd35/OZNDOrr2dBIXH4HF4iAmNYrwcQNWi5PElGgMRhsef4jDZglqCGJ1BpbCdrubgQ4pxjY8aaA1F9BJ/8rfGKa7S2oCMv/0Cuq2tPCdNb/gih+cx1tP7mR2XM9Nf7yWyYEpdj2/n+vvvIraM6tJyU2iYF4uPfX9LD1vQSAp2uV0YwtyhridcyEQl92NAWmMfZE+8Fd7NO1oJ35+CQZ/AkHZ/GxaDw/QengA/bSJi65dxa1/+zp51dkkpMWxcEM1//jZf2nd24XL4aZsaRH9LUOULCqkcXsb1avLmBjU4bQ7yS5JB47W3zxZjsvgBEHIAM4BfgN895Sc+VOAbkwf8GaOdE9wxpXLUSgVLMvK4pVdM9QdHACg8owqmvx950qWl9D72n72PzNGbnUOqpgoGp7dSVFtHmqtGt3oLFkl6Uz0T5GWl4wgA93oLIm5yYQlxoIwCqKINlwLfoMLVykx+MfkdHnJz5pzZe94Zh8Wg5Qk/eIjO2hpkhYZf/jOk/TVSa78iLgIPKuy2ToxRmJhJOVxWRwYmyB5fT7ZyBjPVWDVu0jeAbHpsbhj1ETGhCF6PIQJ3oCMXnxSBHLgiE/Q4u93fkR3E6R8x/q3mhnukMbx/L2v0NsgLX9/dv4dvOb4D0mZCdy377eMdo+TXSblc+56fj/33fwIPq+PsnkFCHI5hrEZsgqkfgeaWSfpJZFMWCzkqyKYjo/ENGMmLDoMl2suacARVFRs9+uvyGQyLgza7179iy9wfsyc7E52eQYN29po3N7Ohq+u5c2n9iKTC3zpxxdwcFMjA20j3HzPVZz2haUn9P15N453hvsT8EPgvVRuLhEEYRXQBXxHFMXhtx/wcQjBngypuYksOXseBzY2sOqSxYG7nNVoO+ruS1BGhuh0B/rLzYzMYG6RLkPXob5Au6rxvknKlxXRtEMqVak5u5bWdh3T+/opWVmG2e2l+a0eltRmI49SMX54nEVFSYziIT4hkqdeOcyXL1xEy872wDJIoZQf1alHHaSQLBNAb/PHtqx2FFolbq+PEZ2RyAXptOilGWzpudnsPTAK02Zy5yVifXo/+5u7Sc5OJCE3kbZX6qitykS1NAf79l7C8lMwG6wkZsYjANoINeHRYYG0Lo/bS1R85JwuTFCcUqFUBIwNYM9LB5kdl2J/GXY77f4K9pTsBCZGZqEJtFvVLMhPoL+hjcjYMBauKqejeZQIjYLskhQsGWHMyLwk25xEaxUM1vUwO7mQsEgNe16uY+k58yShXosDuUIe6IFgmZ3rHjTUNY7X48XrgUObm2nZI82kT9/z6kdjcIIgnAtMiaJ4WBCENcc47GXgP6IoOgVBuAH4J/CO8P/HIQR7MkTEhPOL/32H2QkDcSkxAOx68RD33PwYbqebeaeVY5cr6Z+wUlaTic/jw+dyU7CwgOHWIfJrstGNGRjpGichPQ5l0B7B55mLHYky+VyVts3JyJi0rOw6NBj44hr2WshYkUtjxwiNHSO07emk7k+vATBvfQ1jejeH9/RSsTAXQRDoaR2lcmUpZp0RTZiaFG0E+x0WyvJSkcsFxnUmwjUqFFoZ+PtzqHxz3lW5RwyU+kwOTqMbnZG+kI1D5IkCI63S/rRqdVmg93np4kI69ncx1T9JdlkGMrlA/ZYWCublEh4TxmjXOHd85V5uvu+rRMTMZcl01/XhtLr8sUnQBlVWaIKW4x6Lk+lmaelo1tvQ6+3YLE5sFifR89PZ7zJI16Mqhs5H9tMJtO3rxuWQcl5TchL501u3E5sUzZ93/oJHb38K04xFSmGTQWpeir+TkAaFUo42Yu7GkXCKslGOZ4ZbDpwvCMLZgAaIEgThcVEUv3zkAFEUZ4KOfxj4wykZ3SeEI8YG0LK3C5vfG2a3u2j3l62MDsxgDJS3qEjLTKR+SwsKpZza9dXUvdmMSqNkwZlVzE4YGe2bpmxpEXKFAuuUnpyiZAwzVuIj1bjTYxkf1ZOdl4DJaEc/Y0UmE3CJQR7LoJxHp9vHjD8APdI3jcGfPN18aICEOC0D7WNwGBZfNp+9vdIXdsm8HPY6xtk9McKyjAzC660MvdXH4vmZmMJAdHgoXVdF764OSpYWYTfa6T7cS1xKzFFtto4SehU4qufckRmrp76fhPQ4dKOzbHliJ7Xrazjjy6sAeOvJnfzuy/cCULasGP2EnoOvHqZsWTGqqAj6m4eoqM1FP2MmOlKNTKmgtX6I/KosImKlWJtSpUBI1IA/i0YTFAcXxbkkh4mB6UCQvGhBHhEx4dRtkcqfqk4rp8Uf9iioyWaoY5QDGxvJKEohIjqMg5sa+cmFd/HjR288KU2V45HJuw24DcA/w30/2Nj8zwc37jgfybnymaR8SRGb/r0Tj8tLwfxcut/swuPxEhWlCTI4MEwZAMkxYp4x4/NKxaEuh4d+fwpVbHIMg22SR04ml6FQyTjc0IFSq6L6zPk0bm4kPDaCBWdUMdo1gatxlMpleWjcPhzNY2SWpOP1eNFqVSSmRjM9biQjM0YqjzE5/Pmcc3saW5BKls3nweSWXjNNWBg9II2pY08f1rxwvCIQo2bB8nJaG6SSlsUXLqZ+ewfm7ilqz56PSW+lp3OSqrVVpGbFcfbXTufJ3z5L6+5OskvTiYqLYKB1mLSClKMSoRMz4gOPx/1ygwAOqyMQm+w80IOolLytzTvbyS5KpmWn5EWdf+5CGvf1AWNUr69gb7aPzd5pFpVn4BNFDo9PsvQL83F369EkxJBcnE779lZWX7yImMQ5n1+wtF/wYwFw+veC08OzjHRJFeyH32xmemTmwzW4YyEIwi+BQ6IovgR8SxCE8wEPUk7rNR94RJ9wVl5YS+G8HOQKGYnpcWy4epxHfvofmt+sJ788E0VuGj6lAkVVGsObD0klPXFRKFtHUKsUUhNIf0ZGZOxcNoRaq8JulgzWbXeh8ydEW/UWXFMGJgckp0xKzwzthwcAiEuMYKZ9iImhWTQRGvKK02h6o57ohEjmnbWAjjEDMo2SIkRkMRGYnV4yYiIJj9CgtfpICAvDaLOT5dXSF6bCbnMRnxiJTQZHShmCZfTsjrkEaYfLR2+rtPebGjdy16afAPCrF3/MV/K+Sf1bLQgygdr1NRze0opKq+L0L63isu+fR351TuA91165gsNvNDIxMEVMSiypZgfjfZPk1+RIgfhJI3KF/Kg9s9sdNNN7PUz5+6IPm0yMGaSZfnMqVDX5MDVJS98f//sWVvvDBEf44WM3kVORSUpOIgs31PDw7U+jnzJxwQ1n8PxfNtG4vZ1zvnoaLXu76DrcT0JaLAlpJ7e0PCGDE0VxG7DN//hnQc8HZsHPAynZc17CgpJUuna147K76DnUS3F+Bl3+nMKqC1fQVDcIEzZKLlzOwIu72P/yIXIqs9FGhtG2t5vihfkoVHJMOjPR8ZmMdk+QWZKGXK1m0t+LTa2dW8IFu6e1WmVg7+ewOBjxyyMYdWb0Tg9Gox2j0U5KTRaN/lkqLz+JgcNDTACJcVoyRYHW6S4SEiMpqs3i0OQUaQlRxAlylD06fOFqElJjSEyPRaFSEB6tRfSJREaHoVQrcDs9ZBQkH3V99JMGQBKEPSI56LK7SM1POcrYAFJzk7njjdu5IOkGZnZ2oVQrqFhTQdv+XsKjw6hdV0l/Qz9Om4PSJQUolEoskzOk5SYil8vRIJAiqJjCTVZcNGaHA7PDRZggDyRsA8Qnv7P+T66Q88UfXRD4+db75jyX89eWYzXaCI8Ow+vxcujNZuavrTjp+rlQpskpILMknba9XWjC1UdlZwSLXfpEMZAFPzU4hd0m3ZU7D/aSlpfEWO8Ew0DlylKadkgr8prTq2g50Mf06CyliwtwiHLqd3ZSWpuD3O1mrGOEyhXFTPRPk5wZhyCX0bK/h8yiVCJcksNDJhOIDsorVAd9YQS3yKy/94Bu2ow7MxyH28vQuJ40UUXHfmkJV7owj3a/5n9mYQq6gSkObG4mNTeRK79/HmsvXwJA/VvNPHb7f8irzmZ6eIbU/GTkCjkqrYrwKC1upxuv1xcohD2CWW8L7P3cTk+gUsFqtGEz2tD5KwZScpJo3ildm9SiVMZmXQz3TBAXqUF7Qzn7+oZJjAhjOdGMvNZNVFIUUTHhyOQCT9y/mVt/exnJ6cevZXKkqFiukLN4Q81x/957ETK4U8Ddb/2MHc/sY/7pFWgitDxy/2a693Qy8MpeSk+bh0cEhcVGwaIiBpv6KV5ejm54hpGOEWKSY5AHGYE3yHt5RMocJIHY0Slpydl+aACl1YzT5kI3MktBVUYgxLBgXRWHNzdBQz/LL1vK9XddRUZGHC+9eBiz2cG5587jhWcPsuP1RqI8boSyVFrbxykqSsEnSo39NGoF0ao5T6EySEZPEAgEp8f7p1lz6aKAAT35m2dp39cNHK3QVba0iK66AZ7+w4u07e3knm2/OOr6xafE8O17r+Hpe15l/VdWIvpEnrjjRZLzU9AmzxmIJqjwVBsRFhD0ddhcDBgMgMC0xYatyYbFaMditBOfFEWzv7XWg79+iZ/99eoT/OueWkIGdwqQy2WcdvmywM/zipN5/kf/BMDz6n6cSumLIggCWQtLaT4sufsXX7qUxr19eByw4JxazDNmJkb1lCwtRo6I3WgjqyiF2RkridV5uLsnmBrQkVaQjGXAG9jYu4KWTi7n3GO5x0tGhrTnOP+Cue6oV391NTseepP2XmmfWL26lKZXpULUi79+Gl+77QKiwjU8X/MWkdFhLD+3hsf/8Cot+3uQ+TyU1ubR3TREyYJc2vf3ULWyBP2UMdBD4O2IEGgOOdE//a7HnH3daZx93WmBn6MyE/nrb19lonGcqouWM9s6wKHNzZQvL0GukDHcNUFFbS66KTNxCWEkh8ezzzZLaWw8UVHSjUmukBERNLtHxb6zguCjJmRwpxiv18dQ+0ggsBqdFM2UX6FLFOf2NB63F4vJidvlwe3y4PGK9DRK+6zI2HAG6qUlnEwuI2JZJXWNI6jUCqrPqqGhboCInHQWLC1hatyMzWyneHEhao0Sm8lGRmEqPlHkzKvXHHOc9qBULqdpzjESo1ISGyV9MS+96YzA8zf86lLOibkuMAMXzc+leXsrP9zRxjnXrWHTo2/h84ksWFeN2WChr2GA8uXFiD4Rl8tLwbxcxnonyKnIPEpm8FhYzM652KTRFtifdh7sDSQmGzY3kFWaTsuWXtjSzHlfWknTf1poAVafW8213z+bxNRonntkB4JM4OwrlrznOT8KQgZ3CrGZ7dw4/0eM902SWZJOQnoMHft7yavIRh4ehlwpRyYX8Li9pBckSwFWlRylUoFWqwp4L4MFiZQqBRaLfyZzetDNWBBFMJscuFNjGPV7LxOKEmjaXC89To/j8f4H3rFXCuaO57/LX370JB6PFK5IyogjLiWGVRfUvuvxs+OGo3Qlj+hxiqJIX/NgILvGbnXQdVBKKZvonw7IGYDUWOXgxgbqtzRz55s/o2LF0UW00md089rTB9i/rYPM/ESsJgcxsWEkZsYzPTxDTkUmU8M6zLNWBJmA0z5XOe4xzoVAtOHqwH7t0q+vOeZ1+KgJGdwpRD9pDOibDHeMYtKZsFscdO3rpHzdfDoOS3uJyqWFgcz84posBve1sveZQfLm5REWpaVtRwsli/KJS4nl8h9eQO+okX//bStr1lcQFR3Gk4/sICpChVqcc5VrgoLRETFh72lsAFlFqcw/rZxHf/kcAGWL8rnntR+967H/u+dlnvjNc2TmJaKNDkcmSE0mncnRJGbGow7ToI3USInacZGB7IyYpOijDO6IrITH7Q0Y6NtprRvkwd+9In0mrRL3hI76Ng9qrYrKVaW07OogOjGKBWdWM9o3BYJAUW0+mggNDqOV5PRY5AoZDr0Zw7SJ6IRIGra2SEW+Jyg+9GEQMrhTSExSFIvOmseB1+tZsK4Km8WOUWf2y9UFSXQFZWd43F4s/tlitGMk8EXs2N/NXw//gYJ5uZQB51y8IFCTlhyl4o9f+xsHXB7KlhXjtLuof/0w5ctLkMlgeljHI7c9wVW/+AJK1dHlKMEEF8e+VzB30z+2YTPZGWwboWJFCa17JcdI+fJi2g4NAJBVksHsuJHD2ztJL8smJkZL294uCublEp8ay2XfOxfd6CwP/uDfLDu/lqJjtOcKjrdpw9TY/Xs/p90ltXMGjNMm7DYXk0NSglPisqLADSyjIJnR3ilG63qoe6OJhBgVXYf7SCtI4fdv/B8pOUnH/JwfBSGDO4WER4Xxm1d+zFjvBGn5KXi9Ph796ZO88Y9t9OxqpXJlOR6ni8H9bRSXZaOMiuDCr67iObed1t0dFC0qYGZ0lrGeCaITIgOKV3B0AajDaA04IQyTBsb8zo+2fd1owxTYTHae+v0LVKwoYfE5CzgWl996FpowNcZZCxde/+7KV4c2NwbEkRQqBXLF3DiCs0cQBSxHdGH6phlzOfG4vfTU93P9H75MtV+xa+2VK96z7/eiNSX8+O4v8uqTe5jpn6ByWSFDneNk5iYg+HzMjM2SlJWINijHUhVU/6fWqub2fiY7s71S4HusZwLDlDFkcJ9F0vJTAMl7qVDIA0spy7Se7jppWWkz2njZ8jgAy86q4dYVt9O8vQ2FUs4Xf3IxX7ztomMugeafXknRgjxGusdJyUnE4/YyNaQjOScJu8EMSE6QyPj3bmEsCAIX3nD6MV9/6EeP88w90vJu4YYaeur7adnVSfXqUrxeH4OtI5QvysNqdaENV1O8IJfuhkFK5mVhnjYx0DpMREyYJKXnx+fzIZfLj3VKAFafXcXDtz3B9KieUaC0KoPmba3SZ19XRePOTqbGjVStLMEwbaL+rVYqlxUhymVMDExTuayI8b5JUlKj8LgSad3dQdnSosDf5eMkZHAfMgXz8wIy4bmV2fQ2DuLz+ogLmr0EQQgUonrcXnLKM99zv5FekMKfd/6CK3Nupm5LC+owFQvOWUDj7i7CoyJZUJvP7IyVO2/5J9+//1rKFxcEfndqSMcb/9rBWdeddtQMClIMUBTFQMnPaM9E4DWH1RFouayfMDDk7+fdsrMdeZg2sDwtqkijeVsrgkxg0dnzaN7eyu3n/I5rfv1FWne307yzg1vu/yqCIGPTP7ZxxY8uIH9eDpse28q80yvJLs1gckh3VBMQd1Cow+P2BdS7rCYbQ/7i2M7Dfbg80vO6MQPpaRE0bpWkFL52x5e4/IcXvt+f6iMhZHAfMisvXkx+dTYet5esknTO/8Z6Dm9u4rybzjzquGt+dQV/ufUxUlaV0u5wstLjRak4eiawGKyBshafT0TvnzmdNhczk0Z8PhGzwYZHrmSoV4p3PfuXzQGDM82Yuab0O3jcXp6/73Uebr5Lao0F7H7hAH/73j8Ji9TyjT9fy4FX65gdnyUhPQ5tpBZ1dAQRseFYDTbi02IZH5jG7fQQnRiJ2TznADmSmS/6RGxGWyD8sOOZvbTtkfQ3//qdf6DzF68e3FhPcm4S472TqDRK1l93Opue3IMmXM38VSXoJ43oZ0wUzs9DpVHgMFtJz0/GarIRHRtOnL/FV2ZxGuNDswG5CUdQ2CM4WfrjJmRwHwHBS5nihQUULyx4xzFnXr0Gc3I0dz/2Fk0bG+ibNHL3j+fETf9040O88Y+tLLtwIWdes5Zn/vQaVatK6W0cJLcyE2VEGCO9U0TGhB2Vb5kSVB1umDIFko/NeutRnsxN/9gacEr88+f/pdmfuZJbncPwlIOxA4NEJycSEW3l8BtNpOYlk1aQTOeBbjJzElCFh6GQS7Ok1SC11FJHh6MOU+PzeomICQtITkQlRAYMzucTA7O7y+Gm41Cf9B5GG26Hm35/AW9MfCQt/rSusGgtLpuTg/3jhEeHU7mmgpb6YeISoyhZmM/4mAGZ6CMvLoKI6HC2/Gc3FStLScr8aEVf342QwX2CMAbdlV1B4qYup5tXH9oMwPb/7mWgfZxhf8lI1YoSmvyKVNWnV9DRMMihLS1ULCnkC9/ewKJ1Uu+BrU/v4ak/vEjVqlL6W4fJLc9k2//2cf6NUnvl4C+jKkhGT6VRgV9LxO32MOMvnxnvmwRR8rBa9FYqVpTMKWOtqZC8l+3j5Fbmousf48Br9WSXZRCdGE3bvm6Ka/NBBj6viFqrYqBlmOyyDNThamRyGWGRmqPyUsOCqtm14Rqss1ICgdVoZXRIyrWcnTaTnBUf6H9XVpFK0xtSbPJXl/+R+/b85sT/KKeYkMF9grjozGp6BqcZ6RwnvFtHy/4eSmvz2P7iYdKK0xnrHPUHxYPCCkE1bl6PD5dD8l6a9JaAsQHcd8ujWPz1esUL82na0U7TjnYcFgdf+P553HzfV8ksTefF+1+n7s0mqlaXATA+ME15VSaTU2aS4sJwx2tp39dFblUWKo2C8T6p86sQ5EWVBS2FvR5voLfcYNsIcuUEXo+PzkO95FVn0+eX+6teXUajP/eyanUZvR3jHNostfgSFAraGgapOK0S0eXG6vCSUZFD74FOzrpuLW6Vmlf+uZv4xAhUQZ1jlUHOmrDIjz+tC0IG94kiNiqM/3fzWVyQ912mgeat7RTPz6H9UD9KlYIlFy2lcUsjuuFpqleV4LQ6mOybIL8mC4VajU8UychPZnpcT1pOIhNDOlKyEpgcnjkqrBCcnRFkuySmxzPsd0L0Nw9h8dfC6UZmSc1LornJXwB6RiV1bzYjCAILz5pHX9Mg7fu6qFlbgc8nCS6VLS7AYrQREaWlcEEePXV9lC0txjRrYbhznLBIbfCpj8pi8Xp9OPwCQLPjBnTT0mzWXj9MbFKU1B21d5of//0brL5QyoxJjAvjkR/9m4l6L/POrMEwZaRuYx1Vq8sQfSLj/RM8f9/rXHjzhqPCEl2He/G4PJQtLT7pv9/xEDK4TxiWoIJPn09k2t9bzu3yYDHZAyU+bqeL9v1SAFoVpmZiXIrFKZRyouIi2PdaA007OzjtC0vZ9MRuIqIjmTc/F+OMBZvFQV5NDuERGuq3tLL8/Fo0ERoatrUSnRiFcdpEamEqw53jOMz2oyoEQIpvgZTW5bS6mPGXz+gnjQz3SalmhmkzgkwIeC9LFhfSuqdTSto+ex4tuzoZ651k3umVuL0i44M6ihcVSJnOcjlZxalMDM2QUZGF0DPJ9PCM1A8hiNjEubCHddY8Jwo0Y6LfP3N2H+4LOG7+cus/qFlTTm6lJGD171/+j3/9v/8ikwl8896vcv431p/U3+54CBncJ4y4pCj+3z9u4PG7X0WtVSMIkhGm5ySgVoqB5Vt4kNBOWHQYjPu9g6LIrN99bzM7aN3fg9fjwzhrxZuXSL9f/Kd4QS7N/j3X99f9GtOMBbfTTWRcOBWXrKCtX0/i0krKlF5GW4dQaVTEpcQQEROB2+kmNjkabaQWVZgKbaQGu9kheS+H9X61rghMQY0pjywrPW7JIWI1+avb3d5ABbtCqQh0y5Er5CSWZdNwoB+NVkXtGRU07OggPFLDsnNqOPfa1VQtL8bj9vDGP7fTuqeT5JxEbCYb0QlRRCVEYtKZSctPZrRnIiCIFB0ksdDfIiWL+3wio93jfBScKuVlNfAvYAEwA1wuiuLAKRzn54rF6yrY/tJhtj4nlcxULsyl/mWpf1rxogKmBqfZ/1o9BfNyCIsKo/NgDyULC9FEhXHJN9cz1DnG43e8RG5FBiqtmmHZBGFR2qMaG6qDmpQo1cpArMs8a2VIJ81g05MmYhPUgSYblStKAjVu+dVSTHGsZ4KE9DjiUmOp29xERlEqSflp9DYNkleViegV0WjkiD4f5lkLyTmJkoyeSgGiSLi/D7ooSjmgRwzO6/Gi87f7cthdzEyZ8Lg8GGcsFFZnM291KSC1fv7j9VLbseiESFwOD4c2NRAVH0nVKqmYNykrgRUXLeKy751HXEoMVpOdl/++BbPRQXRiFGqtCrc/iVsTrqbzUC8FNTlH6ZycKk6V8vJXAb0oigWCIFwB/B64/BSM73NLcE5hcBMQt9MdCEAPtAwHSlXadrbx512/onRxIQvXVTI7YeTZB94AoHp1CZ2H+jj0VhvlK0uwpkezx2an5pYzUTWNYHN4qS5Mo2d/N3mVGYjRSlrNDlIzYkmNU9PpP3ewfF1wO2OH1YFuRFpKjnSN45MpMM9aMc9aKavNCbjzgz2ZBfNymR3Xs/+VQ+RV5xCVEkfHoT5KavNQaVRccst6xseN/Ovu11l8RjnJSVEMtgwTFqmlaF723LmDPLsqrSoQBzTNmBlsk2bzqSEdy85fSF6V9Hsb/7WDf/ziWQDyKjLpbxvhtX/upH5HB5HhCtr3dVOyqIBfvfxjYhLfKc1wMpwq5eULgP/nf/wMcL8gCIJ4JKktxAnz3T9+mai4cIZahxlvH6JkUQFWs53IpBhyq2CgeYiSxQXoxg1M9k+hjdAclTlinJ1bznmcnoATQmdx0G2TZrq68RnSB2cDQkGFRck0bZNk4y790UV87ddXIJfLWHxGBWl5yRTV5vGfO16g7s1mpoenqFxRwljfJBlFqTitTjoOdFO6pBBtbBQTgzpkchkqzVzydLDjxu1yBxpW9jcNIu/T4fP6aD/Qw12bfkKlv8f6OV9eHtARWXXBApKz449aTq+6bCk3T5to2NrCZd87j32vHOaF+1+nYF4uog+Muk7iUmOOchQZ/JorIN04RH/mimnGzEizdOPoONCDUWf+eAyO91deTgeGAURR9AiCYATikVToA3zalJc/TrThaladVcUP7pEa3M+M6UGhZGxIj0wmULKkkNY9Xai0Ki75zjlcedtFRMbOZfx/5ccXMD0y63d2CKTlJaGbNJKwKBe9w4FObyVRq0II8hU6rHOzRWxceCAwfvqVKwLPn3/TmfzzZ08BUr1bcm4SjdukZeY3/3wdF95yFj6fj82P76JyRTHxqTE8ctsT9DYOMt47SemSIkyzZqISosirzqa/aYiyZcUYjQ7G+qbQhKmP0r0MFu3Jq8h4x3USBIELvrmBC/xS5mVLixnuHGPXc9ISfOGGGuq3NPOHq++n+3AfPQ39tO3ppGJlGSiUGKZNlC8pZKR7jKyCZKypUXQf7iOjKBVz0E3rVPG+HemClZdP9mSiKD4kimKtKIq1iYmJ7/8Ln3Nkclmg11xkXEQgC97nEwOzg8vuIrci6yhjA0jOiuebd15Jd8Mgrfu6mRqZRXZBFXvHZ7A73KyOjEJ8Q1LJqlpeRH5FBh6FipyKLMqXl9C0o43x/sl3jMnt8gTaRAmCEPCaglRgCtJMtv6qVaTlJaPWqln9heU0bW9jemSG9n1djPdO0ry9jf6mQUpWlNBeP8TUyCyL1lejUCn4yUV3seeVug983Yz+Zing72TklnJEW/d00LS9DY/bS299Hy17uhjpnqB1XzcahUDDlia6D/dRe2Y1I13j/GDt/+ONf277wON4N46nBeQR5eUB4ClgrSAIj7/tmFEgE0AQBAUQjeQ8CXESVK4o4Z5tP2fR+QuRR0dRsqSQrNJ0KlaWklyQhiZCQ+XKUiqWv3sM6Yi3EqTY1pTBn51hd6HvnsTj8qCfMiH6RHpbRhgf1qONj6F1dwf7X63je2t+/o73jE+N5W/1d3Lxt8/h781386sXf0Txwny+dPslVJ8mleAMdYzy9B9exO6fMYc6xwIOiKiEyECoQBTBMOWXnHB5sJltUmMSvZW9r35wg7vl/q9SVJvPuqtWc8HNZ5GUlUBkXAQLN8wL5KJmFqcf1ZjSrLe847HH7WWofeQDj+PdOCXKy8BLwNXAXuBS4K3Q/u3UULakiLGRJzDozBh0ZsoW5dHqL7bccN0ZfPvut/8pJP5+25O8/OCblM3PwenyIRdEFB6BehWURcUQKWoYahsjPEJ9VCpXWFCd2bFaNGUUpXHTH68J/Hz/vt8GHnce6uVbS27D5xN57eE3iUpPorthkIyqPOISwhnsmaa4OBOnyUJUQgzIBEx6CyklmWhSE5Er+6TK8SCZCafddULdSXMrs3ngwB2Bnxesq0ImE9BGaDnn+jPoOtzH0vNqGWwf5eW/v8VZ16zGPGPi/m8/RmxJNqhVhPdMEhkTRu36muM+7/FwqpSXHwH+LQhCD5Ly8hWnaHwhgNikKMYHpqWSlaDbWPQx6t28Hi/P/uk1aRm1u5PssnR62qRuNAvXz6N5t79rz9oKOvd2cGhLC1XLizn3ujUsP7eGF+/bSMvudq748UUnPFbdyEygfMaitzA5LTlkRnqncLnjMc5YMM5YKFuQQ8tuyf9ZdXolzcNmBvQjFJ0xj5mGHp67byODbSPkVGTy2iNbWXFBLd+4+yuEBTlMjpfwqDnjTUiPJyFdqh7IKcvglj9eFXht3a0X8I9735SuzcUr+c1frz7loYFTpbzsAC47lQMLMcfvn72Vf/z2RXa/Wk9f2yjVK4qoWlbE+V9d845jRVFkz4sHScyMZ2pIhzpMhc87Z6XeoMdulxebfw+mnzKyyi+ld/Gt53Dxred8oLHOO72SDdeexv7X68kuzcDu8tHTMkpGflJgCSeTCSiCtC7FoJ7oTpsTnT+7pn5bG3VvtSCKsPmJXZz91dMoW1z4gcZ1PJhm5xqkRERpP/Y4XIiPCYVSTmRsGBN+DQ+vx8eV3z37XY/9xSV3svuFg6i1KhadX0tHrx4jUHVaBV67E13/OLlFqZI8gtVKanYC0+N60rPjmRnTE58Wi37S4FdLlmYGURTfUxYhmLBILd975BtcW/ptGrZKIYYF62s4vKkBuULO2q+s5srbLiI+JYa/3/YfhjrHmB6YoqgsB4vFRaRSJLs0ncGOMYrXVDAzMMVU7wTqMBXqiBOf3Y6HqSEdd1//IK37eqg4ZyGiCMN72tj53AFWXrzolJ4rZHCfEtLzkgNa/vEJ4fh8PmQyGV6P96g78ZH6MafdhdUrw2L2a2LmJtDyZiMAqR5PoEuNUqMkLjWOvS8coHl7K2d8aQWv/PUNYpKiue7XV/Dm49uZnTDwo3/eEggcHw8mfwAawDwrPfZ6vMQlRpJRINUHnnbFMr5/plQyM+mvxRv1iQgygdKLl9PePo46OoaFXyyifWCWH//gv/zwZxewcEn+B7qGx6LjYC/1b0kSDsM7mgOJBb+64k880XffKS1gPR4vZYhPACvOncefX/8RGclatjz6Jt9b83Oef2ATV5V9j1996T76mgZ54FuPkpgRj1qrIre2EG2UVPQpkwtow4OagETNzRTBfcYteit1m5twOdxMDel47e9vcmhTI32Ng/zr/z19QuP92TPfI6cik8pVZajUSiLjIkjKSvC37JKC8IJAIOwRFRceCECLPpEZ//LO6XBjFeSYbC4MBhu7tnV88It4DGKTo9H4r098WuxRN7CI2PBj/doHIjTDfYqISYhgoFlKuG3Z1cH0pBnd6Cy7RmeZGZ6mdZe/Cch5i2lpn2Z4dw8l1ZnMTJk4tLePknOWoLKY6K7ro3x5MXazA1WYGpVGSceBHvKrsv1B52G0kZqj1LCik04s46J6dTlrv7iSR3/6JACFC/LobRjgxQc20ri9lb833UPFsmLueuOnPHHHi/Q1D1GyMB+rzUVMSRZo1RiNdlLTY/0iuZK/KCJq7sbhdnlOupsNSOGXBw/fwT03/p2m7W1klqSRW5HFZd8995RrWYYM7lOEJkxFzWnlNGxtJb0oDVVQAvJRUZjg2jeHh+lxaYnU2zmJp3cg4L3Mqcym06+SXLWqlIYtkujOvNMr6DrYx6E3pEJUj8vDG49tJSI6nOt+88XjdibYLXMlPXK5LBB/O1I5AFC+tIixvklJu2TSSNkly2lul6rZqxdk03h4kIHeKUqrMpiasfLfx/cxMjhLVpicVx/dztrLFvO1X156zBDG8ZKal0zHgV5EEYbax/jGPVdTtODdtTNPhtCS8lOENkLLH978OWfftJ6JEQOjPVPUnllFWl4SQz1TVK2ppGp1GbruEQpKU0nJiiMsO4bMAkmLsbA0lXi//LdSrTiqU0+wMpbb4QmUz+hG9bTt7cLj9vLfO188qi7u/fjyzy7jsu+dxzlfP4Nv/+161l65gtjkaL7000uOOi4mQQpvCIJwVLV48D3E6fAw7TfUA/t6+d+fN2Iz23nl0W0BBbGTQRRFKldK0uvxabGk5iW/z298MEIz3KcMQRDQT5oQRRGPy4PT5mTM7wCxWp30HpL6VMu7J3Cur6F3aBq5SqCqMIbWF3aijdCwcH0VnQd7MU7qmbe2glUXL6ZsaQH3XP8QLrUaoTCd5FkLM70TpOQmYTVaMfplw+XK43eVq9RKrr9zLs512+PffoeTB+DOTT/l1YffYv7acuIz4vnrXa8z0TXG9P5WCkpzsTg9qLKjSPf5GB2coaA8lWmrCUOfDqVacVTZ0clc19++/CMatrVStrToqHzOU0lohvsUcvoXlxMeHUZ8WiyacHUgvhUVFx5w30fEheP1JyZ7fSK6QammzW5xYDXaME6bME6bSEqP5eyvrSWnPIvvPvFterxymjom0KclE58RS93mRnxeL7Xrq7FbHNxY8wO66/o+8NjfbTmqVCm48BtnklWSTniEhtNXFdD41DZGmwYYeHEXrfEedk1P0B7lJGtdLnvcesaWZlBzxSLCIrX85OI/0rir813OduLUrCn/0IwNQgb3qWT1JYu5/fFbMEwZObipieTsBHJKUql/o5G8qixqTitHqVRQbbOTnRzFN69bwyXXn4Faq6J4YT6Vq8qQyQRkMoGCebmB97UEJSJ7PD4m/TOnedbK9MgsLoeb8b5JGv0qyB8mczeOCET/jcPjExm1St5Lq8OFye3GqDOjGzew++WTzq3/SAgtKT+lOKwOvB7JCWGasWAYlVz7vY2DJGcnohudRTc6y/e/vIr1Fy4E4IwvrSTKnw62/IKFRMRGkFGYGnjP8ooMbrl1Pa++cBiNwYhyVanU82BVJZrIMAZbh9GEa1AEzQBOuxO19uQcFm9n3tpK7njj/zjwWh0X33oOh0aneey/O0kbNIDJjDFaTq5KQ5Re2ncKMoHwoBzQd1u2flIQPq4c49raWvHQoUMfy7k/C5hmLdz77X/QsK2Vi2/ewKGN9TTvaCenPAOlVkX3IWnZ9/tNP2X+GVUn9N63LP0JHX6BovlfWEVTo6TkNW9BFp1bGrEYrJzz9bU4TFa2/3cPl33/fEqXFvHsPa+w8uLFnHfTqRfj+c2Vf2bb03ukcZw1n6bd/g4+i/KZ6BxiakjHaV9cTnJWIq88uJkN163l2t988UNdHh4LQRAOi6L4ro32QjPcp5SouAhu//fNuJxuVGolV/zgPNr3dVO2tAi3y8NLf9nE/NMrTyg7BCTR2WDZguAuwi63F4tBWtLVb2lhpF2KCT7x62cJi9JiM9mp39JMemHqCRv5eyGKYqClF4DomZOccFjtTA1Jdc57Xz4cGPsz97zMmVevJrfyxD7/h03I4D7lHLmDy2QyypcVB5679DvnvtevvSu7XzjAvd98GNHno2J1OfLEeExWN5l5iUTHRbDhwhp0zf1MDetIzorHODmLedZCZHwkLtuchEF4zKnLzmjb18Ufr3+QmXED5cuLkcvlzI7NkFuWjt3mJCI2nNT8ZMZ7J8mryma8dwL9pBGVRvmJEX8NJmRwIQLsfuEAs+NSpn5mbQmtzdJSMrswmTv/fT0Ay9ZXcUPNDzj8RiPRiVHUnllDy55OYlNiySpN55zrzzilAeODGxsY8Ev7uRwuuv1dZLVRWtyijIneSZRqBaUryug43E94jJZF5yygp3GIH55zBzf+4Usc2NTIQOsIt95/Hdml6cc8l2nWQviHVCVwhJCXMkSA3MrsgPcyKagJSEz8nHyDQqVgPKgT6eTwDA6rk4mBaRacWc2y8xced2XB8ZCWlxwwgOSsOVmOiOiwQO6l2+lh0r+stBrsWMxODDMWJgamefbejbz2yFba9nXzp5sfPeZ5nvjtc3wp95t8a/n/se/Vw/zsojv5vwt+z4z/BnSqCM1wIQJc9r3zKF9WRFR8JBlFaSzb2MzIgI7zv7QUkIRT//O7FwK9tosX5KEOUzPcMYo6THVK8hrfzrqrVpNVloHb6aZieQn7X6vnuXtfY6R/mvKlGcyMG0hMjwNBxLSri8yiFML8ydmCTECtnXOaRCccu0Hlm4/vwGlz0l3Xx1N/eJG2PV2AtD/91gNfO2Wf532vkCAIGmAHoPYf/4woij9/2zHXAHciaZsA3C+K4sOnbJQhPjKCNfZXbqg86rW7vvpXuvzezyM5nSBJGHQd7uW+mx9lvG+K6//w7rIPH5Ti2rlynMVnz+NP3/oH+ikTM+NGimtzafZXjs9bU0bdlmYG20epWlXKxMA0hzY3U7G8mIXrqjjvhjOOeY68qmxGu6W6u+A2XjEnmLT9fhzPLckJrBVF0SIIghLYJQjC66Io7nvbcU+LonjzKR1diE8UTttc48UjJTYgKYeZ/eU0h99s+tDHERYVht6fV+kNaut1pO85gMPmDHgvhzvHuPuNn77ne/7fU9/hid8+x7N/fJXW3V0sXF/D6i8sPUoi8FTwvns4UeKIpJHS/y8kEPQ55Lev3cbS8xZQubIUi9FORnEauVXZKCPCiE+PQ66Qk1aYhtkfOjDNmnEFJUWfKu7f8XPOunolKalRTPaMUbIgh8qlBZh0RrJK0kjJTiA8TCUtNYGc0nSMOtP7vCsgiphnLXg9XlxON2detfqUO1COy2kiCIJcEIQGYArYLIri/nc57BJBEJoEQXhGEITMY7zP9YIgHBIE4dD09PQHH3WIj4WkzARq11fTvLOdobYRRFFkeMRE04F+XDIlScWZ7Hurg5tW/pKHf/IfvpR9E9+s/RGDbcOndBzaCA3hERpGeyYwTJnwOlw0bW9joGUYw4Seyd5x6t5swjSlp7Ayg4YtTVxf8wP6mgaP+Z6N21rpbRoiKj4CuUJGfFosTrvrmMd/UI7L4ERR9IqiWANkAIsEQah42yEvAzmiKFYBm4F/HuN9QkKwn3IEYe4rE6yg5fWKgbq7mQkje146iMPqZKB1OKDMfKqYGJhCP2ngiDM03j+TAYRHaQOqYQ6rk9FuqbZOP2lE528U8nYat7Xy/dN/yc5n9qHUqIhJimbL4zu5qfZHxzczngAnqtplEARhK7ABaAl6Plj09WHgD6dmeCE+aZx34zrCo7SM9U1y3k3r2PzUPjY/voswrQK5UkFbwzAFlZkovE6GAbVWdZTgqsftQaH84N7Mxm2t/Gj9b/B6vJQsKuCGO79CxYoSdj5/gFf+voXh7gkqV5cxNTBNUmY8CNC6u5PMknQm/RUTXq+X0e4JskqkmFxwQazo8zE7bgBguGPsqKYqp4Lj8VImAm6/sWmBdUjdcYKPSRVF8UgV4PlIXXZCfEZZG+RIuPSbZ/LWP7fRukuqw6tZU0b9m1Jf7dr11XQd6uWP1z/IcMcoxhkzu57dz5duv4TLvn/+B4rXjfdNBQpnrSYbFSukotGVFy3iTzdLbZVnxvQUVGXQtF3yos5fV0nd5mbu/cbfad/fReuuDsb7prj422dz4z3XsOzChVz+wwvY+/IhImMjSMlJon1fN8UL8xlsGyYhPQ67xc7shIH0gtRjju14OJ4lZSqwVRCEJuAg0h7uFUEQfikIwvn+Y74lCEKrIAiNwLeAa05qVCE+NbhdnqOqwB22uTxMp82FacaCKIrsf62ON/6xDZvZzt9/9PhR1eYnQu36auadXkFMYhQX3rwh8Hx/yzAqzVwhqsseVMEeNEuNdo0z1juJKIrseFZytCtVCr72uyuxmey07umkbW8XFSuK6djfxW0bfsMDtz7Kl3K+wdcrv8fLf930gcZ9hOOROm8C5r3L88FCsAE59BCfH3Y9f4C/fPdfIEDpkkIUSjkWg5W0ghTUWiUKlZzY5BiMOhMJmfHoRmexmewkZsR/4GVlQnocv990O26nO2BgD/74SZ6/fxNhURoWrKtkvHcSq8VJ6dJilEo5VpON9MJUvB4v2ggNcSkxzE4YqFl7tCvCZrIHPZYkJkRRpK9xMNBJ58DG+pOqhghlmoT4wGx/Zl/AEZGSk0TzTknCLqs0nf7mAWCYiOgwEtLjqHujifi0WL7wg/O5+NsfTNX5CIIgHDWbte7tQhRFrEY7LpsrIDmRlBFP0w7J1ZCQHsfsuJ6J/inCorTcvf0XVK0sO+p979n+//jLd/6J6BNxOV3EpcYSW5iOoiCdsKYh3FYHNWve7i88MUIGF+IDk10q9WuTyYSAriMc3QTE6/UFAtAzY3qWXbAI7SlWUF5z2RL6moaISYpCrVUiCAKiKKKNmFM100ZoAt5Lm8lOyaJ3SqbnV+dQvqyIp37/IgDFy4rpcMuhbYKMdQv5w12Xn7QobMjgQnxgvnz7xaQXpvDo7f/h4Gt1VKwoQaFR0989Qc36+cwMTxGTlggeNy3bWylamM9AyzC5Fae2GefFN28gKjacO6/7K5M945QuK8YlymjY30/FaVXIZTAxbqbmrFrGWgdIyU/ltYff4oJvnElH0zAmvY3Fa0rwen2YZuYUoxVaNZil2jtBJpwSBeaQwYU4KSJiwpjwL+F6GgZwy6Rk4eZ9vaTlJtF2UMq9rD69moYtTfz2S/cyOaTjih9ecErHYTPZ8PkdMRaDjfEJac/V0TQakIifmTSRU5BA884Omnd20Fg/zL490vjOuqCGuud3MzEwTfWacnyR4QzavFRWJ2MwWImNi2DX9g5WrC45qXGGynNCnBSpecmk+XsFVK8uC2TkK5Tyo/ItHdY5h0Rw34FTxaKz5lGxooSYxCjO/MpKMgokXcnMwhTC/EtLQRBwB3kvTUGiSQMtQ4z1TuLz+pgc0tE0acNodtLcOMTsjIWm+kF+8ZNnaKw/drbK8RCa4UKcFBmFqTxY/weGO0YpnJ+HQWfmwR8+Tt2mBnA4KJ6XjVKrxmawkpKbhDYmnCmlglm9lagoLXsP9FI7LxutRoVZbyUsUvOB8hdTcpK4e+vPcTullsgX3XIWd1z3V3Y/u5+o+EjOuHwJl96yHqVCzr23PIJHlOHUGUlOiURAQKNWEJ0UhXHKRGJpOnqziMPhRq1W4AgyUo3m5DRSQgYX4qTRhKkpnC9VecckROI02wM9yJML02jZKwn+5FRm0h6hobNhiEM3P4ZapWBiykR6agxrs+J5+c+vklWazk/+dQupeUknPA6ZTBbolKrWqhjrlCrWTTNmiquzyC5OA2Dtl1dzz83/ACA1N5GJAR3jokhkbDiJX61hh9NBWlY485SR9HRNkBwbTmSYmjPPrqagMOVkLlVoSRni1NJd14fX30NAEDiqVbAySCHZ6/Ux4U+pGh03sO3ZfTisTroO9dGy5+REXW1mO/+962Vik6ORK+QkZsZjM9oCr3tcc0F3tVYV6MtgM9vpdkpL3zGzlUmjBZPRzuCAjtVnlHP2+fOQK07OZEIzXIhTxsbHtnL31/4GQPWacqaGpjn48kEq11YhV6sY7BijdnE+k+FqoqO1yASB5tYRynKSUcoFpjvHUEdoUEadnPjPw7c9ySsPbQGkQtnG7W08/JP/MNA6zA8f+wZnX7MKQYCtz+xnrH+KquVFjA/piF2SS1p2DA3dYxRkJBBlkiqqZTKBsFNUpROa4UKcMkZ7JgKP7RZ7oOljf30fzXu6MM1aaH29Ea/ZTkvbGE2to9Tmp9FzeIj2KTu1XzsT5fxifv/71/nfE3s+8DjMQa2DfR5fQPvkSEAc4Mwvr6B5Tze6MQNNu7vwrshlr8tGQ/cYi0uz6O/XcXBGx/z56SQMjfPnL9/Lf+9++QOP6Qghgwtxylj3lVUU1eaRlp/MuqtWk5Ir7cOyStOJiJZmLYVKji2oSttunZPXc3rBbHLg9fo4sKfnA4/jpnuuYul5C6g4rQJ7mJas8kyik6OJz09lwt98sqNugPBoKQAvkwnYvEFjCiqadejN6EZm8Li9bP/f20UOTpyQ8nKIU4rX4wVBQC6XYbc4+Mk5v6VlVycxSVEULiyk51Av6gg1EcvL0Kg0uMwODBYHkdEaYmLD6e6YwG5z8pWvr+GLV39weYO2hiG++5UHAZDLBRQOFy6HG224mto1pex8tYHo2DDy8xMYbhlEEEBYV4omJRan3c2s0YbG5iJXb6drVydWg42LvrWBG+/8yvueO6S8HOIjI9ilr43QMNQueQoNUyZMUwb0kwaYhOqidJpHpYqugpJUurul5V5CYiR//df1JKWcnHhPsLRDWLg6oBhttzrpbJBiaUa9DZvZwUSvtBQuK05jn385mh+uRffvPdSJIjFJUfzl4G/JP0EV63cjtKQM8aFy9tfWIpMJFC7II78mB5CWcMqgfMq3y+udrLEB1CzO5/Z7vsjac2v43cPXcePPLyImIZKK+dkkp0Yjkwkkp8ei0c6dWxkz56zRen0B76XL4T4lxgahJWWIj4DpkZlAHuLrj27lP3e/wtSogcoN80ClYqhpkKzKTGatLuKUMtZftojTL1nI7l1daMNULFiQ+z5nOD7u/PqDvPnkbgDmr6umYXsbok+kekUxeqOd4YFZCi+Zh6hRMLuzh9QoDeM9Y6QXpnHWtWs47QtLj+s8oSVliI+V4KTfyPhIpkYkNePhwz0YHdINv2VbO/HJUbRMmmjZ082bb7VzsGMMQYBv37qB8857R0nmCWOcsQQee1zugPfSanEw3C85U0Zebw04cmaB5HgNjTs7aNzZgVwhZ9XFi05qDO+7pBQEQSMIwgFBEBr9Vd2/eJdj1IIgPC0IQo8gCPsFQcg5qVGF+MySUZgiaY0AGQWphEdKeY4KlRx7kO6l0V8MKopgMFjf+UYnQH/LMN9f/xv6mgYpmp9LxfIiHBY76fnJxCZFER0fSaw/BzQ9Pwmtv9ec4Hf8HCFYm+WDcqqEYL8K6EVRLBAE4QokzZPLT3p0IT5z5JRl8Nc9v+SnF93tbwISw4JVxfS2jhIWqSG9OAWy47ELEO/2EB0bzuiMGbPFgUat5MDubhYuK0B1ArLqe1+to9nfkjg2OZqW3ZKMeVi0Frfbx+EtLYRFaSmvzaf1UD/xKdEUrSphyOhA5fUSP61HmxLLKzu6KFhUSGLisSXT34/jkVgQgfcTgr0A+H/+x88A9wuCIIgf1wYxxCea8Cgtgx2SKr5+woBhxhL4V1aQxMG+SQBKClPo6J6gc0xHU8cojFjQTZnIyU/inoeuIcI/O3Ye7OGfP3+ayLgIbvrjNex/tY7xvkmu/OklOCwOpofnNFDDoudaaYWFa5iZkioXbCY7I73SeWcmjMQgMOlPPauaV0BD4xBM9fGH373Mnfdc+YE/+3HdJgRBkAOHgQLggXcRgk0HhgFEUfQIgmAE4gHd297neuB6gKysU1uEGOLTxYarV/PCXzZTND+H7LJ0eltHEWTCUe2MFUEa/x63NyBnN9A7FcjXBHj8V89wcGMDIFWVH+lB3r6/i7Y9XTisTopq8xFy0mgcM1F27kLkZhtGo4Oq8mwGWgbJqcgCmZzm/b2k5CWhDdJcUQblTx4x8g/KcRmcKIpeoEYQhBjgeUEQKkRRbHmfX3u393kIeAgkL+WJ/n6Izw43/PYKLv7GmSRmSCKuhdVZPPPXLbS83sSitaU4U6MYGNJRXZ6BwWgjVlCQWplBR8sIJeUZDPROUb0gR3qzILU9n2/OEO1mBw6/A2RmXM+MKhIQaB01kWi2oJ8yMdo3Rcn8HJr3S4Wo88+opK55jPHdPSxcXsCE2U59/SA1NVmUlmdwyaULT+pzn1AcThRFA3BECDaYUSATQBAEBRANzPAZpuNgL2Z/G9wjWvQhTowjxgbSMnNqVI/PJzLVPk5jywhGk4PG1hFsfXo6Dg7S3jxCeXUm7S0j/PAb/+KNVxoB+L+nv8vFt55D6ZIiBltHKFtaRPHKUtx5qeQtyEMToSHttFKS8qTzxaVHIwuaPV2uub+dy+0NxN/sFifDw7P4fCLDI7N87etriI09ue6up0QIFngJuBrYC1wKvPVZ3r/97pq/sv25A8SnxnDptzbwwt/eRK1VcZO/2+Zg+yi3/PEqUnNPvKbr88hQxyh1G+uJTYxEP20mJTueKdGLzeFGrVLg1M9Vi1vM0owlimDyl9yoNCrKlxXz3J9eBWBiQMFETQHo7ciS44lcmcc2uw210s3Ci0vY2ztCZFIKi8wZGCcsmCxOCqqy0GiVuCx2UtJjcbnchPvcRGuVGO1uMmM02K0OtOEf/pIyFfinfx8nA/57RAgWOCSK4kvAI8C/BUHoQQpfXHFSo/qE07JX8nLNjBvY/txBJgelreqTf3gp4A27+6ZHuGtjSKrz/Zga1vH1iu/g84lExIaTXZJF4ysHic9Lpuq0MvperSc6KZqw4gyUThduk5m4+HDiEyMZ7p/GanGgVMoZaB9FoZTjcXuJTo7mSN2CT4Qpl+Tad7q9TNnteH0+DD4fzrAwBnolh0p8WWrg7xqfEsNsRz/Tbi+RcRGUlWbQ9OhmbtzRzG9e/QkZhR9cfflUCcE6gMs+8Cg+JZj1Vl7822bSC1LQTxpJzk4IxGwAlEEb/vDoT15D908ihiljQL7OorfibBkCYKZvksgwJeYJA+YJA1UxYTT73fklS4tobxujp22MzpYRjAfamZ00klGSSWxSJO2HBqiIjkSsyMIlgCpCRZvdQF56PCqFHIVcRpRcQZh7Lu9TE1Qcq9YoA33nzLMW+uul/d1YzwRTQ7oP1+BCzPHA9/7NtmckB+38teXUb21jvH+a6lUl6Mb01L/VSuXyYiqWFXHhN9Z9zKP9dJBfk8NXf3slrzy4meScRJDJaNnXS9mSQpKzExhoGUGmkCMPm1vKydUKpPCwlKQ8Oyl17RnpmWRqZBaPy0PPgR6y0uPp9u+zKxdls6dXSqRekpjI6PPt1DnclNRk4fF4aTo8RPmKEnC70U+ZqDmrlv7D3WSXpuPz+mjZ1UFeVTaZfpmGD0rI4E4Ak34u48Hj8gSV5jsY7ZFiOP2tw9z5+o8/lvF9GpHL5Vzx44s49EZjwJ1/9a+u4Ms/vQSAoiVFPPe/Opr6DVRfsBivT2R41EBldSYzUXbEdWpyCioYerCN0qXFWA0WBlqGiYgJQwiqXPCIc95LweLG5ZAcJcZZK+NDkn+vtWkUrc+F3eJkrH+avPwUmrZLrbau/OklXPurk98phQzuOOhtGuSBW//JWN8kRfNzUKoU2Iw2MgqTsZmdRERpSUiLRTemJ7skHbPeQmRsBB63F59PRHUKUoI+61iC0rfiU2ICj7UJ0ej88bepWTvjI5K0uvHQAIbfqbF5XbAKlisW0/bqKIJMxqJLltJSN8TUwUEWryrCNWNl4rVOFqzKwpERhl7wkbIoA1PbNClJEXjdXqbGDSSlRGKbMgTO7bDMOWsSgnrQnQyhb8JxsO+VOlr9wjZxKTF07peqkcOjw7AZzEz3jqGN0FI8L5umLY18rfL7fOH2y3jp8b2ow1T88I9foqA8/eP8CJ94fv7M93ng249SsqiQVZfNZeXnFiQTmxCBXmchKS0a/awFh82FNkHFlG+uK451RnKMiD4Ru1fAYZNmMO+Mlc5DAwAoOqapV0p7NXmOQMlBA4ef70MdrqZmZRkNm5uIjI9g3tJ8pgancTvdFMzLJSxSw54XD1B7ZjWpeckn9TlDBvc+mGbMzIzNdc4Mj5qr49KGqzFPGwBJw2OsSyqonB3Xs/P1JqbGpNe2vVQXMrj3ITUvmV+//E6vbklVJg8+ewvfv/ZhGg/0k5gSRfb1WRxOGSVLE4NWoUQpyBEv8hE55iAlMgZlmAp1mArR5yM8TIUgExB9ImHJUYBkmIIgYByS/q5Oq5PpgSl8PhHjtBmX1cFwh7TfK12UR9MOaVn5swt+z9+b7zmpzxkyuPegt2GA76z5OQ6rk4J5OcgUchq3tlC6tBiFVo3e5qGmOpehg51kFKYiCGDSmUgtz0Ib709wFQQiYuaCpaIofqBGhJ9nwsLVDPVJ7vvpCRPmNDUmlwOTxcGCuGwOz0oV3LU3ZNH90wEAcguTme0c4eDGBrKKU5GvzKNhbJrasGR84QJeg4fob61j6ukDZJxeiVyjROiZJDYx6qjOPMEyf2GnwPMcMrj3YLx/KpAapBvVY5iSvGHteztJWlDCzKSJ8REDJWXZNL8lZT3Mv3Q5Dd06xhuHqT69jOkpE/94ZAc6o40YpYzXHt/NedesYtHpZTx3/xtUrShm/Zc/uHbHZ52JoRn+99ctVJSl0tI2Tl5eIk6Xlj5AKchRuOZuXkrH3GPR48Xkl0sY7plkJjccUYT2ngly0+Lo969aaq9bTV29FIqo/fpaOv72BgeHpqhaXYbN6qJheweVq8vJKknj8lPQDyFkcO9B6eIC5q2toH1/NznlGUxHhzHaPU5iThKKoPIQt31Oecojk3Ekx8ZudzPmL7bcurEZW4+05PzXna+y8R/bmByYZsvTewmL1LDygnctEP7c87tv/IOuRskg5q8spn5nJxyCM79VyfBznYz27Wflb+cj2kH37wHKqzOxGW1o8VFYnUVf6wili/IYSoqlf1JPdISG4AVGcCdWr9uDxyXtC406M8Pdkue5/UAfd235GTLZySuShAzuPYhPi+OOjT/lhpof0LC1FYVSzsJLl9N4aBC13sr85YVMdw2j65+geFEBKrUS29AUmVnx2B0uIqK1JCRFoZsykZkVz+i0AYvRjkIlx2GdK2wMXsKEOBprUMMNh23uxibstWDskG5mnodHGfJ3y2mf7kRwuvD5qwkKqrJo2dOD7KCMVTeuYn//OBM6M4vLsrDq7UyOGCgpSEHlcuP9/+2deXyU5bXHv88sWSb7ShYSkkBWQoCwI7sgiLhU61a9llqVoraVqm3tvdX2Vr0uvbdFLFbpBaW1tr3aS3tdAKsiiOwkZF9IIAvZl0lmMklme+4f7yQZKEtIQhLi+/185pPJm3cm5+TNmfd5znOe38mvJiY5ktb6dkKjg7CYummuMxKbGo2lvfOsqcFAUUWELoEQguZa14W1OTCZunHYnVjM3dgsXZzOKqelzojD5iB3XyEnDxbT/GUOrc0dHD9YhtnUSWpCCMWf5qHTa8lckIjB1oWntJM0dTxp02P4n5d3UFNWR87eQl7/0R8wNraPsNejh5+/+SDTFyaRPjMOq8nCuPHBxEwMR2u34hdkQAgIDvPFw0NZcwsM8QW3Mt4eWQWnzUl7RzfdNgeWbhs2q4PSojqaWzvo6uii5De7KNmTT+2pRhwOB8d259DRamLq4hQqCs6wbuZPKM06PWh/1DtcP3h007d5/YntzFo1jfjZyVScbMDLxxNPTy0ajeitA+zBO8AHi+sTtqvTRp1rUdzYZMZU10qLa/4QFhPau7D6izt/RXleNQB73z3E22WbhtPFUUt0fDhzl6Wx+Yd/BCB2Ujin9uZxCggI8ycs2Juj7x8hIj6cmGsmU5xfR2xGHB5agcZVndLVaSVqQgiaDhueeh1arcC/24FGKLWWflpNb+2ll48nZleBg8XUSW15I1JKms60UFl0hsTpcYPyRw24frD0zvksvn1u7xg+Oi6U5775GkfKa5k4OwWth47c41WkLZuKxtpNY3Uz6QlB1JntRAZ4Ijq7MbV0EJ8axcRJoRTuy0cI8HCrvXSvwxzDGy0GhNNtnuX+N7N126h1jQbqTjWgjRyHxdzFaXMXaTPiKXD1ckvPjCP342w4UkbG/EnUFtWS05JLWkYsnn5elPzpEOlLM3DarHRanUz09+ZUVjnxU+MQWg0N1S2ERgedpW8yUNSA6yfuE2ZbpxVrpyJ409LQhrFF2SZSfLyCAC9Bc00LdeUNpM5N5MRupVXTrT9Yw3qXam/yzHjefvavHN19gikLU9BolWr3KQtTMDa24x/sy85te1j1rSXD6uNo5ZbvLEfvpefz9w5TWVJLxrIMmirqCY4KRjol+fuLSJqdiH5cIPX1ZvQeWjTavsyIcPsAEx1WLK7sZV15PZ1tSjVJ4bFTRE6KoM5V5pU6PYHc/UqxQ+bydE7sLWLThu1UldSy/uV7B+yLGnADIHX2RDKXTaboSBkr713AkU8LKc+rIio+DEd73/zLZu2rhAgI9u17HuJP3SlFabii4Axml0JV7r4iwsaHUFVUQ/6XJfgG+bDglsHtMB4rLL1tDpt+8AcAjI0mwkO8yNtXCEDmTXPIyW+A5mpmLk6hNLeKwuOnmTp3InabnYqyRiYvSqO7vQOdvy+Tpk6gsriGpJkTaapo5MzJegLD/EHbV3tpc9tQbLc6erOZVa7ihoGiBtwACIkI5Pn3NmAxdWHw8+LeHzvI2V/M1IUpdHV0seWHvyd3XxHN1U1MnpfE5AUprH7g2t7XRydGEJkwjtryemJToqgsrcXcasHDS39Wm14vH8/z/fqvJPkHivEL8sHU2oFOr6XbLWNp6er7YOvutNLmuoOZjBbKi5QAKe+202W1Q43ys9ipE8nJr0er0zDrpllkZ1Vhd2qYfm06bfVGWpvaScyMx9PbA6vdSdTEcXSZu7j27vmD8kMNuEFg6NFU1GvJXJIGgI+/geCIICoLlQTIpOnxPPjCPWe9LjYlmtezXuKp658l74tCAsL8ueWR67jzyZvpaLewecNbdJk7eef595QOnacaOPTBcb7xr7di8Ddw4O9HmXNDJl6Gr0ZAPnvPK+x77xCB4QHMWJLKqexy9B5akieE4xUVTrdTEBrhwNdLi7arEx8/T7o6bQSF+aEvb8RmtRMU6ktdbVvv/NjYqkwDHHYn7Z127DZH76MneRUQ4k/BcWUN0DfQwNv5vxz0Eo4acFeA8NjQ3uxl0LjA857j7evVW6/X1tjO9KXpBEcEEhwRSPr8JN786Z8AeO6uX1F6/BQA+3ccxm6101JnJDoxkle+fA7/kIFrJF4t9BSOGxvaMDcaaa5RlmnCJyeQl6v8DRMSQjm5LxdQtFI8o8Zx9FAZkeODiIgIpPBEFfHJ49B76JFOiU6vocrpZHxCGJ5eenR6LV6eOry89AghkFL2itSCUkM7FOul/VFejhFCfCaEKHApL3//POcsEUK0CSGyXY+nz/deXxVW3b+Mlz55honT4tj91h5+dutLdLotdDfXtvL6E9uJnxKLRqthQtp46k4rtYIOh/OsdTi9WxN3h8PZ2zv7TGntWXPEsczK+xaj0WqInjQOrx5VZCEICO37sNHr+5IkDruT5kZFb7K2upWKsga6u2yUFynJ/5K8agqyKolPjqQwq5LsA2UkpUZgbzZyZHcOk6bEkDRtAnkHTpI2K4G02Ql4eOp589kdg/6b9+cOZwcel1IeF0L4AceEEB9LKQvOOW+flHLNoKwZQ0TGh1OWfRqA/TuO0NFm6RWg2fTo79j/v4cByFyRQdan+Wze8CZFh0spPFRKbXkDGYsng5SU5ZwmY1Ea7S0mvP28iYwPp+BACSlzEik5Vs68NTMwtZpprmklbnLMSLl7RVn78zvw8fdmy4/fprq4hrlrMnnghXuJSYrkb7/fz/6/HeX0l/mkz0vE2GTCP9Cbcb4+FFW0kTQtBofVQWuTGS+DB8KjLzHivvzitDn6JPXqjbTUKnWzBUfKCQz1w9hk4s8bd5I8I455108bsC/90TSpBWpdz01CiEIU4ddzA07FDS9fLxIz4yk9forY1OizPo07TX0bG+1u3UBryup72/RWldTQ6qpwydlbQEh0CKfzFbXi9AUp5H1RxNM3v8Sah5bz6Tv76e608uCL93DbYzcMh3vDTntLXyMOjVZLrEvqYOGKyfxm7UYAjPVGQqKCqTyhaJBk3LWYnLJGhIBZq6eQU15Pfks7U5cl4zjTSmX2KVLTo3E4HEibnfj0GCWRlR6Lp2cdtacbCYsKwuHWHTUwzH9QflzWHM7VpGM6cK7yMsA8IcQJoAZ4QkqZf57Xf2WUl/2D/dh08D/I+6KIjMVpZ23J+dH277L5sW2MT4xizpoZbN7wJu3NJgx+3oTHhtBQ2UxMYiT2biumlg4lU+aWvexyW4CtLK7B4grg7M/yx1zAdVm62fHqTrI+ySUmOYruTitanYaGyibCY0ORUuIb6IPZ2IHeU3dWjWpHp5LalxI6bQ7MrjtYZ0cXZUeUoBSltRiblOGnEIKw1PFk5deh12vJXJbG8Q+O4uPvzaKbZnDLd5aTOjNhUP70uz+cEMIX+Bx4Tkr513N+5g84XQ0/VgMbpZSJF3s/tT9cH8bGdu6MXoeUEi8fT8ZPiqD0eDkBYf4kZiZQcvQkBj8DwVHBCKF08ewwWggI9cMQYKD8RAXWTisPvnQPN61fOdLuDCkHPzjG07e8DEBAmB+mlg6cDicGf2/eLNpIYJg/TWeaee0Hb5HzeT4+AQZ8g/3QR4Vi9fejuaWDoGAf/AMN5J1qwGa1MWucPyf2FOGwOZk4eTzlBWd6h5e6yGBsVuWOFh+op/yQkrD59nN3ccfjN/bL5kH3h3N1zXkPePvcYAOQUra7Pf9QCLFZCBEqpWw691yVf8bcau694F0d3ZxxbeNpa2ynramN9mYz7c1mwieEkrO3CIDEGfGUHFM+pcfFhbG14L8ICB3ccGc04j7kNvh509bY13yjp31UaHQIZmMHxoZ2jA3tZNw0gZw6C9RZSE6LorhAyWRGjw+iM7uMo5+1EZ0Ywc3fX8P1984n71AZf3plNxaLFc9AH6rOGImdEILWZEKn1+Ib7ItjiOr8+5OlFChCr4VSyvPuLxdCRLjOQwgx2/W+Y1rqfCgZnxTF9179NrGp0Tz8q7V87Xur0eq0JGRMwCdAqVDR6rV4GPrkHdxT1FqddkwGG8CCW2bzb396jJsfXskLO/+V7/zyPsbFh5OxfCofvbUPp9NJ4ZEydF5K9lKr0+LvthSjc2vEIZ0So0tS70xpHdfdOQcPTz2Zi1LQeukpK6yh4EApcVH+5O8rIif7DGnXTadL6tj+0vs8/+CWQfvTnzvcNcC/ALlCiGzXsZ8AsQBSyt+iyJuvF0LYgU7grrEsdX4lWLNuBWvW9WlZenjp2fZvylrc9BVTOVPdRtaBMqatzERKSXlBDVOvm4a51Yx3WDA73znAqrv71xL3amPRbXNZdNtcAG79/mqyvijhyD/yyDtYRt6BEg5+pOy2X3zPEr79719n3IRw3v3jQQ5+WUpFeSNTpsbS3mrG19JJ4OxJFB8tI3X2JMpOVJB+TTLAWXNs6ej715VOevtGVJXUMVj6k6X8grP6k5z3nFeBVwdtjUov7a6JPEB3t53mWiMANRVNvc/zDpUTGBNGRXYlRdmVBI/zZ/ayySNg7fDS0e7Wa8DVXwDA08eLyHhFVWv+oiS2bP4EgNzsSvwqqqlylXylzplEwcFSnrzuOX60bT1L7pjHM1vuZ+uL71OUVUlVWT0p02MRDie2zm7iUqJoqjOy8p5rBm27WmkySrlh3QryD5Rg7bKyau0STK9+TO2pBqJig7F2dmMydmLw88bmPsfxHVyjiauFp/57HZue+AOdRjOm+haiJ4YjJVjNFhqrmwmNDib/QAkGgwcWixWDwYNut53jJpcGptMpe597enkwKT2Gv7/5BQDe3h7UlSpzP6ERvJ3zIkGD6Hzagxpwo5SY5Gg27n+2d1vQ0jvmsWHRT8nedZyAUH/u/N4qbt9wA8ZmM7//5YfMW5lB2sz4EbZ6eAgbH8zSW2bw/Dd+DUD4hFCazhipzinn2K5sopOiKDlWTsiEMNIWTKZ413HC4kIJigxi1dol+Ab68MqjWwmJDOTk8XIspk40Wi1VZQ1otBqcDif+wYbeTak6vXZIgg3UgBvVuO/B8zJ4Ut1Te9nUzrRFKfgGGPANMPDU5rUjZOHI0VDVlwD38vHqzfJ2tFs4maXUnjZXNOJjKKWjqZ2OpnbWrFvOtXcrw8L7f3E7L9z7CoVfFlKafZomux6T0ULMxHH4BxooOlFJ0pxEtA475roWfr1+C+te/he8BzmKUAPuKqC2vJ4/v7iDpFkTyd9fTPyUGCryq5i+bMpImzbsmFrN/OT65yg6fJLUeUl4eOioKq5hyoJkmmqMhEQFotFqydtfwsSpE3prL/WeemKS+8R4eyQPAewOicmozAVrKpqoKlPkMUoKaonydlJZUM2p7FNMzJjAjeuvG5T9asBdBbzyyBaO7lIycdOvTSfrkzxOZm2jpqyeh3/9rfO+JuvTXP7y8t9Y8LU5rLhvMbu2fUb4hDDmrM4cTtPP4vgnubz7X++z9M75rLhv8YDeo+5UA0WHFan5wgMlaHUaHHalqDs+I468L3p2aWeQ9ZlS7LTs7mt44Pm7CYkMotPcyetP/J697x5gysJUdB46bnv8JnbtyObI/mJiH0zAkm+i7pNaAgK90dj6kjL+oeoc7itBt6WvrMtu7UuSmFrN5zsdgF/c/p+YWjs4uusEu9/aQ4Gr2eDjv1vPqvuXXTljL8IzX3uZro5ujuzMJiI+nCkLUy/7PYIiAomfEsup3Eomz0+mvqKRpjMtaLSaXk1JUDai9uDj701IZBAAlUU1fPDGxwDkfVHER93voNVpmbNqGmv3bmWvsQJtvGCVIZbcLYex6DTMuG4q7U3tvPb4drx9vZh9/T+1S+w3asBdBfz0fx7njSe3k5ARR+byKbzy8BacTskNDy4/7/lSyrMqNNw707hrO15JHHYHBz7MZurCZPyCfDE2tJ0lumpw69FwOYRGBfObIy9wMus0qXMSMbWa+eD1j1l8x3w0Wg2/fWI7k+cnkzo3kY2PbAUBpg4rLfVtBIT6UnCgGC8fT7o6ugmLCUHr1tKqwaosxTikpKPSiK3bhq1bkVs46dr58cfn/zqogOt3LeVQo9ZSDpz+9CeoLq3l9cfforWhjS5LN7YuG6lzE7n/uW8QHhN6xW18aN7TVBbVEBwRwLW3zmTHpo8IGhfI+KRIbvzOdcxdk3nFeyyczK3kuyteAMAvyAdvRxc1J+sIiwlh9QPLuW3DDXj79gX+nrpifpHzf0R6BxK030LFC8fQeehIm5fE0V0ncDqcLL93ET/c9vBFf+/FailVIdirkP78o45PjCQ6MZLiwyepyKsiMTOeH2//3rAEm8PuoKrY1Umoro0v/+8YXR3d1JbXM3dNJvNunDEsDU16EiEAdquNmpNKor+xqplFt887K9gAlkQk88CkhZxorWJPWjOBz07DbrVz+MMsYlOjeebdx3ly6/pB2aQG3BjGXfMkOCJoWH5naXsDTx7bQeJ96Wh1gmt/EML0bynDNt8wD8KnOi7xDkNHxvwk1v7kJiZlxPDoi3dz4/qVaDSC+TfPIiwm5LyvabP1VbFgc/ZuSm2pNXLNzbMG/UGhDinHODu3fYZOr2Xp3degdZOBu1Lcuee/yW5RNso+lWJF6D8FIMgyD7NPHjZpJj3oHmaEXnxYdqVobzZdVAfGYu/m5fxdlJ6uxucP9eirbFQW1zB5XhL3P3sXiZmX3g836O05Klcvq761dFh/X5ejL1Po4WnG5mqtrQ/uxNbl0hmxHBtWm9y5lOiSQefJE/HLuWX6N3uPRSdFcHRnFln/yOHF3T9l6pKB16uqQ0qVIWXL/G+wMjqVGSExfFQdhUGXQLBnEgKBQReORngQ67twpM28KJ2mTjTavtBoa3BlL+2Os3beDwT1DqcypIR7+zE/LIFnsj8AQCvSWBr5PgA64c2tE/6Cjz58JE28JKHRIfxq77/zv698yA0PrcDU2sFrj21jzg2ZpMy5qJDBJVEDTmXI0Wv65oqhXn3/YkJoRn2w9ZA2L5m0ecm93y+8dc6QvK8acCpDzm1x0wjw8KKyo5U74jKp6kigwvwpkwPvufSLxziXDDghRAywHRgHSOANKeXGc84RwEZgNWAB1kopjw+9uSpXC8ujUnqfpwZ+ndTAr4+gNaOHoRKCvR5IdD3mAK+5vqqoqLhxySyllLK2524lpTQBPUKw7twMbJcKB4FAIUTkkFuronKVc1nLAhcRgo0Gqty+r+afgxIhxENCiKNCiKONjY2XaaqKytVPvwPOJQT7HvCYuw7l5SClfENKOVNKOTMsLGwgb6GiclXTr4C7lBAscAZw7yQx3nVMRUXFjSERggX+DtwnFOYCba4mICoqKm4MlRDshyhLAidRlgXOv+9fReUrzlAJwUrgkaEySkVlrKIWL6uoDCMjth9OCNEIVFzitFBgrHTgGSu+jBU/4Mr5MkFKed40/IgFXH8QQhy90Ea+q42x4stY8QNGxhd1SKmiMoyoAaeiMoyM9oB7Y6QNGELGii9jxQ8YAV9G9RxORWWsMdrvcCoqYwo14FRUhpFRE3BCiO8LIfKEEPlCiMdcx34mhDgjhMh2PVaPsJn94ny+uI5/VwhR5Dr+0gia2C8ucE3+7HY9TruV+41qLuDLNCHEQZcvR4UQs6+4IVLKEX8A6UAeYEApN/sHMAn4GfDESNs3RL4sdT33dJ0XPtK2DsSPc875T+DpkbZ1ENdkN3C965zVwJ4rbctoucOlAoeklBYppR34HLh1hG0aKBfyZT3wgpSyG0BK2TCCNvaHi14T1y6SO4B3Rsi+y+FCvkjA33VOAFBzpQ0ZLQGXBywUQoQIIQwonzY9++seFULkCCG2CiGGRyB/cFzIlyTX8UNCiM+FELNG1MpLc7FrArAQqJdSlo6IdZfHhXx5DHhZCFEF/BJ46kobMioCTkpZCLyIcovfCWQDDhQxoonANKAWZQgzqrmILzogGJgLPAn8RQxHC5kBchE/eribq+PudjFf1gMbpJQxwAaUfZ9XlFG5DieEeB6ollJudjsWB7wvpUwfMcMGQI8vwE3Ai1LKz1zHy4C5UsqrQtzF/ZoIIXQoO/pnSCmrR9i0y8btmvwHECillK4PvzYppf/FXz04RsUdDkAIEe76Gosyvv7jOcpfX0MZGox6zucLsAMlcYIQIgnwYJRX3V/AD4DlQNHVFGwX8KUG6Gk2vgy44sPj0aS8/J4QIgSwAY9IKY1CiE1CiGkok9vTwLoRtO9yOJ8vW4GtQog8wAp8U47G4cXZ/JMfruN3cZUMJ9043zV5ENjoumN3AQ9daSNG5ZBSRWWsMmqGlCoqXwXUgFNRGUbUgFNRGUbUgFNRGUbUgFNRGUbUgFNRGUbUgFNRGUb+H9bB1Ftc6po7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def_count_h3_gdf = get_zonal_stats_correction_factor(raster_path=\"../../datasets/raw/h3_raster_QA_calculations/satelligence data/rasters_indicators/Deforestation_IDN_2021-01-01-2022-01-01_downsample_count.tif\",\n", + " corrected_area_gdf=area_h3_gdf,\n", + " resolution=6,\n", + " buffer_gdf=gdf_buffer50km,\n", + " formula=6.69019042035408*6.69019042035408* 0.0001)\n", + "def_count_h3_gdf.head()" + ] + }, + { + "cell_type": "markdown", + "id": "f352539d", + "metadata": {}, + "source": [ + "#### 2.4. Carbon calculations\n", + "\n", + "Do the same for the carbon calculations:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ff00fcba", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Creating output file that is 40P x 48L.\n", + "Processing ../../datasets/raw/h3_raster_QA_calculations/preprocessed/carbon_loss_T_downsample.tif [1/1] : 0Using internal nodata values (e.g. 3.40282e+38) for image ../../datasets/raw/h3_raster_QA_calculations/preprocessed/carbon_loss_T_downsample.tif.\n", + "...10...20...30...40...50...60...70...80...90...100 - done.\n" + ] + } + ], + "source": [ + "## upsample the carbon_loss_T for ingesting\n", + "!gdalwarp -s_srs EPSG:4326 -t_srs EPSG:4326 -dstnodata 0.0 -tr 0.0833333333333286 0.0833333333333286 -r sum -multi -of GTiff '../../datasets/raw/h3_raster_QA_calculations/preprocessed/carbon_loss_T_downsample.tif' '../../datasets/raw/h3_raster_QA_calculations/preprocessed/carbon_loss_T_downsample_sum_v2.tif'" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "fa1382a1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FIDgeometrycarb_estimated_sum
00POLYGON ((98.47767 2.24508, 98.47550 2.20109, ...111082.390625
11POLYGON ((98.44488 2.31416, 98.44271 2.27017, ...146149.578125
22POLYGON ((98.40582 2.39111, 98.40366 2.34712, ...197099.796875
33POLYGON ((98.36445 2.43594, 98.36228 2.39195, ...253342.390625
44POLYGON ((98.51418 2.45678, 98.51201 2.41279, ...193674.203125
\n", + "
" + ], + "text/plain": [ + " FID geometry carb_estimated_sum\n", + "0 0 POLYGON ((98.47767 2.24508, 98.47550 2.20109, ... 111082.390625\n", + "1 1 POLYGON ((98.44488 2.31416, 98.44271 2.27017, ... 146149.578125\n", + "2 2 POLYGON ((98.40582 2.39111, 98.40366 2.34712, ... 197099.796875\n", + "3 3 POLYGON ((98.36445 2.43594, 98.36228 2.39195, ... 253342.390625\n", + "4 4 POLYGON ((98.51418 2.45678, 98.51201 2.41279, ... 193674.203125" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANwAAAD4CAYAAACHZ4ihAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACSV0lEQVR4nOydd5gb1dWH31GXtvfee9+1171iU01vCaQAIQkhBNIbgfTwJYGEECAJJJSQUEJCrwZ34+61t/fem7Sruuqa74+RtTIYsLHpep/Hj0fSSLrS6sy995TfEURRJESIEB8Msg97ACFCfJoIGVyIEB8gIYMLEeIDJGRwIUJ8gIQMLkSIDxDFh/XG8fHxYnZ29of19iFCvG8cOnRIL4piwrEe+9AMLjs7m7q6ug/r7UOEeN8QBGHw7R4LLSlDhPgACRlciBAfICGDCxHiA+S4DE4QhGhBEJ4SBKFDEIR2QRCWvelxQRCEuwVB6BEEoUkQhAXvz3BDhPh4c7xOkz8DG0VRvEwQBBWge9Pj5wAF/n9LgL/5/w8RIkQQ7zrDCYIQBawGHgQQRdEliqLxTaddCPxLlNgHRAuCkHKqBxsixMed41lS5gDTwMOCINQLgvCAIAhhbzonDRgOuj3iv+8oBEG4ThCEOkEQ6qanp9/zoEOE+LhyPAanABYAfxNFsQawAT9+L28miuLfRVGsFUWxNiHhmHHBECE+0RyPwY0AI6Io7vfffgrJAIMZBTKCbqf77/tQ2P/yIf74lb8xNRSaRUN8tHhXgxNFcQIYFgShyH/XeqDtTae9AFzl91YuBUyiKI6f2qEeH00727j1/N+x8aGtfK36Bx/GEEKEeFuO10t5E/CY30PZB3xJEITrAURRvA94BdgA9ABzwJfeh7EeF6Zpc+BYkAkf1jBChDgmx2Vwoig2ALVvuvu+oMdF4Bunblgnjtfr5aGbH+eVB7ZQuaYUp83JFTdf/GEOKUSIt/ChJS+fakzTZv77hxcAaNrRxoNtd5FZ/BZHaYgQHyqfqNSuiBgpWqFQKdCGqz/k0YQI8VY+MQYXmxzDP1r+xNorVhARG84P1v+KjgPdH/awQoQ4ik+MwQHEpcTgdriYnTAy2j3O1sd3fdhDChHiKD5RBgeQmpccOE4vTP0QRxIixFv5xDhNjnDdHVdRsbqUhIw48qtzPuzhhAhxFB/pGc5uc/DS/ZswjM0AMDWkx2q0BR73en3HfN6y82tDxhbiI8lHeoa7puhbzE6aeOjW/3DaZ5fzygNbiEqI5JpffZbXH9mOccrM9x/6OqVLCz/soYYIcVx8ZGc4u83B7KQJAKvRRsP2VjxuL4axWV7/1w6a3+hguHOMJ/7v2Q95pCFCHD8fWYNTa1V84aeXolApKFmST2xyNIIgEBalIzUvKXBeXFrshzjKECFOjI/sklImk3HVzy5nzjTH0396CYA1n1nOd+7/GmFROhadVY3P62PNZ5a9yyuFCPHR4SNrcEcw6eeTkbVhasKiJHWHNZeHDC3Ex4+PrMHNTMzy71/+j44DPWSVZRAZF865XzvjmOea9GbkCjnh0W8uRA8R4qPFR3YPt+f5Ol66fxMjnWN4PV7u3P4rihcXvOW85+55lS/k3MBXyr9D0843l+kdP16P92SGGyLEcfGRNTiZfH5oUfERb3ve3hcP4rA5MYzNcnhT0wm/T8eBbr65/Cd8teK7NO1s49m7X+HW83/LUMco+lEDj932NPpRAwDdDQNYTXMn/mFChPDzkV1SbvjKesIitQy0DnPxtzYc85yDG+tRqpQAKNUKVFrlCb/PlsfeoH2flOT8jx/+m44DPQB01fVinbXhdnl46o8vUnP2Qva82kh8agy/eOIm8isz3+MnC/Fp5rgMThCEAcACeAGPKIq1b3p8LfA80O+/6xlRFH91soNb85nlrHmbx568/Xke+PGjAFStLWWwbYSHb/0PA63D/OSxbx/X65sNFmxBM5Y6bL6kR6VV4Q6KA7Ye7AVAPzbLSPdEyOBCvCdOZIY7TRRF/Ts8/oYoiued7ICOl+nh+aG47G6MU5I383iXlY07Wrn1vN/isDkpX1WMx+WhcVsr5atK8Hl82GwOKteW0dc4QE5FFjKtBrPBRlJmHDll6e/LZwrxyecju6R8Ny688Ww663pxOVxsuO50rEYbw51j5FZlox81EJ8W947PH2obwWFzAjAzNstY7yQALW+0E5Uci2XGyjBQVJtDs98Zc8GNG7jhzquQK+Tv62cL8cnleJ0mIvC6IAiHBEG47m3OWSYIQqMgCK8KglB2isb3tmQUpfHn3b/h/vo/cPaX1nFf/R2ULC2gfkszX634Hu3737n4tHxlMRlFqSjUSlJLM4lJiQEgKiESRDFwnsvuDBxHxYaFjC3ESXG8BrdSFMUFSD0EviEIwuo3PX4YyBJFsQq4B3juWC9yqpWXZbL54as0Kka7JwBpz6UfnXnH5+ZUZHFf/R0kleXQsK8fny6cRefX4nB4UKgVVK4poXBhDo45D9kVmZStKKLjYA8jXWMnPe4Qn16Oy+BEURz1/z8FPAssftPjZlEUrf7jVwClIAjxx3id91V5+eJvbkChlJNdlsFYzwSiKOL1+ug+3H/M8+VKBVMjswDYzHZmJiy4nR5mJ0yIPug61M94/xQqrYbW3Z0cfLWeG5fcfMrHHeLTw7vu4fx9BGSiKFr8x2cCv3rTOcnApCiKoiAIi5EM2fB+DPid+MJPL0MdpubvP3iUB25+nI4DPfS3jTLeN8mqS5dwy6M3IQjzWpUymcCV3z2H/979GovWl5OQEMZA0wBKjRKVZv6rUetU88daFSFCvFeOx2mSBDzr/6EqgMdFUdz4JiHYy4CvC4LgAezAFX6tyg8c6+x8gerk4DTjfZIzZN+Lh44yNgBBEPjiD8/nkq+fTliEFoC8ykzu//6/OPhKPeUri5GF6ejqnKT6/KXYZ0wI4eE8ftdrXHLdWrY+dQCADVet+oA+XYiPO+9qcKIo9gFVx7g/WAj2XuDeUzu0E8Mx5+S5ezdyYGMDWWXp2C0OImLCSc5OYGJgmvyaHAxjs8SlxrzluUeMDaR9odlgBWC8bxITUmyu5fAQCanRTLeM0tMySsPOdprf6ABgatjANbdc9P5/yBAfez6yqV0nStOONh68+XF6DvczOTjN9IiBw1ua0Q/rKV1WQPv+bq5b+CNadne+7Wu07+9m30uHSM5JRCaXkVGcTnR8OAC6CA0ez7ykg3POFTh2uzzv3wcL8YniE2NwhvHZwLEuQovok1a0LoebqSEpSG6dtTHWO3HM508MTPHN5bey4397mZ0wklGSRuOONpxjUyxcWwwaDYJWTfmSPIqKEjEOjJKWE09BRRojrYOM9k7gtLvY+PD2QKV6iBBv5mMb+D6Cy+HiF5fcwcGNDZQsLUShUqIfm6VidSmjveNklmUhyGTMTplJzIxn1uxEFEUEQWCwZ5KsfKl63Ki3BF7TaXcxMTBvpCa9lTmbkzmbk9SUSFq3SdksORUqOvdIHtCGba3oIrTMTBiJjAvnrh2/JC0/mRAhgvnYG9zMhJGDGxsAaN/XRXxmIoaxWSYGpilfW07zPikHsvqMGhpbJvjn3VvoaBlnesJIb9sYqzdUkrm2gCdfOkTRjWdhfr2Z+OQoZHI5rXu6yCrPIDw+AvoMKBRy1Or5BGm1bj73UhCksQCYDVbsVscH9h2E+PjwsTY4u83Btid2kZKbxHjfJHFpsSiU8x/JEySj5w1ymo4PGxjslryXO19pwj4xhdvjxWC0UZ6XRMvr0gxWc04NTR0GBg8MULk4l9EBPYcODlJx8UowGOg+1Ef5iiKspjnUWhUqjZL2/T0sO38hKbmJH9C3EOLjxMfa4L5R+yOGO8dQqhUsPnchDdvbUGu9LDy9gtkpM1O94xTX5pBXkcnazyzjwT9sZGJwmhi1gCMpgslJCxmZ0YyHqZkxzSETBLzm+eoBr28+jOB0ujH4E6SHBg2YDrcD0LS9lYySdAZapBbnX//jVVz0jbPedex1rzfy5O3Ps3hDDedffwav/3MHukgtp39hNYbxWcZ7JylfWXwqv64QHwE+1gY3OSilh7mdHozTFjxuLx63HY/bQ3/LEACpOYncdOcXAfjjkzdwSdJ1HG7pQ6VVUb4oh4ZNhwlLiGD551cztrUFy7SZsmUFLDi9ksXnLeQvv3kJ87QJ9ZyVxMRwpqasZBUmMzQ+iXF8BqVWdZSXMjoh8rjG/vur78Wkt9C4o429L9bRskvynh7a3MTOp/bjdrr57A8u4Mv/97lT+ZWF+JD5WBvc9Xdew4M3P8biDTVkV2Qx0DqMSqtCE1TXlpg5n2HmsDoCFQIuuwv94BQAtmkL3kN9TDUNAlC2oogv/vRSAH7x1y9wRdr1jIoiap2K/HOW0No6RkRuJkvOqKZnwIgPH2WZ8QiiyH//+BLpBSnk12S/7bjNM1Y8QUZqt8wnSE8PG3A73QB0+GvwQnxy+Fgb3PnXn8k5X14X2Ldll2dyx7V/48DGRvKrs7n8e+ex+tIlgfN1kVq+8aerePS2Z8ksTkVAZLxviujESDRhmsB5afkpgWPrrI0jSTPOORcTo0YALGY7Vo+A0Z/ZkpITTdPLdQD84Sv3cd+h3x1zzM/e/Qr//Pl/CY8JI7cyC7fbw5zZTlp+EhGxEYgixKZEY7c4WHHhorf97Ec8rSE+XnysDQ44ykkien3Mme0ATA7pWfsmKT1BELjg+jMYbB/lpb9vAaByTRktO1s5uLGeshXFXHvblVSuLgVg48PbePy2p6hYVczEwDQp2QnIUqJp7ZompyCZwrI0OppHEAQBtWp+HJFx4W873p1P78dudWC3OkjJSaRjvyTpULAgJyDvEJUQyb977yUy9q2v03Gwlwdu/Q9up4dv/eVaWnv1tLaM8NWvnYbM62XHk3s44+o1hEXq3svXGeJ95mNvcMEU1ORQsrSA7kN9FFRnM9QxSmZxGsZpM163N5DWZQnKt/R5vXjckmKXzWgLGBvA33/wLywzVsb7piheUhBQBbv4uxdwwx+kfWFpeRqP/PIpDm1soGxVCXJBpPdwL/d//1+ccdVqnr7rZbJK0rnse+dzaFNTYLmrVCtRauZDDKqgBGmlSnFMYwN4+cGtNPv3e/f88HGa5iRPbEfjIPqX9uK0u/jfH1/gH813ogtKWQvx0eATZXCJmfH8ccvPuGnpj6nbeJivb2/mghs38PKD21CqFFz7289x4PAwXYMmCpfkIwdccw6yStOZHjGQnJvESNdYoK+cWqviSDg8eM8VFT0/e0TqlIz7a+S6G4dwzhgBeOrOFzn4WgODrZL3snF7KwderQdgwRlVDLSPcnhLKxVrSrFURvN6rofVJUvwNk1jOyeDhxoPcVVZNduf3ItCKWftZ5ZhNdpwzM3v9xQ6NcxJM7rM7cZpl9LNpob0yBWfmCSiTxSfKIMDkMtlTA9JlUEuh5u2fT0451w451xse2o/LcOSCekyYhl6ZQ8AgkwgKi6SfS/WUb+5ibt2/Yb8mhzub/wD93/vX3Qe7GFmYpaSpQWULi1kw1fXB94vKSuelJxExvunyC5NY6LDh0lvRpAJuB3z+ZZzFnvg2OWY12AZH5xmzyWSAb9aDkmLM5ics7F79zYOPr6P3j/tBqBuczO7X6hjzuKg+rQy7BFhNOltVFZl4HJ6cDtclJ9ZTfeuNopq8zn0ehPL32EPGOLD4RN5Gbzql59FG66hcFE+uggNCqX8Ld7LsLD5JZxMJsM4LeU/Ou2uwEwRGRtBbHI0g20jzIwbCY8O4/o7ryEmKTrw3LS8JP62+5csWF9GT+MQglbLonOqSUiLw+X0ULy4gMo1pZJjpCCFtMIUlGoF8WkxCIJAxboyYjTS0k+nUOLyzgvS2qetgeOJgSnmLFL2ilFvoXXCgsfjo6lxmJ6eSXoHDDQ5ZWRVZtO0s42fX3w7r/xj8zG/H1EU2fjwNm5adgubH3sDk97Cv371FIc2NwMw2D5Kb+Ng4HzzjPWYrxPixPnEzXAgeS/dLi/3ff/fABQvKWCsd4IDz+4nf0Eu2vQEOjYdpmxNORqNnM98/0KG2kd45GdPsvKSJWQHqXLFpsyX8yRnHzt7RBOmZtSfuWIxzmG3Opnyq4olZyXQtKMt8PyJgSlGu8bRhmv40/afU7KkgC/P2Xihu51Li8owOhz8ft9O1mXlUrpQzZ8OThOfHsvpn1/NWN80ZoOFqtPKGG8ex2ZzEhcXjtk8P3vOBcn+HblwvBmT3sKd190PwO3X/IX0olRGeyYRBIF1n1vB1if2IlfIuOKH57P3+YOM9kxw/R+v4pxr153w3yLE0XwiDQ4kzckjeFxuzP7k5IGWIbz+rJD2g338edvPKF6Ux4L1FZx//ZlvEQm6+JsbyCxJw+Vws/S8hW95H5t5jhce2EZybiJTozMkpsWijZ53eKiDHBfBupd2q4O86mwAEnVhfKVKkvqM0Wi57+wLA+f9o/H2gHbL0nNrcNqdxKfGcvm0mXt/8zwNzx0gJTOByMosnAoBlz6MJIeLuPR4unoMGGesKFUKdr/WzOpzqtDoVIz1TiCTy/D5U9/MfieSKIqMdk8iiiIet5eG7W30NAwA8PxfXgsZ3CngE2tw519/Br2Ng4z1TaIN15Jdls5Q+yjFi/MwTFmYGJhGG65GFuRceDtFroVnvKX+NsBffvQEW/+3H4Ca08pofKODyXEjVefUYrG5aWwcp+KMGgSXk5GuMSpXl6AfneHib56LSv3uStHBQkkRMWFExEgNSxISIpk41Idrzs1ExxjR+Ym0+S8yVWcspGtrJ13jLXR3TGA0WLFZHPznb9soy4li0793kFaQQnRiJNZZG0qNCm2YmsTMBGRyGWFROpRqBdoIDQqVEo/LTUJGHD6f76jxhDhxjuvbEwRhQBCEZkEQGgRBqDvG44IgCHcLgtAjCEKTIAgLTv1QT4y4lBhufeJbDHeM0fxGO4PtoxQsyqP1QB+G8VkWn12FXC7n5gvuYM+Lh97z+wSHGDxuLz5/HZ7V4mDIv8xsbxmndXcnM+NGmna2852/X89FN51zch8QAurPap2KiOSowP2qIKMQRbD5937jQwZ2Pbsfn9fHcMcoLoebgbZRug/3k5SVSMvuLpp2dpCck4DVOMfBjU0kZSdSsDCX/S8f5vvrf8Xs1NvX+o10j/PKQ9sCjVH6mgbf9txPK6dKefkcoMD/bwnwN///HypW47wxiD6RWb9n0O30YDPOBRpz7H2lnuXnv3W5eDzceMfnues7/8JptGGfniEtJx6z2UFcRgI2uxf92CwZOXEYXFbMBiuCIBAec2raav3gr19i7SWLKKjOIjI2nKdePIRWo2T9ymKe+MsWDm9rQW63U1KcSFevgYKlebi61HTv6yIiNhxF1Hx4I7h5ikwmC4RB9ONGnF3S99iyq4PpIT0xiVG8mcNbW7jlwjvw+US2PLEbl81O58FeFp1dza3/+TbaoEyeTzOnan1wIfAvUWIfEC0IQsq7Pen95sgsl1OeQeW6CpLzU9Do1OSUpKHWKJArZMjkMnThat6r5lFSRhxXfvMsmrc20rm/m/GWATxyFYf39GCdc1FZlcrggU4EuYKFZ1aRVpDKb664i9Y9by/1cCIsOr2c6PgIZDKBz1xYy/lnVaELU/PlH25g5FA3nQd7aN3SSO7KfJr6p+hQaln05TOwVxfQ6pZT/cW1FK8uo6tbT8WaUr76ixj+79+tXPvTGDThagrOriBnYQ4A8elxOIIyaoJjghOD04HZfXrEQKc/D/TgxgYcodrAAMc7wx1RXhaB+0VR/PubHk8DhoNuj/jvGw8+ya/afB1AZuYH0wxj9aVLOLCtnS1+ha2y2hwaX2sAoHBRHjPjRp658yX6Gwe47aWbUapOfFt7pPAUJI+l3e8ddMy5mOiTnBBmg6R5OeqXeHj+r69Rtrzo5D7cO+D1eI8K1lsd7sDxnEaD0y05TKyCnL5W6c80OT3JJVdvBODya5upV13H1mYfsqIEVq4uYvfULDfc/RxfO7OWpv8eYqBjnK/94mKcJiuv/nMHBdXZTA7pScmORyEXGOkcI7cik8i4t2839mnjeH9dK0VRHBUEIRHYJAhChyiKO0/0zfyG+neA2traD0RGTxRFLMagnm7eIBnzORf6ESlIXr+lhRPNBfZ6vdx+9b1sf3IPZSuK8Hp8OOecRCTFMDhhI6ckDcFqZbJ/kujEKNTh88uq6KBY3vuBXCHn7h2/4O83P47T4cY1PUt8XDhx8eEoFALhERpcTg9RShlKtQK300NqVhgicgSkPdioXybGB8xGqPFOinjdXg5u76D7QB8Aj//5NUYPz8vKR0ZpqN/cjEIp55t/+TLnfvX0E06ybtnTSWpuErHJ0Xg9XtwuD5qg6vqPM8dlcMHKy4IgHFFeDja4USAj6Ha6/74Plc6DPfzh2r8yNWygdHkxnoIURmx2ClcUYZ4wErYghyyFjMHGQUpWljAxaCDdr3FyPJgNVrY+vguA1t2dJOckMtE/Bc1DVJ69kBb/j7L6vCW0vNHO4V09VKyrxOmT8eJ/DuKWKymqyeaZ+7eyckMVn/vOOSiUp653QV5VFtllGTz319cBKDqrmtZOaYZNTYnG1dXD4f2dJGcnkJydQOueLu751dms/Lab+yaLcK0MI2argyxdDGqfHK1agVKQEa5WoVDK8bi9REXpGBUEEEUEmRAIv3jcXrJLM07Y2G676l52Pn2AyLhwPvPdc3nx71sQBIEfPvA1ypYVnrLv5sPiXfdwgiCECYIQceQYSXm55U2nvQBc5fdWLgVMoiiO8yFzeHMzA63DzJnnME/OUjdmYNg0R2NyFIPVWRy0OejKT6LygqV0d03zjTN+y4HN8x/NpDfz56//nasLb+LQpkYad7Tyuy/eTdehXrweL7ue2R+ot4t4U7JxkLoDXq8vkCBtNtnpbZOuRRsf28N9P/0fw90TPPHn16j361yeKjxuD9bZ+SwReZBqtM/nwzQheRwnBqbpaxrC7fSw8QkLd7ZUsmt6lkb7CCkrw2lrHqW+cYj8sCi0Qw4OHB4moTaH4uIEOnY2k1+dRdnyQjKKUildUUxscjQVa8rY82ojLqeb6QkTW19swOeTvpSJobcX5e44IO39zAYre148zOSgnomBaTY/vvuUfjcfFqdKefkVYAPQA8wBX3p/hntipOYno1QpcLs8RCZEIiAiIqDTqrD5dSW9IhinJe+ly+Fmcnj+x9CwtYWX7t8EwO+vuicgf7f9yT1kl2fQ2zCAWqdiyQWLadnXi8MrUHNGFXaTjamuYfJKslEq5bhMFtLyEpmZNJOQHovdLWKYMJGYHsucxYHTLu2vot+htfKJ0lnXyy8vvQPD2CyVa8sRFUoGD/RSta4Co8NNpMNJ4uJcOg72UVSbi8flwTxjRR2vRdDJpb8ioHAGXZO9Inb/9zY2bWX0QBcAPQ2DZBWnMtQhJXFXriqheV8PrYcGGeiaoLlTj8fjZfNzh/DZHDTu6WblhipqTyvhqfu2UrOqiEu/upZX/76J5IxYpkdnSM5OQBuUKJBR9KH74E4Jp0p5WQS+cWqHdvKsuXwZaQXJ/OHav9L0eiNltXmoTq9gdNZGdlocJoOFdIcPeaIMw9gs8akxTI/N4vV4kSvkKFQKBEFAFEXCo8MCBuf1eJnsl6rFnXMuzMY5HHNOHHNOfAiBujadTkVn2wgACpWCiLQkDm9pRRuupWZVEY17uomM0bH6/Bou+sppFJxgV1Wfz4fP6zuqJvAInQd6mPZfPKaHppmYltK/2v63l7BILWP+dLCypQW07pX2YOXfX8zOCiNz9nGWxeVAl8jorlkqi9NwuNzIZTIKS1Lo75mitCQFi83CYOsIUfERyIKSBkTm98lOuwuPPy430jfNtN9ptOuVRlr292I0WBnpnaJzeyNtuySdmAVnVtO4q4vxvikWnl7Btb+8nHx/Vs7HnU9spskREjPj6fWnJ/XV9RJbnMak3cWk3sISpZq2bdIfuXxpPi37evjfvZvobhzit//9JisuWsxvN95C294uLrzxbOo2NvDsPa9ywdfPwjJr5aGfPE7WgnzCE6MR5DIUSjnayPkYmzbISSJXyANJwHarHf24EZ/Xh1FvpXhBNiW1OSf0ufa/fJi/fe9fqDRKbvrLl6nf109P6wg3/PISnHY3nW1jRMaFYzZYScxMYMY6jsvuRq1VHeXOD265bEwBs0dy4VvnnIy/agSgs28Cp2s+qbo0K47GphFkujCWXFBLw+uNjPZOsGBdGVbjHAOtI5QsygXAabGRkxXD5JSV1CgF8tQoJsZMJOTESwFy/4LiiKwEgNftCYRpPC7PJ8bY4FNgcEqVgrIVRbTu7iQxKwGlPMgp8TYS5SbD/L5n4RlVgdSudZ9bxbrPzTfu8CnVPPh/L0D/LKVryhnrn6Zubx8lZy1CMWel40APZSuKcSoVkJmCTi7Q83oDeYsLUYVpGO6dIjxahzdoTJYZ61v2g8fitUe2M9otbZMf+d2LtLZIxz8ffZBhfz5kVFoqOVk+mvb3kZQZT+qKdPqHTURFaVC6XKhVcjwON9EJEcQkRKIedBMWp8Lp85Bk1qGXm3F7fcRFhzE+bQ70qTT5vb4+H1hNc7j8IQeXw02XvzXYzNgMEwOSyJNMJhAVpeZQfRtKtZLKL55G3fAsOq2KqsosZmfmmNWbKVpWhDpShz0ykrRyN7ZpM5HpCUyOzJCUHktPfT+JWQlvW5z7ceATb3DacC137vgV937rn7z68A7kzx5k5UWLmGkbpX9wmrLafIiJxGh3U7AkH9OIgUu+tv7dXxgwB4UbPG4vRr+hjvRNY+keAKB1dwfpnz2N4T7px1d97iJa9khLzuqzq+hoHuGBP2+ip3MC1+gU+15pYMO1a/nab68MxATnLHZe+MtGwmPCOe9rZzDeNxlInwKOqhxXKuWB2cE258I4ISUHTQ7p0aQmYDLaMRntlJen0vSqlKVXVJtLZ10fNA5QsigNd2Ic3V2dZGfFEZMRQd+LhymtysKXn4jK7kPhEXG7vKSmRqO22VFpVchkAjElGmT7paToyNjwgMEBzPql6N1ONwbTHD6fiNXmxC2TMeD/bmKLM2npGAe9AV1YOF6li92b26jf30dVaSJv/G8vsSkx/Pr5H1K4MPe4/kYfNT7xBgfzHXF8XmnP4xmZYahZktGbHTUwMjGfAvbM9luO6qbzTpx39Uq6m4bQTxjR6FSk5yUy1j9NbnEyo3YL+hED2nANvqAsFo97flb1eHw4/A6TzuYRxve0AvDSA9u46paLUfqv5H+49i+88bSUIN2wrZk3npbyIavXVWCaNnP4uX1UbFiEoFEzPTZLxZI8RvunSEuPxpMVTdv+HjKLUgkLU/q/DwGZbH5MR4Ui9G6MRsmJNDZowN49gsPsYPCNToqjImlvl2bSigWZNB+WvsOSS8vRfrEJY/gBlq3KwvSPKNr391BYm4tcEHBabWi0KgbbRsgqTUfhdiMXBMLCNah18xcLXZDMhFarZNa/ApmzOGjfK2XmzIzPMtQ+GjK4jzrLL6jl0OZmlGolZcsL6TzYi9vlISoxitEZJ6IozQ7Ha2wAiWmx3HL/tVxe9mNGeqaQK2RkZ0TQ+OI+tOEaFm+ooW1PF9Y3Gqk6dwneGSszB7vIyUtHoVLAnJPUjFj0U2aSE8NxJkcxM2EiJvFobUtTUN+D2UlToKzGZrTRf6TUaEsDPn9X2cmRWdKSwmjaJClIL1xfzqEtLQhd4yw4p4Yxg522tilqzl9MeWUaZ31xFY///gUOb2shLimK2IRYOjsmKShMwjsyiXF8FqVagRBUHCswH19TpHpxh0uzuyVnhJbdUtJ2V10fmfkJDPiTmCvXlAZqAyvPrqHN6WZv0xCltZnI7R6a6wcpq8pAdHuw9oyRVpHK4PAsWdlxiCYLhtFZ4tNjsQdVz3/c+NQY3LorllO5qpjwmDA0OjVrL1/K3T/8D+2tY+RWZRKWGMlM3zS3Xf8wX/rRuWx7Yjdmg4VrfvUZDGOzNG5v4+wvrUWukNPbMBCoZTMHVQt4PT6mBiTvpd3qwDJrkxKojTbEriHa90uB8FRBYMIg/WgUagXRYQrqn9tPWKSWhevLaXyjnRtW/Jyrb72Yzf/axvSwnuzyTMKSY3DFR5GUnciceY6YnGQix4yYJ42klWcybfHi8LvtnUH5i0f6HIiiiMNiZ8LfZllvdPCFmy8C4Fv3fInPpF9PS5c0g1WeXkHTs7uQyQRqz6mm60A33S/upershfgiwhnuGqO0Ih2L6MVGGAlTFdhjW4naUUBavp3RnknCorQEh729QcFJn8eH0yvNYAbTHLPd0tK3tXGYGIsJ49gsw0Dxgkwant8LSPvp+q3N3P2NfzDYNsyN93z5hH8HoigyM2EkLuWtfQI/CD41BgcQnxYbOE4vTKWzVYob9TcOkVmQxFjvJGO9kxjHZmjcKJXs9LcM0/xG+3wWvN1F16E+Fp5RwcIzq3jqzpcoLsvA7pGWmA69kYdvfYL0wlR04VpkMgFBJkMXMZ+Zr4vUgt/gvG4v+iEp3GAz2zGMG/G4pCqD1/61g0b/LFVwVg1NHhlM24iqyEUcNHG4dZqIrHRqTqumpWGEuMRoitOjmZ4wI/i8ZEdoiIiNwO31EZscjUqjZOmGGob+tQer2UFxZXByENiC9qRWfxmOzyfiMNsDGizWoSn6bNJFxWoZQl8UCZ0WhC4t1bMlNL7ehkKlYPGZVTRtb2VqyEnN+gopr7R/moLaXGQyGaLTTXZyJBM2N1lRYSiTXUxNmImNDwfzfAmQK8ij6na6A7P7YPvICf/9B9uGue3KuxjpHONLv7mSy79/wQm/xsnyqTK4oxBFSmtzaKvrJyYx8qikZdEbtM9yeQJZ8PpRAxP90gb/0KZmeuoHMOktzIwbufXxb7L6sqWAFAL467cfBgYpWV6EfszEwc0tFNXmotKq6D7cT+mSQuxuHyq1EqUg0rGvi7yKTDRhagRBQBOmRqWa31upo8ICRqpSqzD79zcWk53RESOiKKKfNJOQGMmov9VWWWVaoAFlTmka92y6GblcxmmXLWZqzEhpTdZRX8ntr9/C3773bzQ6NR6Pl4i4cKITIlFplWjC1LjsLqLT45D3zuL1+IiMD+dIvZYowuzAbOA7s87MdxByu7y075NifQqVItCvT66Qk7iolKZNrah1KhYty6dhZydhkZFUl2dgmTJinbWRuyAHrVaN2+UmOSeRObOddVeuPOE/edveLvr9e/dXHtgcMrgPEpVGyR1P3cT9v3yWVx7dg8VoY8GqQmYHJ+k90EX5CimT32qao2BBDpMjBtKq8lFHhjHYOEDagly8Tndgf6ULqi2zBInuuB1uDONGAHobBwMpXi1bm8leWkxnmz87Y1khjdul/U316mI6drVx8OVDlK8pxVuYScugnsqKDFwuD26Xh4zl+fQ1DHH6RQtwOd289vQhohIiUETN70EVmnknRFikFrm/5i0+KYr4pLfWtJUtL2LB+nL+c/sLABQvzqNjfzfD7SOk5idDahKHOw1k5CYQlxBBT/s41emJ2OI1aLVK5Glx2PUW0rMTUOtUgcSBrNJ0Wnd3SqGKuIiAwfm8PvST0szpnHMxMzqL1+3FPGvDlxVLb6NkHPlVmbTulr6b8JgwHh+674Tr66aG9HQf7kcbocFucZCcm4Tb5XlP1SEnw6fW4EDyXtrMjoAROG1Oeg5IV+Lp0Rkmg9za8TVFNNQNIlfIqPnqmezvnUStVrCwPJ2x/d389vN3c8Ofr2Gse5ydT+8jrzobm2mO8BgdqXmJjPVOkV+dhX5kBv24EaVaEVgewdHeS5fDjc0k7Q2nJoyMKyQjamoeJiZax6x/6Xfr7Zezbl0ZAKmlqTz4711M9U9Sc14lFpeHA0N6qi5dhM/mZEql4OkXDnH68gKeu3cj2WUZrLl8GYMdY1iNNsqWFgBHhzqCi1KddhezU9KFZLhvGpvFgdVsx7p/kKzzS2j0a3MuvGol3XdJJT5lK4q49fFvEZcay9rPLGOwfZSzv3Qae16o45k/v4zo86FJjKN3YJacvARUKhkymYBGp0almn/v4EoBbbjmhI1ttGeCr1Z+D49fDDi9OINDm5q5adkt/Pr5H5KQHndCr3cyfGoNzufz8cZT+zCPTaPRSXEkrVqGXCHD6/ERnRDJ1KA+oOF/xDni9fiYtfkdE04PThuM9Upeuaf++CI9hyXHiFqrwu10M9E/hUKloHhRPu17O9GGa6g9vZyuuh6MvSOULihAtNsx9E2QVZSMTCZD5vOSnJPI1LCBtEVFOOweZo1zRGglfZEjREfPZ7U4PF7c/guHyeGie1CaRRoG9YEl8d33beHVP77A4C4pSXrPS/XsfFESp73sm2dRv7uboa5xqs+sRhRBP22hbG0FU33jpJVmEidX0tOrJyczBp8AM4BMLiAGeUZkQRkpMpmMuFRp31x9WjnVp5UDcNpnl/PcPa/Qtq8H6KHqtDIan5eSk6vPWUhP0zB1L49SujQfUYS2g31UnVGDy+3Bqw3jib9s5sKrV/D6P7ej0ak5+13EjQxjM4GLqnHKjGFMWvr2NQ0yPWwIGdwHwWsPb+POr0rpoLk1uUz2T7Gvo4/0wlRishLpONhP3qJ8tBFarF4Zuggt02OzJBcl400IRz1jISJCg1ojDyhgRcTMZ0CERekChakelwf96AwgeQxtJlvACZFuNgdaVSVnJwSCxWqtipTzl1PfM0NYhIZlWbG0vt5EWJSO8tMrOPvSxdQE7cEW1eay8fVmTKY54mLCmZixYrE4SEuJZkpvwemUZlBH0HJ3asQQCJK3Heyjt1kKMYyPmdD7f5QTQHRcGE17/cH6lYXUb25GrpCz6OIl9A8bmdzSy6LTCxBcPmYbxyk+rRLb6DQqjZLWPZ1vKbS12xw4g5whXve8kXrmnNj9eZ7To7NMj0jfW8u+HmJLspgdmqCvc4KDLx2k+bXDgFQA/LmfXPK2f+uChbmc+9XT2fG/veRVZ+GwOek82Et6YQrJOR9s48xPrcEFx7Z8bg82o/RDHO0eZ2LSiugT6WseJm9FGUM9kqu87LRi6kYNMDFLWWkanV3j7DX4yL90GfLOEeq3tlBYm482XM1ozwRlK4owjM2SmJUgic1OmaUs+HANMpmUFK0LyrfURswfO+0uxielMdosDmb7HTjmXDjmXGxIjWHVyqN/xCUlqfzt3qv44jV/5+DBPqKidCysyqS+eZiE+AhS48Kx1knL5YzCVKKTIsHrJSouHEGlQJsai7ZzHLvVSUJaDMZpMx63F5lMOEob5ki9m9fjxWF3B/Zgvs4Zejuk72lWKcfdPcFw1zj1W5q5v/4Oskolrc8d/93D3d94AJ/PR+XaMslLOzJDXlU2ggwERFJzE5kamSG9OB2P18fsuJGwlCi8vvlgvSMoFhdssMdCG6bhW3/9Cr2NA4F98lU/v5zP/eTiD1yF7FNrcBfccBbjvROMdI9z2ffO59UHtnDw1XrOvOY0hvsNtO3vISo+4qgEZJ8saO0kSpkiAEanB5NfqbjrUB/xadHSXm3EQNnKEpr9dW5Va0tp2NrKUPsopUsLmJ2c5cCr9RQvKUAbF0VfxzhVZ9WgN1tQrC1EpVDRt7WfzJpUdJY5aBxCpVGiiD22CJHL7cNqlWYOk2mO4dFZfD6RySkzyXZHYClZtqIoMKb0yiymIqI50DJOfGE6GeEq2jomSSvPIiFCzcS4ifBwNQ6jhdiUWHxeL+HROsLjIxBzIlD1TEuV41HSRcTnE4mM1qH3z5w+n4hSPf8z2//q4YBmqM/jpXW3NI4jIrkACrWSlJpCGvb1EhappfSm09hrMhItU1BmFHCN6DGP6sksSSMsOoyexgEmB6cJjw1nx7N1rDp/QUBOMJhgxbHk7IQPRfLvU2twuggt3/n79YHby86rxWywEBkXgc/nY//GRmrWliKTy3j49y/TurOV/lcPUX7BQmzZGkbifWRGpmBomCZXo8RQksZQ+yjJ2YnIFPOGGewYEYOu0Habg/E+6QfWdbAHeVwsPq+PlgN9JHxuIc1T0lJq8YWFHOgcBgWs+OpK+oaN3L3xMH1OFzffcHRr4+goHZdfuojnXjjM+nWleAXYuKWViAgNSt38n1oeJPOu0GkCez+DcY7ZcelHOTpqRJ0Zy+SokUmgYkkuzf7Afda5lWzNtiMKMxRflk76MwMcenQbObX5LLhgMZddu5q2Xe3853fPcebVa0kKUqwuXJjHlkffQBAEKR7pJyyoQYrX5WHKr+9gM9sZl/twuj1M4iEnPoKex6UiYanFl1Sw2nGgB58uDKvJzmN/eJl7Nt1MrN8T27K7gwdvfgxdmJqUnETiUmM4uLGeRWdX4/V42f3cQc68eg1q7fsv4/CpNbhjcUTsRiaTsWxDTeD+goIEnvmtdCWe2tvGodw0yWMQAUumDTRtl5SMF52/kPrtHag0Khadt4hpi5sJk4OyVaXIEDHpLeRWZmE2WIhOiCQ1P5mxnglyq3MwOXzMTJiQK2S4gurJ3EHpVLZIFbP+MpaDx9B8VCrlfP369XzpmtVo/AnN2TkJPPi/PRwwz7HwW+dg1sA+vYnqm85A1juLKyKcskgt/d2T5Bck4TLb6WoZJT4pErV2Ps9RFjS7e6NViIIUYzN7nbiaBgDor+vhl4/dSGx8BCsvWszKixa/ZYwX3XgOafnJ3Hnd/Rx4pZ7C2jxWXbKEC75xNtuf3MMLf9+MNiEGpVZN+6F+ckvT8aJAEEClkKMKqv0LNhC5Qo7ZJC0zZyZNRyV3P/+XjbT4Z/eKVSU0+9uODbaPMNwu6XM+++eX+XvTH49ZW3gqOe5XFwRBDtQBo6Ionvemx64B7mBex+ReURQfOFWD/DBxzDkZ6hwLaHjEZMUiQMAkrCNGQJrJzLN2RNFfdKnWMNIueQqdKdF0b5RUw2RyGTJBRD+iR6GUU7G6hOad7eiidNSeUUN/+xi+LT0sOrsEb3IEs1Y7uSmxiCJofTKSEyKZ0ltYHpS8O2exIwhCYPmrCaoecPl8OPwOkxm5QPuEVIBWZ7EQPeNE1EuGk5cVF6hiqF1ZwOG9vRimLSxcW4xh3Ej74UHKl+RiKtExlAg1uhTGRqap6XLjrMikr3mIjOJUzDNWkrIS8Pl8WI02ImPfWsWu1qkD4k099f3cu/+3CILAhq+sZ8uLjbTVSSU+VSsLadzVBQ2DrLpyIY2inZ3GWWpv3kDYzl66DvVSuboEu82JoNWQFhlGZ/0AhVVZtO7vZe0lkoc0OIygDFK7FiBQWjTRP/W+Gxuc2Az3LaAdeLuu8U+KonjjyQ/po8PspImvLboZ07SF9MIULr7xLM6+Zg0Hxsd48MktKF4dRFuQwsSgnrTSDBRhGlSdY2jDNKhV897L8PCgrj1RWiyGeaGdI1XZc6Y57BZ7IEieOGRml0VySCRGh2PuNzMOqFVy7v+/Kyn1t0V+5YEt/ONHjxEeE8bX7voSu/f1Mzpk4Ls/v4ipIQN92zpJCNNi9LgIzw0nzGHBZnORmBiBp9eO1ynNBHZLUO6lzRVYCs/ZXQz4hYeGDEYOq5xgBIyw6OE+2odnEASBBevLObylhe+s/SVX/PB8tj72BjPjs3z9T19icmCKXc/u57o7rqL2zCqScxLJr8mhp76fZecvDAgNuZxu7LbgVK6jY5Mmf3HsqMuJ259B07Szndj8dEz90hK0dFEerQd6aT3Qy+yUmYuvX8+377+O3Kos4tNiWXR2Nf/86ZO07unE6XBRuqyI/pZBihcX0Li9laq1ZUwMTOGccwUcPY455ylTDTsugxMEIR04F7gN+O4peeePAfqxWUzTknGMdI1z+udXolAqWJ6ZyUu79Bw6IF2JK86spmnEAsxRvLKU3lcPsO+JMXIW5aPShdPwzC6KFueh1qjQj82QVZrORN8kqfkpCDIB/YiBhJxktFFhAUkHTVwY+CTvYJhGhdk/JqfLS15GfGCMO5/ah9UoJUk/e/9mWsak59z+4//S3yBlaoTH6rBfkczm2SES8nVURCezf2KU1MuSybcpmK22MYeP+H/HEBsZjT1RRUS/DtHtQYcHlVqOy+klLk6HXBTx+leXFr3k2RVFMeD1dTvdNGxtZbhDWuw8e/dL9DZIy9+fXfA7XnE8QWJGPPfs+z9Gu8fJKpXyOXc9u597bnwQnyhSWluMDDBOGsksSEIml6ExO0hJDWfKbCNHpWEiLgKzwYIuSoc7KGkguJrd7j+WyWRcdOO8tPzVv/os50dcFbidVZZO/dZWGra1cfa1p7Hp3zuRyWV84aeXcnBjAwMtw9x0z7WcdsWK9/ArOprjneHuAn4IvJPKzaWCIKwGuoDviKI4/OYTPgwh2JMhJSeBpefWcODVBlZftjRwlbOZ5o66+grBTUC8Xlx+IVhD32RAE7Orro+k7AQmB6YZ75uibHkRTTsleYfq0ytp7dAzvaeP4mVFmGUy6hsnWbwiC1mUmsm6MRZnJTIiOohJjuSx1w9z9bmLaNnZHlgGKZRy1NHh4Dc4dZBnUNTImbH7Y1u2OVQKBW6vj0GziaSKeNpckju/+kvZbN5qAjcUro7Fd+9eDtQ5ScpKID47nran97OiJwP5adm4NvYSVpSCxThHQrq0zNaGqwmPDkOtUwaW4JFxEfO6MEGV2gqlImBsAHteOMiMv0g1w26npUFKTk7OjGO8ewwOgjJCTVluIj2NjUTEhLHo4nI6mkYIj9aRtSAWW04MJo+XBK+HGJWSweZBZiZN6CI07HnxMMvOrUEbrsFudSBXyAP7PGtQ96Ch9lG8Hi9ej5e6jQ2Bvd+Ttz//wRicIAjnAVOiKB4SBGHt25z2IvCEKIpOQRC+BjwCvCX8/2EIwZ4M4dFh/PKp7zIzYSQ2ORqAN547yJ03PIjb6aZmXTl2tZo+g4Oyygy8Xh8+l4v8RfkMtw6RV52FYdzEcOcY8WmxKIP2CEd5LyEQgJ6bczFsk/YVvbsHAz/c1ikrSadnU98zSn3PKG17Omm8/WUAqk+vYNQt51DbJOU1mQiCQHf7GOXL87EarKjDlESEx7HPNkVFajJyQWDUZCZcpUKtBfwhLYV3fnwKjxezf3k3OTiNflQKkg83DJHrExhtlQyick0pzf4at5IlBXTs72Kyb4Ks0nRkcoH6LS3k1+QQFq1jtGuc333xbm6858uEB2XJdB/uw2lz+WOToA2qSQwOy3isTqZapJnTMmtjdmaOOauTOauT2Io0moalpIHSxVl03r+Dzv3Qtr9HWo7qLSRnJ3DX1luJSYziz7t/zUO3PIFZb5FS2ARIyUmSugaFa1CoFGgjtIHvP/4UZaMczwy3ArhAEIQNgAaIFAThUVEUv3DkBFEUg4UGHwBuPyWj+4hwxNgAWvZ0MefPhLDbXbRPSMcjQ4aA1gdoSMtMoH5Li5SRcXY1hzY1odIoWXhGFTMTRkZ7JyldVohcIcdmnCO7KJnZKTPROhkpai3jM3ays+MwmR3MztiQCeAO8rzZg+rwnE4PBotkpCMDBoz+x5paRkkKU0t7sMPDLP1uDbtHpdlsdVEmrepO6uxTLInNhSYY3Kxn2ao0rCofPpeXnK+sYPSxgxQvL8JumqO7rpfY1BhUQfsZITg2KcxfSCyztsCM1VPfT3xaLPrRGbY89ga1Z1Vz+hdWA7D18Tf47RfuBqB0eRGzE7MceG4fZWvKUUXo6G8YoHx5AbOTJqKitcgUCloP9pFXmUV4jBRKUKoUyGK0YJOWtWrh6O5BR5a7EwPTgSB5UW0e4dFhHPZ3fa1cU0rzG9KKI39BDsMdoxx4tZ70olTCo3UceLWen5z7W37875tOSlPleGTybgZuBvDPcN8PNjb//SlBwq8XIDlXPpGULyvktX/tlNSkFubSvbMXj8dHZIQak9GG5PsSME4aASkjw2yw4PP6cNicuJ2uQJV2TJLUzhgk76VSKeNwSy8qjZLqsxbQ9EodYTHhLDqzitG2MZxvDFK1Lg+t04eraYKM8ky8DhfaMA3xSgH9zBwZyRF43R4sVicqtRJXkBqWTZw3WCcubKLkhJix2TC8IBlp7+uDzFSppKyOSFhxcS2tO6S96pLLVtCwq4v+/hkWXbQEs9FOb88klWvLSMlOYMNX1vP4/z1Ny65OskrSiYwNY6B1hNSClKPCCsG5i+N+uUEAR1BssmN3O6JKMuzmXZ1kFSQGlncLzqymYW8vtIxQedEC6iN9bJ2bZnFVBqIo0jg5yaJLFuDsnUETE0FSfgrtu9pZc8liohPmfX7B/QDlQX0CBaTqBYDpYT0jndJx3euNTA/p31+DezsEQfgVUCeK4gvANwVBuADwIEWornnPI/qIs+riRRQsyEaukJOQFss5neM8+JMnaN50kPyyTOR56SCCIi+eoe31ZNQWoImJRNkyjFqtQOMvSvX5RCJi5oO9aq2KOX+FgMvhRt8neQZts1ZceguTfrXilGY97YcGAIhLimS6a4KJoRk0YWryK7No2VhPVHwE1efV0Ko34RVkFDlBjNIwPeohIyWSCJUa3YSMuLQITAobKbZo5rRu7HYXMUnhzApujgQ+5mbmU6jsdnegQYjD6aW3RbpYTM86+MMmKYng18//mC/mfYP6rc1SbPLchRze1o5Kq2T9VWu5/DvnkleVHXjNdZ9byaHXG5kYmCI6KYaUXAfjfZPk1WRj0M8xO2lCJpcd7bEMOrboZEx7HIDAsM3C2IzkXtoeDkUWF+ZByXH040e+wZoLjm5b+KNHvkFORQbJ2YksOqeGf/zwUWanTFx049k8e/crNGxr5dyvnk7r7k4663qJT4slPj2Wk+GEDE4Uxe3Adv/xz4LuD8yCnwaSsxICx/lFKXS90YrL7qKnroeSrFQ6OyRjqTh3Kc11gzBspejcpfS/vJf9Lx4kuyILbYSOtr3dFC3KQ6GQSVkuFRmMdo2TUZyKXKVkcniG2KRoNBrlvPcyaDkXfOywOQN9xk16CwaPB6PFjhFIKsugoXUYpiDXGU/X+CQTQFSEjixRS8vQKPFx4WSvTueAfpz06ChiVWq07SZUog8hJYqElBgUChlhUVpEn0h4lDbQBCQt9+h+DLP+pG2f14fJYEUURZxzLlLyko8yNpD2Tb97/VYuTLgOwxudKNUKyk+roG1/L2FROmrXl9HfOIBzzkHJ0nwUSiXWGTOp2XHIVUrC7F4SEnUYrHbS46Mw2x1Y7S50cvlRPc7jjlH/J1fIufLHFwduf+f+6wLHC9ZXYDPNERalkxworzey4PTKk66fC2WanAIyitNo29uFJkyNOki/PyhhBNEnBiqgpwansM9JV+nOg72k5CQw1uM30lUl897L9RW01g0w/fIhSpYX4fBA/RudlNRmIwfGWgaoWFnERP80SRmxCEoFrfWDZOQmEuFP7pXJBGKCUqjUQYFf0Qezw9K+U2+wYnVocLg9DEzPkkEUg69Ksa6ShdmBWTUjJx7DsJ6Dm1tJyU7gyu+ew7rLpN6b9VubefjWJ8itymJ62EBKXhJypQKVVklYpA633YXX6wsUwh7BMjMX2Pu5nR6m/ZorNtMccyZboNIiOTsxsM9KzU9mbMDAcNcEYbE6wq6q5kDXMPGROpYSzuDGTiKTooiMCUMml/HYn1/j27dfQdIJzFBh/qJiuULOkg2npqlvyOBOAX/c9gt2PrWPBevL0YRreejOjXRtbWDg5b0ULynBI8iRGc3k1+Yz2DJI4bJiDCOzjHSOEp0YedReIjglyevxzjshDBZGJ6S4V3vdAAqbRWq3NWwgvzKdJn+60sIzKjm0qQnqujntiuVcd8dVZKTG8OzGBiw2BxecXsn/NtWzZU8nCSYXiqQoGiaNlCZFYVWoGAa0SgWxPhVHkseCr+qCIDB3pIXxwDRrL14UMKDHb3s6IKUQrNBVuryIrkP9PPn752jb08Gd23951PcXlxLNt+75Ek/+8SXOumo1oijy2O9eIDE/GW1qAiAZvibIYynN7tIS3Gl2MDFtBEBvnsPSa8JqkjrcxiVF0bxfyre8/xfP8LMHvnLCf99TScjgTgFyuYzTPrs8cLu6IoVnbv0XAO6dTTiQZhVBEMisyqd5Xx8KpZwlFy6moW4At0tg4dk1WGatTAzPULy0ALlchtPmJKskFcOUhYSyTDzKCSaHZ0jLTcDS78bl39i7gpotBjtJFE4PGamSOtXFZ1cH7v/qZSvYf+fr9PRKDoolq4pofLURXoXP/+B0rr/+HKK0Gp7NTiMiSsuKc6p49M5XaTnQi8ztonhBNj0tIxTXZNG+v4fKVcXMTpkCPQTejCiKgb3fEU2YN7Ph2tPYcO1pgdsRmUn87Y6NTLRNUXnFWgyHOql7rZGy5UUolHKGusapWJrH9LiJuKQIMmJiOTg7Q1FCLJF+r6RcISM8KCn6o6DYHDK4U4zX62WofSQQWI1KiMThb6QhiiKmoLQui82Fx+WV/gkyepok72VEXASDjZJnUCaXEb6iisPNY6iUcqrOrKChYYiwrFQWLi1katKK3eGmeEUJKoXAnHmO9IIUfKLImVevfdtx2q3OYx4n2iA2XPqRXnbdvAF87ecXc27MlwMzcOHCHJq2NvPDbS2c+6U1vPbQVnw+kYVnVGExWulrGKBsRRGiT8Tl8pJfk8NY7wTZ5Rn0NAy8a78Aq805H5u0uwOy7p0HewKtwIxbm8ksSaNleytsb+XMy5fT9OwhTMCaCxfypZvPJyE1mmf+vh1BJrDh88vf5t0+OEIGdwqZs9i5vuYHjPdNklGcRnxaLB37u8ktTkOm06FQKpDJZXjcXtILUtBFaFGo5CgUcjRqOf6+hoQH7bkUaiVW/xLO5faiN9oREbDOuXHLlQGFrviKdJpekRKk49NiebT/L2/ZKwXz26e+xd9+8iQetxfHnJPE9Fhik6JYdcHCY54/M2EM9HcDsMzMZ2f0NQ8GHBR2m4Muf3/vif7pQG4oSI1VDm5soH5LM3ds/hnlK4vf8j4up5tXnqrjwM4uMnLisVkcROtUJGYlMDU4TXZ5JlMjBiwzNgSZgNM+f7HwmObzQbVh6sB+7bLr31mC4YMkZHCnkNlJI+N9kqdwuGMUs96M3eqgu66X0tXldNRJ9WSVq4ppPiTtkAor0hk60M7+Z4fIrcpCG6GlfXcbxYvziEmO5oofXkTvqIl/37eNtWeVExml4/EHdxIZrkItn49taTXzf8rwaN07GhtAZmEKNWtKePg3zwFQuiiXP770g2Oe+78/vczjv32WzLxENJE6ZIKA1+vDkRhJYnYiap0KbYRG8l7GRQSyM6KTJCXpIzOV0V8A6nF7j/IgBtPaMMR9d7wKgEarxDMyRX1zPxqdioo1ZTTvbCcqIZKFZ1Yx2jcFgkBhbR6aCC0Os43E1GgUCjkOowXjtJmo+AgatrVIRb4nKD70fhAyuFNIdGIUizfUcOCVehaeWcWcxY5Jb0GpVh6VkSEGteH1OF0BCYPRrvHAD7Fjfzd/O3Q7+TU5lALnXrIwUKGcFKXirq/ez0GXh5LVpbjsbg6/eIDyVSUIiEwP63nw5se46pefQama90q+meD0snfa37z+yHbmzHYGzaOUryimZY/UiLFsRRFth6ULR2ZJJjMTZg690UNaeQ7RUWra9naRV5NNXEoMl3/3PPSjM9z/g3+z/IJaCmuP3RsgOMam1akwHon7zbkCQXLTtBn7nCsQm0xYVkjzHslZk16QzGjbKKOtgxze3Ex8nJauQ32k5ifz+9d/SnL2B6th8mZCBncKCYvUcdtLP2Gsd4LUvGS8Xi8P3/IErz28jZ4DXVSuqcDrcjNU10lRaRbKyHAuunYVz+ChdXcHhYvzMYzOMNYzQVR8BHGp83LcwXIADtNcwAlhGjUEVMPa9nWjVsuwWxz85/fPUb6ymCXnHnuJCPDZb52NRqfGPGPlwq8ee9l1aFNToH2WQqVAFpSRITtqFhWw+nvNjfbrGXfa8Xp89DYMcN3tX6BqrSTnt+5zK9+x7/eS1UXc/PvLefk/+5jpHSd9WT4j3ZOk58SD04lhxEBi5tHdUVVBDUHUWtV89yCLg5kBae831jOBccoUMrhPIql5yQDI5XLkCnmgpbF10kC3v3/anGmOF62PArB8Qw3fXnkrzTvaUCjlXPmTS7jy5ovfdgm0YH05hQtzGekeJzk7AY/Lw9SwgaTsBOZmLIHatoi4d25hLAgCF1339vubf9z8OE/9SUqQXnRWFT0NA7Ts6qBqTQlej4/B1mHKFuVgs7nQhqkpWpBNT9MQxQuysUzMMNA6THiUDnnQxcLnE5HL397gANacVcGDNz/B9Ogso0BRRRqNrzdIn/3MKpp2dTK9rY3KVcUYp83Ub22jYnkhIjAxMEXFikLG+6dJzojBY0+idXcHpcsKA3+XD5MPXkXlU0b+glw0YWpkMoGciqzArBAbNHsJghAoRPW4vWSXZbzjfiMtL5m7dvwClUbF4S0tmAwWFpxdg97kQhYTzcJzFpCzpIQ/fPsxWv2aH0eYGtLz6G+eCWgzBuP1eI8SpB31B+NBqjM70rnHOGWkZXcnZoOVlp3tDHWO036wj87DA+QVJ9O8pZHB9hEWb6jB4/Fyy3m/4+k/v8yvLr+TK9KvZ+fT+3jj6f3cev7vadnVgd3m4Ll7Xw30C5gc0h81Lk9wd1SPN6CzaTPPMdQxhiiKdB7qo2VPF/oxI827u1AroXFzI627O/jK7z7Pn3ffFpDQ+DAJzXDvM6suWUJeVRYet5fM4jQuuOEsDm1q4vyvn3nUedf8+gr++u2HSSvLoNNgY5XbizK4bxtgNdoCZS0+nxhwQjjnXBimLIii1GvAq1Iz3C+FGJ65bzNli/MApG5AJd/B4/by7D2v8kDzH4hJlFKedj93gPu+9wi6CC03/PlLHHj5MDOjeuJSotFF6lBFRxAeE4Z11kZsSgzj/XpcDjdR8RFY5uYNwqSXZnPRJ2IzzgVm253/20fbXmnv97fvPBLIHjm4sZ6knETGeydRaZSc9ZXTee3R3WjC1NSsLGB2woRRb6VgUS5qlQKHZY60vCRs5jmiYsKI9bf4yihKZXxgmjmzJDdxRNsS+ECFXt+NkMF9AAQvZYoW5VO0KP8t55x59VpsMeHcdd9WWl5pZGDawu9/eVng8buu/zuv/3Mbyy9axJnXrOOpu16hYmUxfc1D5JRnoNBpGBnQExEdhiYovSw5qDrcOGUOKBBbZm1HeTJf++c2JvxOiUd+/t+A0E5udTZDRpHRQyNEpSWTHGni8OuNpOQlkZKbROf+LjIy4lFFhKEQRHweL7a4CJLzklFH6lDrVJLMREwYgkxA9IlExkcEDM7nEwOzu8vhpuNQP16PVyrytbsDlRVR8RGBagFdpBaX3cnB/nHCosKoOK2ClroBYpNiKF5SyMSYEZlMIC8xirAwNVse30X5qhISg76LD4uQwX2EMAUFoF2u4Ox4Ny//fRMAO/67l8HOSYY6/E1AVhXTdET38rQyOtvGqNvaRvnSfC6/8UwWny7Ji297cg//uf15KleX0N86TE5ZBtv/t48Lrj8D4KgfoyqoWlypUQHSuNxODzP+sMd47ySix4t11oZ11kb5yuKAQZSvLqW9USoUzS7LxjA4wYFX6skqTScqIZK2vV0U1eaBDHxeEbVWxUDLMFml6agjtcgVcrThatRBHVF1QSK52nANtlkpzc1msjE2JBnvzKSJpPQYxv0y72ULs2h8+SAAv/7sn7hnz20n+ic55YQM7iPERefW0Ns3zdCQHtWUmZZ93ZQsymPHswdJzUtmrHeCsChdwAsHHJVO5fV4cTkkQzXP2ALGBnDPTQ9h9RfIFi3Ko2lnO00723FYHXzm++dz4z1fJqMkjefvfZXDm5uoXFMKCIwP6ikryWTSMEdilApPdAHt+7rJqchEqZYz3jeJQilHCJotj8oN9XoDsu6DbSOB3g2ddb3kVmXR5xfQrVpTSuOR7qinldPbNkrdpmaKa3MRRZGWPV1UnFaBz+PBZnWRVpBKf2MfZ1+7HrdSzUv/fIO45KijpCWCHKpH9ef7MAkZ3EeI6CgdP/3BuVyY+U2mgB+90kDRwhzaD/ahUMlZcv4imne0oR+apmpVMQ6bg4mecfKqMlFo1PgEgfS8RKbHjKRmxTIxpCc5M57JYcNRYYWjgs5BDsOEtDiG/TNnf/MQVrM0s+lHZkjJSaT5sLTkrFlXzuHNzQiCwKJzauhrHKB9TyfV68rxiTDSN03pohysJjvhkRoKFubSW99PydICzAYLw53jR8m6w9HdUb1eHw5/wxTDuJFp//KzdX8vMYmRzPoN+OaHvs6aSyXty4SEMB78wb+YONxBzTm1GMf01L90gMrVpYiiyETfOM/e/QoX3XTOUWGJrkO9eFweSpcdLR3/fhEyuI8YR2JZ4N/f+H9sHpcXq3GOOX/Zjdvpon2f5IRQh6mZ6JSWegqlnMjYcPa+VE/jjnZO+8wyXntsN+FREdQsyMGot2C3OsirykIXoaV+WysrLlyEJkxNw442ohIiMU2bSSlMZbhzAofFjiDAnHXeCWEzz+eGOm2ugMdzdtLEcL+0HzNOWxBkQiC4XrQ4j9bdHVLS9oYaWvd2MdE/Rc36CtxekclhA8VLC6XcNpmczKJUJoamSS9KRZAJTA0biHlTTVt0UC90m948Lwo0ZaC/cQCA7kO9gbKov377YapPKyOnQmqC8u9f/Y9//eK/yGQC37j7y1zwJiXr94OQwX3EiE2M4hf/voFHb38RtU6FIAhYTXZS02PQ6JTIFTIEmYywoHxLXWQYTMxL1s1MSt7LOYuD1n3deD0+TDM2vLkJDLRJe6uihTm07JHKXn5wxm8wz1hxO91ExIRR9pnVtA0aSVhZQanMy2ir1NMgNjma8CgdbqebmKQotBFaVP60LrvFQVxqDOMjRkmtKzYcc1CnniPLSo/by5zFjs1/YXE73bTXS1XZcrk8cIGRyWUkFmfScGgItUZJ7RkVNOxoJyxSw4rzF3Lul9dStaoYj9vD64/soHVPpxSHNM8RlRBFVHwEJr2F1LxkRnvGcfgFkaKCJBb6W6T39fnEQHL0+82pUl5WA/8CFgIG4LOiKA6cwnF+qlhyZgU7nqtj29NSMnL5gkwa/IHfosX5TA1Os/+VevJrstFGaOk80EPx4gI0UWFc+o2zGOoc49HfvUBOeQYqrYqhrgnCInVognoKBNeWKTVK3P5Yl2XWxtCMNCNMT1mIjVEFGlNWrCwK1LjlVWXR2zjIWM8E8WmxxKbEcHhTE+mFKSTmp9LbNERuZQaiV0SjliH6fFj0ZpJypNxLpVqJKIqERYcFJCfCo3UBg5O6o/rDHg43M5MmPC4PJr2VguosFpwmZa4c2tTEn66T2o5FxUfgcnio29hAZFw4latLadrZRmJmPCsvXsLl37+A2OQYbGY7L/5jC1aLm6jESNRaNW6viMPmRBOmprOul/zq7KP2oqeKU6W8/GVgVhTFfEEQrgB+D3z2FIzvU4s7yEspBmXpu51uZv0/xIGW4YCbv3VnG3fv+Q0lSwpYdEYFM1Nmnv6r5NmsXlVMx+F+6rZ3ULaqGHtKFHvNcyz4zFJkYyZsdjeVuUn01vWSW5aON0JOqwVS02JIiVL6yz+PbqelCCpKddgc6Eckz+BI1zg+mRLLjA3LjI3ShVm0+Ku0K1aVHKWMZRibZf+LB8mtySEqOY6Oul5KFuehVCm59KazGB8z8a8/vMKSM8pJitcx0DKMLkJL4YKc+fe2zlcIqLSqgEKX2WANBNKnhvQsv3ARuZXSUnLjv3byz18+DUBuRQYDbaO88s+d1O9oJyJMQfu+booX5/PrF39MdMJbpRlOhlOlvHwh8Av/8VPAvYIgCGKwOy3ECfHdP3+RyGgdQ63DTPRNULw4H5t5jvC4CLLLMxlsHaZ4cT76sVkm+qfQhmuOyr00BfcZd3kCS6oZg43ucBUIAnV2F8n9+sDyrrAokcbtUmeay350MV/5zRXI5TKWrC8jNS+JwoW5PPG75zi8uZnp4SkqVhYz1jdJemEKzjknHfu7KVlagDY2iokhPTK5DFVQn4NgZ4Xb6Q5on/Q3DKCMmsHr8dJ+oJc/bLyZ8uWFAJz7xRWBivPVFy8iKSvhqOX06suXceO0mYZtLVz+vfPZ99Ihnrv3VfJrchB9IqZpM3GpMUc5ioxBbasUyvnWz2aDhZFm6cLRcaAHk97y4Rgc7668nAYMA4ii6BEEwQTEAUfl6HzclJc/TLRhGlZfsIAf/kXqlz0zbsQrwujgDIIgLS1b93ah0qq47Lvn8bmfXHxUB9Yv/ugCpkdmmPPPAKm5iejHZkmsyGBWLqKftZGgUwU7KQNGCRATGxYIjK//3MrA/Rd8/Uwe+dl/AKneLSUvOaDB8o27r+WiG8/B5/Ox6bFdVKwoIi4lmgdvfozexkHG+yYpWVqIecZCZHwkuVVZ9DcNUbqyBLPJwVjfFBqd+qh+csHyDrkVb/3NCILAhd84mwu/cTYApcuKGO4cY9cz+wFYdHYNhzc3cvvV99J9qI+ehn5a93RSvrYCBBnGaTNlSwsY6R4jMz8JW0ok3Yf6SC9MwRJ00TpVvGsuZbDy8sm+mSiKfxdFsVYUxdqEhIR3f8KnHJlMFtBzjIgND8TfRFGqvQNw2V3kVGQeZWwASRlxfOP2z9HdMEjr/h6mRmZQrC9ht1mqEF8VHYFnUztKtYKqlUXkVWTglinILs+kbEUxTTvbGO+ffMuY3C5PQCgpWN8EIDEzITDus764mtTcJNRaNWs+s4KmHW1MDxvo2N/NWM8EzTva6G8apHRtBR31Q0yNGFh0ViUKlYJbLr6TvS8ffs/fm2naHDh22p14PT5EUaR1TwdNO9rwur301vXQsqeLke4JWvd1o1EINGxpovtQH7VnVjHSNc4P1v2C1x/Z/p7HcSyOJ3n5iPLyAPAfYJ0gCI++6ZxRIANAEAQFEIXkPAlxElSsLOKPW35K7dlViEolxUsLyShNo2J1KclFGWjCNVSsKqF8xbFjSDN+owTJCTE1JxmHze5itmsCj8vD7JQZn0+kt3mY8aEZtLERtO7uYP/Lh/ne2p+/5TXjUmK4r/4OLvnWufyj+Y/86tkfUFSbx+dvuYSqtaUADHWM8uTtz2O3Se831D0RcEBExEUEGlOKIoGYmsflZc5sDzQm2fty/Xv+3m6698sU1uZxxlVruPDGc0jMjCciNpxFZ9cEclEzilOPmkkts9a3HHvcklzGqeSUKC8DLwBXA3uBy4Ctof3bqaF0aQFjQzOYDFZMBiulS/Jo2Sf1cTvn6nV8666rjvm8f9z8OC/ev5nSmhycbi9yRBSCjEY5lMTFEiZTMtQ2ii5Cgzpon6UL0vV/uxZN6YWpfP1P1wRu37N3PmWqs66Xby69GZ9P5JUHNhOVmUJ34xCZtcXExGoZ6tVTUpmLXT9LZFwUglyG2WAlOTcRdVwkCqUcn088ap/mtLuOlh98F3IqsvjLgd8Fbi88oxKZTEAbruXc606n61Afy86vZbB9lBf/sZVzrlmDxWDm3pseIjozEUGjIixqnIjYcGrPqj7u9z0eTpXy8oPAvwVB6EFSXr7iFI0vBBCTGMV4/zRCcCdIIDLu2FXaXo+Xp+96RVpG7e4gqzSNHn/8beGGWpq2SdXR1WdV07mzjbrNLVSuLOK8a9ey4vwanr9nIy2727kiSCT1eNGPGALlM9ZZK1OzUqxruHsCZ0YcRr0Fo95CSVU6Lf4ebxXrK2iackDPDIXrKpmt7+GZP7/KYOsI2eXpvPLANlZeVMsNd1511AXheAmLnE/rik+LIz5Nqh7ILk3npj/NX7DO+M5F/PPuTYCN6otWcts/rj3loYFTpbzsAC4/lQMLMc/tL3yPh3/zLLtfOEx/6whVq4qpXFnEhccoHhVFkT3PHyQhI46pIb0/Wz8o9zLo2O0lkIUxO2li9UW1AFzy7XO55Nvnvqex1qyv4Owvncb+V+vJKknH7oHetnEyCpJRquRMIYnTKoJLj+Tzx26XF72/v3f9tlYOb2lGFGHTo7vY8OV1lC4teE/jOh7MM/MNUsJjwj/0OFyIDwmFUkFEdBgT/ix4r8fL539w3jHP/eWld7D7uYOotSoWn7eQjq5pTCJUri3D43Cibx8gOycduVxAnNaTnBGLftJEWnYchrFZ4lJjmJ00otKqAjODKIrvKIsQjC5Cy/cevIEvlXyLhm1SiKH27BrqNtYjV8hZ/6X1XPnDC4hLiuIfNz/BUPcE+qFpivLTsNg9RAo+skrTGWofpWh5IYYhA1OD06h1KtTvYXY7HqaG9Pzxuvtp3ddN+YbFiMDw3lbeeOYAqy55a5/ykyFkcB8T0vOSAlr+8clR+Hw+ZDIZXo/3qCvxkfoxp92FzQ1WszSD+dKjaPGX8aSIYqBLjUqjJCYlhj3PHqB5eyunf34lL933GtGJUVx725VsfnQnMxNGfvTITYHA8fFg9gegASwGyTHi9XiJidGSnif1Ilh35Qq+f67U2WxyyIAATPhEBJlAwWVLaRo3o85NoXZFEW2TVn7ws2f48Y/OY/HiYwsQvVc6DvZSv7UVgOE3mgOJBb++4i4e67vnlBawhiQWPiasvGAhd2/5CZlZMWx5eDPfW/tznr13I1cVf5dfX3k3fU2D/OWbD5GQHodaqyJnQR7aSC2CTEAmF45qbKgLckh43F6m/OpXllkbhzc34nK4mRrS88o/tlD3WiN9jYP86xdPntB4f/bU98guz6RydSlKtZKI2HASM+Nx2Jy4HP4gtCAEhT3CAns/0Sei91cLON1eLOE6THY3RuMcb+zqPOb7nQwxSVFo/KJEcakxR13AwmPC3u5p74nQDPcxIjo+kn6/InPLrg6mx83oR2fYNTqDYXSaVn8BaPW5i2hpHmf4jS6Ka7IwTJg4dGCQ4vXVqD0uug73UbaiCLvFgUqnRqVR0nGgh7yqbNRqOTCMNkKDSjvvvQxO+j0eqtaUse7KlTx0y+MAUolOwwDP/2UjjTta+UfTnZQvK+COl3/I43e8RF/rCMW1OdgsDiLyk/ElRGLsniQ1JRqtVuXvjioSEXThcLs8J93NBqBiZTH3H/odd17/D5p2tJFRnEpOeSaXf/e8U65lGTK4jxEanYrq08po2NZKWkEKqqAfw5HYFgBBHUCdDjfTfvXj3p5pPENjfu9lJ9kVmXT6VZIr1xTTuEXqBlpzegVdB3qpe62R8tWl+NxeNj2yg/DocK697crjdibYg0p65HJZIIXqSOUAQNnSAsb6p5idNDE7aaLo3BoaJi0waaGqKoPGxmH6B/SUlqQyPWXhP0/uZ3h4hmwlvPzwDtZdtoSv/PKytw1hHC8puUl0HOhFFGGofYwb7ryawoWndukKoSXlxwptuJbbN/+cc756OmO9Uwy3j1B7ejnJmbEMtI5QsaqEyjVl6LtHyC9IICkngbDsBNJLUgEoKEgINBRUaZR4PfNJ0Z4gAVa3w43NLOVXGkYNtO3txO3y8N87ng/U4x0PX/jZ5Vz+vfM596un8637rmPd51YSkxTF52+59KjzouKljEFBEJBpgtt9zTtqnE4P09PSvvDAgT7+d/drzFkcvPTwDoY6T760RhRFKlZJ0utxqTGkvKnn3akiNMN9zBAEgdlxY6AjjcNqD/SWs5nt9DX5a8v6pvAtLmW0aQS5XEZRYRxtmw6jCVOz+JxqOg92Y542smB9OasuXULZsgLu/Op9uFRqZPlpJOmtGHrHSc5JZM5sx+SXDZcrj99VrlIrue6O+TjXzY9+6y1OHoA7XvohLz+8nQVrS4lNj+Uvf9nMRMcIs9sbKViQj9XlRZ0WRrorlpGhGfJLkjEYZzH26lGqFUeVHZ3M9/p/L/6Ihu2tlC4rRKV+e8XqkyE0w30MOf0LqwmL0hGXGoMmTI3S/+OIiIsIuO/DY8IQ/ROY1+vD4FfGctic2Ew2TNMWTNNmEtNjOfcr68kuy+R7j32HXpecprYJjMnJxKfHUb+5GZ/XS+1ZVditDq6v/gHdh/ve89iPtRxVqhRc9LXTySxKJTxMw5m1WbT8cwuj9X0MP7Gdtsg5dk2P0RY5R+b6THZ79QyvSqPqysXowrX85NK7aDxFzpTqtWXvm7FByOA+lqz5zDJ+9r/vYJwyceDVBhKz4smtzKRxWyu5lZlUn1aGUqWgROUlMz2Gr910Opd8/QzUWhVFi/KoWF2KTCZ5CPNr5mvLLEGJyG6XJ1B4apmxMT0yg8vhZrxvksbtre/7Zzxy4QhLjUb01zR4fCKjNr9al9OF2e3GZLCgHzey+6X3nuz8QRJaUn5MsVucgT2YxWBh1CD9EHsbB0nKSkA/OoN+dIbvP/h1zrpiKQCnf35VQH14xYWLCI8JJ70gJfCaZRXp3PS9s3npmTo0ZjPK1SW07ekkvzYfTYSWwdZhtOEaFEENQpx2J2rtyTks3kzNugp+9/pPOfDKYS759rkcnJjmoaffIK1nFmHay94EBbkKDVEzUuhAkAmEhc+P4VjL1o8KwoeVY1xbWyvW1dV9KO/9ScA8Y+XPX/8H9VtbuPTbGzi0uZnmne1kl6Wj1Kro9rfG+v1rt7Dg9MoTeu2blv2Ejv1SvmXNhoU0t0pB8uqFGXTubMVqnOPc69bjtNrZ8d89XP79CyhZVsjTd77EqkuWcP7XT70Yz22fu4vt/9kdGFPTG/4OPssKmOgYYmpIz2lXriApM4GX7t/E2deu40u3Xfm+Lg/fDkEQDomiWHusx0Iz3MeUyNhwfvrkd3A53ajUSq68+WLa93VTuqwQt8vDC399jQXrK04oOwQk0dlg2QJ3UBdhl1cIaFse3tzMWJeUEP3Yb55GF6llzmynfkszaQUpJ2zk74Qoilhn5/McRfe8d9U552TK34tg74uHAmN/6s4XOfPqNQGFro8KIYP7mHPkCi6TyShbXhS477LvHDvX8p3Y/dwB7v7GA4g+H+UrS5CFaTE7RTLyE4mKDefsS2vRtw8wNaQnOSseq8GE2WAlMj4C59y8hEFY9KnLzmjb18WfvnofhvFZylYWIZfJmRnTk1OWjt3mJDxKR0p+MuM9E+RWZjHeO8HspAmlRok28v3JvTwZQgYXIsDu5w4wMy5l6qeXZtLWITlNsgqTuePJGwFYvqGar1V/j8ObGomKj2DhWdW07OogOimKrJI0zr3ujFMaMD74aj0DrVJ+qMvupvuQ5I3URmhxo2CifwqVRknxilI66voIi9ax+LxaeppH+NG5t3P97Z/jwMYmBtqG+fY915JVkva272WesRLml1p/vwh5KUMEyKnICngvE4MaF0bHz0vZKFTyQOKzSW9hasiAc87F5ICehWdWs/yCRcddWXA8pOYlBwwgKXNeliM8el7yXcr9lC4ONuMcVosD47SZiYFpnr57I688tI22fT3cddNDb/s+j932NJ/PuoGblt/KvpcO8dMLb+fW83+PYfytbb1OhtAMFyLA5d87n7LlhUTGRZBemMqKlxsY6Z/mgqskEaH+liGe+O0zVKwupWVXO0W1eah1GoY7RiWtyVOQ1/hmzrhqDZml6bidbspXFLP/lcM8c/crjPTrKVuWiWHcSEJaLCBinukkoyA5UKQqyISjKsWj4t8+H3TTv9/AMeek+1Af//n987T6RXIf/fXTfOuvXzlln+ddvyFBEDTATkDtP/8pURR//qZzrgHuQNI2AbhXFMUHTtkoQ3xgBGvsrzq3+qjH/nDtX+mqk3Ivq9eV07BVqndbeGYVXYf6uOfGhxjvm+K629+swHFyFNXmBY6XbFjAXd98hNkpM4ZxE0W1OTT7K8dr1pZyeHMzg+2jVK4tYWJQT92mZspXFLLojErOv+70t32P3MpMRrvHUetUyIO6gATLqZ8KjueS5ATWiaJoFQRBCewSBOFVURT3vem8J0VRvPGUji7ERwrnXFA7rSCdR5fdhcVfLX1oc9P7Pg5dpC4gPuQN6tjqCXKpOmyuQNnRcMc4f3ztlnd8zZ/997s8dtszPH3Xy7Tu6WLxOdWsuXw56z+/8h2fd6K86x5OlDgiaaT0/wsJBH0K+b9Xb2HZBQupWFWCzTxHemEKudU5KMO0xKXFIlfISc1PweJ34ZtnLLiC2gWfKu7d+XPOuXoVySkRTHaPUbwwm4oVhZgNFjKLU0nOTkAXriLBn6idU54e6Mz6zohYZqxS2y+nhzOvXnPKHSjH5TQRBEEuCEIDMAVsEkVx/zFOu1QQhCZBEJ4SBCHjbV7nOkEQ6gRBqJuenn7vow7xoZCYEU/tmTU0v9HOYOsICAKDPdM07urC6RFJyE1m78Ymrl96Kw/c/Difz/o636j9EYNtw6d0HNpwDWFhKka7xzFOmfDanTRtb2OgZRjjtJnJvnHqNzVhGp+hoCKd+tcbuK76B/Q1Db7tazZub6W3aYjIuHDkCtlb1JpPFcdlcKIoekVRrAbSgcWCIJS/6ZQXgWxRFCuBTcAjb/M6ISHYjzmCbN4DGVxF7vX6mPaL/xjGjex+4SAOm5OB1mEat7ed0jFMDEwxO2XiiDM0zj+TAYRFagOV4845J6NdUunO7KQp0Ob4zTRub+X763/FG0/tQ6lREZ0YxZZH3+DrtT86zpnx+DlR1S6jIAjbgLOBlqD7g0VfHwBuPzXDC/FR4/zrzyQsUstY7yTn33Ammx7bzeuP7iIsTIVcpaB1fy/5Feko5QIj7aDWqo4SXPW4PSiU792b2bi9lR+d+Wu8Hi/Fiwv42h++SPnKEt549iAv/WMzwz0TVKwpY6p/ksTMOBAEWnZ1kFmcxuSgFM7wer2Mdk+QWSzF5IILYkWfjxl/we5wxxjuoDrBU8HxeCkTALff2LTAGUjdcYLPSRFF8UgV4AVIXXZCfEJZ97lVgePLvnkOW/61nZadkjhtzWll1G+VKsdrz6qiq66XP113P8Mdo5gMFnY9vZ/P33opl3//gvcUrxvvmww0XrSZ5yhfWQLAqosXcZe/rbJhzEh+WWqgtdaCMyo5vKmJu294gPb93bTu6mC8b4pLvrWB6++8huUXLeKzP7yQvS/WERGjIzk7kfZ93RQtymOwbZj4tFjsVjszE0bS8lPedmzHw/EsKVOAbYIgNAEHkfZwLwmC8CtBEC7wn/NNQRBaBUFoBL4JXHNSowrxscHt8jBnnq8CdwR5Mp1zLswGK6Iosv+Vw7z+z+3MWez840ePBozmRKk9q4qa9RVEJ0Ry0Y3nBO7vbxlGFVQt7nbM77/cQY6b0a5xxnonEUWRnU9LjnalSsFXfvs55kw2Wnd30rang/KVRXTs7+Lms2/jL99+iM9n38BXK77Hi3977T2N+wjHI3XeBNQc4/5gIdiAHHqITw9vPLOfv377nyAIlCwrRKGUY521kZqfjFqrRK5UEJMUhUlvIT4jDv3oDHNmOwnpce95WRmfFsfvX/8pbqc7YGD33/wEz977GrpIDQtPL2e8bwqL1UHxkgJUaiU28xxpBSl4PV604Rpik6OZmTBSve5oV0TwhWPOLzEhiiJ9jYOBTjoHNtafVDVEKNMkxHtm5//2BhwRKTkJNPvbVmWWpNHfPAwMEx4dRlxqDIdfbyIuNYbP/OACLvnWe1N1PoIgCEfNZq17uxBFEZvJjsvuZsyfepaYHkvTTmlZGZ8Wy8y41EtPF6nljzt+SeWq0qNe986dv+Kv3/knok/E5XQTmxJDTGEaiqJ0dE1DuG0Oqte+2V94YoRyKUO8ZzJL0wFJulwTpCAWrKDl9XqZ9ss7GMZmWX7hYrThpzaLf+3lS1GqFMSnxqDWzMfNdEEdW7XhmoD3cs5sp3jxWyXT86qyKVteRMvuTrrq+kiszqXHp+RQ+ySxZy/mkZ57ufQ9VGEEE5rhQrxnvvjTy0gvSOahW/7DwVcPU7ayGIVazUDnOFXrKpgZmyEqOQYBkdadbRQszGOgZYic8lPbjPOSb5xFZLSOP1z7N6Z6xylZVohLpqShbpjy9VXIEZmYtFJ1RjXjnSMk5ybzygNbufCGM+loGsY8O8eStcV4vT7MhnnFaLlOA1ZpaSnIZKdEgTlkcCFOivCYcCb8jRt7GwZwC1J9XsvBAVJzE2k/JAWbK0+vomFTE//3+XuYHDJwxQ8vPKXjmDPPBRwx1hkr4zOS86ajeSwgEW+YspCdG0/zrk6ad3XSUD/Mvr2SsO6GC6s4/MxuJgamqTqtHG96IoN6GxWVGRiNc8TEhrFrZycrVx+7F9/xElpShjgpUnKTSM1PBiS15SMakwql/Kh8S2dQO+PgvgOnisXn1FC+spjohEjOvGYt6fmSrmR6Tjw6/xJXEATcQWOyWObHNNAyxFjvJD6vj4kJE029ekwmO81Nw8wYrDQ2DPGLnz5NY8PbZ6scD6EZLsRJkV6Qwv0Nf2C4Y5SCBbkY9Wbu/8FjHH69AVwuihZko9SosBptJOckok2NQ69UMztjJTJSx7493SxYlINWq8Iya0UX8d4KQJOzE/njtp/jdkotkS++6Rx+d81f2f3sASJiwzn9kqVc9q1zUCpk3H3TQ3hlchyzFpKSI5EJoFEriEqIlKQDi5KZNftwONyo1QocjvmwgkZzchqYIYMLcdJodGoKFkhV3tHxkTj9QWKApJxEWvZIgj9Ztbn0OaB/eyf1jSOo1QomJ0ykpsWwujSR5//8Clklafzk0Zvek/KxTCYL1L+ptSrGuqVcDMuMlaKaLLKKpKD1+qvWcue3/gVASnYCE4N6JkSR8OhwEi+oZpfNQUpiJAu1kfS0TxCTpCMsUstZ51SSn39yisyhJWWIU0r34T68/h4CggCqoAJQVZB30uf1MTkhtYUaG51l21P7cNicdNb1BTqjvlfmLHb++4cXiUmKQq6Qk5ARx5xpLvC42zWfrqXWqgKV43M2Jz3+PujjZhv6KTNm0xyD/XrWri1hw3nVR9XKvRdCM1yIU8bGh7fxx6/cB0DV2jKmhqape7WeijWlyDVqBpoHqVpTzozDS2S0FgGB1uZhiopSkPWLTHWNS0rSJ9mx5oGbH+elv28BoPq0Mhp3tPHAT55goHWYHz58AxuuWoUgCGx75gDj/dNULC9gbNJI1Op80sJUNHaNkZcRR5hFSj2TyQR0p6hKJzTDhThljPp7HIDUOeeI9kl/0yDNu7uwGKy0PLMPt8tDa9MILU3DVJWl0bO3l64JO4s/uwp1QRZ/+MULPPXQG+95HJag1sE+jy/QWehIQBzgzM8tp2VvD/pxI817uvGuyKFuVE9j1xiLKzLpGTWwz6ynpjaNuJFx/vzFu/nvH198z2M6QsjgQpwyzvjiagprc0nNS+KMq9aQnCMJEWWWpBEeJbUvVqjkRzkhHNagKnJBgdXqwuvxUffGe19Wfv3Oq1h6/kIqzqrBGRZGVlU2UUlRxOWmMOGvAu+sHyAsyq99IoA9aEz2oNxLu9GCfsSAx+1lx//eLHJw4oSWlCFOGZnFady9+zcgCMjlMs66ei0/2fBbWnZ3EJ0YyYLVhfQc6kM9NErJohKUMhlO4xzxKVFERGpRKOWER2lx2FzULMt/z+OITY7mylsu5buf+QsAcoUMuSaMPZvbqN/7e2pPK+WNl+qJjgunpjyNkeYBhM1txK4rQZUWg8PlJik2Aq3NRZjBTnhMGDbjXKCd1ckQMrgQp5Rgl742XMNQh6QrZZwyY542S/2zJ00kF2XS0iYFzPNKUuhtlzyK8UmR/OXpm0hMjT6pcTiD6ti0YWqsU5KDxm5z0lk/II3JYMUeo2KiX1pqlhansscqLUfzdVoMj+zhsCgSnRjJXw/+H3knqGJ9LEJLyhDvKxu+sg6ZTKBgYS551dmA5IRQBTUACZbXE+GkjQ2gelk+t9z7RdZduIDf/us6rv/lJUTFhVNemUZSQhiCAEnpsWiCqtaVQYrRGq/vKN3LU2FsEGrmEeIDYHrEEMhDfPWhbfznT68yNWyg4oxqUCoYbBwgqzyDWZOd6DAlZ312GesvX8ye7R1odWoWLDk1Ss53fPV+Nj+6C5CKUhv2dCP6RCqXF2By+Bjum6b4tCJEjRx9wyjJCWGMNQ+SWpDMhmtP47TPLDuu9wk18wjxoRKc9BsRF8Gkv/nGUH0vJpvkoGje2U5cUiQjk2Za9nSzdVsHh+oGEAS46cfncu4lx/z9nhCmoJQyj8sT8F7OObwM9UqiVgP7+7H709D0Y0aSorQ07eqkaVcncoWc1ZcsPqkxvOuSUhAEjSAIBwRBaPRXdf/yGOeoBUF4UhCEHkEQ9guCkH1SowrxiSW9IJnEjDj/cRJhEdLSUqFWYA/KczSZpGJQUQRjkJv/vdDfMsz3z/gNfY2DFC7MoXxFEQ6bg9ScBGISI4mK1RGbKOWApuUmoPX3mpPJZdiDepoHa7O8V06VEOyXgVlRFPMFQbgCSfPksyc9uhCfOLJL0/nbnl9xy8V/pGVPNzFJUSxYW0Jf1yS6CA1pRRqErHjsQJwlkoi4cEZMNiwWBxqNkgP7eli0JA/VCciq733pEM3+lsQxSVGBTJbwaB1OUeDQ5hZ0kVrKFuXTWjdAXFIURYtyGbQ6UCESNzGDNjWWF3d3k7+kgISgXgsnyvFILIjAuwnBXgj8wn/8FHCvIAiC+GFtEEN8pAmL1DLo917OTpowzVgxGqR/petKqOuVvJfFBcl0dE/QsWWWpvZRfEYH09MWsnMSuOueLxLuLzDtPNjDIz9/kojYcL7+p2vY//Jhxvsm+dwtl+KwOpgemUEQBERRRBfsGAlTY5uRZrA5s52RPmlZaZg0EV2awoRf0LZqUQH1TcNg6Of3t7/EH26/8j1/9uO6TAiCIAcOAfnAX44hBJsGDAOIougRBMEExAH6N73OdcB1AJmZp7YIMcTHi7OvXsNzf91E4YJsMssz6O2cRJAJKIKWbYqgvEW3x8vMtLQHG+ifDuRrAjz666c4uLEBkKrKj/Qgb9/fTdvebhw2JwW1ecgzkmgaNVFyXi1ykw2j1UVFWQTDHaNkFqchatSYD/aTlBl7VAW7IijUER5+cmlnx2Vwoih6gWpBEKKBZwVBKBdFseVdnnas1/k78HeQvJQn+vwQnxy+9n9XcMkNZwbkyAurs3jqvq20vNbCojXFuBIiGBiapqoiHaPRTpRaRXKZlva2UYpLUunvn6a6xu+qD1Lb8/nmDdFuceDwO0Bm9BZmZFpAoG3ETLzDwey0hbGhGYpqMmn2F8rWnFNFXdsYI4eHWLQkl4lZK/UNg1RXZVJaksalJ+m8OaE4nCiKRuCIEGwwo0AGgCAICiAKMPAJpn1/N5ZZaaUtadGfeg39TzoJwYrJEVqmRmfx+USmuiZobBnGZHbQ2DyCdcJMe+Mwba2jlFWk0942xg++8xivb5Qah/z0ye9yybfPpWRpIYOtI5QuK6RodSnO8gyy1pWhjtaReGk1CXnS+8VmRCHq5nt/B1cPuBAQ/RY8Z3UyPDKDzycyPDLDV768hpiYk+vuekqEYIEXgKuBvcBlwNZP8v7tts//mR3/3UtcagyXffd8nrv3VTQ6NV//09UceKWewbYRvnnvl99TTdenlcz8ROKSojBMmkhOjmTK48Xu9qJWyLDb5r2XNn/upSjOezJVGhVly4t45q6XAZgYUDC6pBD0VmRRYUR8YyU7Z8yo4+UsXljKnv4RwrMTWVydgbXXgMXiIK8yA61agWtUT0p8GE6Xh3CzmSitEpPdTWaUBrvNgfYkKxmOZ0mZAjzi38fJgP8eEYIF6kRRfAF4EPi3IAg9wAxwxUmN6iNOy64OQNov7PjfHiYHpM3247c9Q5NfKu6OL/+NO7f94sMa4seO/PIM/vb6D/nxOb+l8ZVDxKfFkr6sgP7tbUTER6Itz0bp8eA2mIiNDSMuPoLhAT02mxOlQsZAxxhypRyv20tUcnSgUaHPJzJtlpwfTo+XSYcdr8+Hac6Jx6dkoFOqcIhNiAgUysYmRWLuGqbO7SUiNpyykjSaHtjE9dubue2lH5Ne8N7Vl0+VEKwDuPw9j+JjgmXWynP3biS9MIXZCSNJOYnoglOD1PPLlPBT2Fj+00JElI6BFqnTjn50hvCOUUx6Cya9hcrESJr3SXLqxcsLaW2z0NM2RkfjEJb97cxMmsgozSI6MZKOuj6qosLxVmfhEgTksSq6TDPkpMShUshRyGVEyhRoPfM7Kk1QoaxapQj0mrPMWOmvl4SGxnommBrSv78GF2Kee7/5ENv+sweABadXUL+lhfHeSarWlqIfneXw5mYqVpVQsaqYi286511eLcSbEUWRDV9ex4v3b6ZkST5J2QkMtIwgV8iRB+VeytUKQNp3uecczExKicnD3RNMDhtwOz30HOglIzOeLvMc9EPZskz290rz3rLYeMb+10K9w01xdRYej5em/X2UrSpGdHowTpuoOr2SweYBMovT8HlFWnZ1kFuZSUZR6kl9xpDBnQBmgzVw7HF5A8mtdouDUb9+Rn/zEH/c+vNjPj/EOyMIAt/401Vc/t1zA9kohUsKePrpQzSOW6m8aCk+UWRozERleTozUTbUZ8jIKyql/74OipcXMTdrZaBlmLCYMAiSU/cEuRQEqxuXv/7NNGNl3F8j13poEI0g4rA5GANyshNo2iFtET53yyV86Vcnn8sRMrjjoLdxgHu/+TBjvZMULcpDpVYyZ54joyiVObOdiJgw4lNj0I/Nkl2WhmXWSkRMOB63B59PRBW01Azx7hwxNgBtcgz6Wck5MmWyMz4i9aAzHRrA/Xsfdq8L1sMC9VJaN04iyFQsuXwFLXWD6Pf0s3xtEU69lcmn2qldnYkzTYfR5yKjNAXDgIGkOC0eZwTTkxaS0mOZmzbi8GeSOW2OwDjiU+c9qidDyOCOg70vHgo4SmKTo+nYL+0ldFFanFYH+hE92ggNJUvyad7ZzlfKv8tnfnQxz9+/BY1OzQ8fuI78qlNT3vFpIyc/idi4cGYMVpJSopk12HDYXWjjVdh88ysOq1/4VfTBnNMbSED2TlvpqhsAQHNogv3RUpW3fKmCqlYzh18ZRhOmpmZNOfWvNRARH0HNykKmB6Zw2Rzk12SjjdCy+/n91J5ZedKe51A93LtgNlgwjM0Gbusi55WndOHagNqv3eJgzK/pMTM+y85nDzI1bGCoc4xtp6A0/9NKcXk69z95A5k5CTQc7CciUkPFt7KY+6GbDF08pZHpVERlobxITlSGjsKSFJRhGjRaFSqNgrAwdaBra3hCeOB1ZcCsXzXMYXMy2TeBzydimjLjMtsYahthYlCPJkJH845WDr3WyM8ufHM07MQJzXDvQE/DAN9Z/TMcNif5NdnIFXKadrRRsrQAuVLBzJSJyrXljHSOkF4oddM0TZtJzU8OGKYgCEQEeSxFUXxPjQg/zejC1Qz1S6GX6Ukz3nQRi9uOxWOnOjqHBqPkRaz+ag5dP5P20jmlqRjbRzj4ehOZhSmoK5I5aDOxVJaEJ0pA1HuI/9wyxl9rJmNRPnKNirGeSaITIo/qzKMOOtb5dVlOhpDBvQPjfZOB1CDD2KwkDwC07+smITMBw4SJiX49xbU5gfjbwrNqaDjQz8TubirXljI9Nssjv38R/ZSJqCgtLz+wjQuuP50lZ1fz9F0vU7mmlLOvWfthfcSPPBNDev73l02UFybQ0jVNblYs8m4ZA9mg9MpQTPnAbxNyR9CFzCti9icfj/ROMp2jRkSgvWeCnNRY+sdm6AGWXLuWQ40jMOdi0eWLaXtiFwcHJ6hcU87cnIv67W1UrCkjsziVz56Cfgghg3sHSpYWULO+nPZ93WSVZRAWqWOke5yEjDgU6qBum675tC5PUGdP+5yL8QEpf3vbU/uxThoBeORXT/Pqg1uZHJhm82O70EVoWX3pkg/mQ33M+O3XHqLLr+e/cE0J9TvaYQ+c9pky+jf10jddz4ovl+Hzqhl9Y4KKkhRsNgc6r5eCygz62kYpqc1hRKelZ85GVLgGWbBduudzL712Nx5/mpdJb2K4R5pV2w/08YctP0MmO/kdWMjg3oH41Fh+/9qtXFf1fRq2tqBQyll0dg31O9rR6NwsWFeGfliPYWSG4sX5qDRKbDNW0nMScDjdRETrAt7LjPwkhp1urEYbCpUC59x8upJae3J69Z9kbEEFoI6ghiDuQQez49KKw7JzhiG95FFs39eDYHfg81cT5Fdm0LKvF7lCxmlfWMwevZ5xvYWlRRk4ph2Mj5sozk9GPTmDZ2CKjKJUZv+/vTOPj6o89/j3nZlM9n1fgZCFBJJA2IIIshQVlFu1LaJtvdWKFq2KUq+93ra3typXbq2taxdbFNparV20tlqoGyiCEEL2THayTvZMMpNJMsnMe/84k2RAlkBCEsL5fj75MDmcOXmfnDzzvud5n+f3NHcREh2E1WKjvamLuJRorN2945LMoDrcORBCDAdNBgfsdHdYcNgdWM19DPTZOFGkZEYERwWS72ws7xPgjc1NT1ujCQ8vPXMyYik5WEpAqB8L186j8lgFeg8tyYtn4+am5Y2fvEVsciSt9R0cejubzY/cQECo36TZPJX4nz1beeG7rzPQ14+1y0J4TBB6Dze0chC/IB8sph6CI/1pstix9Q0QEOxDV92Ik3a1DyWYO7B0WekfsAN27L12SsuUIJf/wCDVrylaJzq9Djd3Hcf25eHl50nGyjnkf1zK3Yse5YdvPEjigpljskd1uFFw3/Pf5Bfb97Bk/QJmpsVRY2jE08cDD293NBqBwyFPeqD28PGgt0dZmvRZbcPRS1NrN+b2bjqMigOHxQaTv1+p3frRpqepdC6dDrxxmFdrXpxIE6cs0fFhZK1N4YXtvwUgLjmC6oMGqgH/MH9Cgr04+tdDRCRGEZuVSml+HXFzY9HrBBqdBiT099qInBGCe88g7joNOgT+5gE0AhwSfFxq8Dy83bE4n/2s3b0Yq1uRUtLW0EGtoUF1uIlg9eblXLVp2fAaPiYxgsdu/ilH3j1OfMYMdHo3Cj4pJfWKZHRaQXNdG3MXzqDZ2EVEdCDCbqews4f4ebEkpMdiOFSqNLpweQ501ctwrelSUWanIfQeLmU1fTaMTr3JpvJGtCFBWC39nKhoIXV+LMXZSvRyXmYchU4l58yFM2ksbya3u4TU9Fh0kQGUv53L3Kvmgd2OdUAy28+D6uOVzJw3A41eR2t9ByHRgSfpm1woqsONEtcHZlvfSGpQZ5MJU5uybDEcrSQg2JsOYyfN1S2kZCWRtzcHgJu2XcfWp78BQPKSRH7/+J/I3pfLvBUpaDQaThTVkb4yBVNrN37Bvrz7mw9Y/801E2vkFOXGe69G7+HGR28cpra0gfTV82irbSUoKgjpkBQdNJC0JBG38ACamy246bVotCP3S7hUqMpBBz3diuM0V7XSk6M4pSG3jsjESJpqlCBXSmYihR8rkecFa+eSt7+E5x7cQ11ZE1uf+toF26I63AWQuiyJhevSKTlczjW3ryZ7Xz6VeTVEzQ5HDoxELO32kYilf4ify2vfYbXf2uJ6up2qVPkHSgiNDaa2pIHCTwz4BHqz4iY1egmwelMWzz7wCgCmVjPhkb7DDpG5cSn5Rc3QVs+iVXMoz6+jJK+OjOVJDPYPUFPRRGpWArbeAbQ+7iRkxFFrMJKwcBZtNS00OPffXPdHB10Kiu0D9uEgTF1Z45jsUB3uAgiODOR/33kUq7kXL19PbvvBl8nbX8L81XPp6+njLz/9B0uuyyQkOojn7/sNUbMj2LBl7fD7oxMjiYwPx1jVTOycKGoNRswdFvQebth6Xbpteruf7sdflhR+WoZPgBcWkxWtTkO/dSRiae0bqdjut9rocn6Ambt6qXKW+1T2t9A/MJLAHJc2k/wCI1qdhsX/tpjcY7UMDsL8VSl0N3XR0dJN4sJ43D312BwQNTucPksfa29ZPiY7VOXlSaLX0suj63dQeNCAf6gva25dyeZHbqCny8oL216mv6cfjVbw0Evfoqm6hc/+kcOt/3UTAaH+kz30CefxW57hwJ8/IyDMj4QFs6guqEXv4YZPgBceAT7YhA6TuR8fDx0B/u6UV3XQ2zvAguVJ5H1sYNA2SERcMM3G7uEKD78QX7o7lSaNSWkxlBXUAzBvbgQFThGi2elxVDkLVH0CvPj98SdOykI5E6ry8hTE08dzuNFFV6uZzLVpBEUEEBQRQNqVc3jl+68B8MTmn1LufM749K2j/K768oteFn6qBDxMLd1YOnqGt2nS18yjqFBxiPjUKCoOFgMQGhuMR1QE2YeriIyPICLUG0NuHbPmROKm1yIl6Ny01DkkMfGhuHvo0blp8fDQ4empG5bU83bJm/X29RyVs52L0SgvxwohPhRCFDuVlx84zTmrhBBdQohc59cPTnctFYV2Yye//M4eZqXFodFqmJEaQ9MJ5ZnObrdjaukePlfnUtozjWVizso1/74KjVZDTGIknk4tSiEE/mEjs72bfkTKbtABbc3K79BY18GJihb6em1UlTQCgrL8OoqPnWBWUjglx2vJPVRBUkoEA83tHHk3j4SMOJIXz6bgaDWpi+JJXRKP3l3HKzveOklw6EIYzQw3CGyXUuYIIXyBY0KIf0kpi08572Mp5fVjGs1lwnPf/jUH/3oEUCrHc94r4IX7d1FyuJySw2UYq5pJW5mCQFBVUEP6ylS62rvxCfDmnV+/zzW3r2L/65/iE+jDkvULMHdaaG/sZObc2Mk17CJx+4824e3nyUuP/I46Qz1ZGxey5cmvEpscxVu79vPJHw9Sk13KvKzZdLaa8Q/yJjIsFENxE0npMQzaBjC1mvHw0it7c05cP8DstsERSb2mLjqcy83i7CoCQnwxtZl5/bl9JGfOZNm1GRdsy2g0TYyA0fnaLIQoQRF+PdXhVEaJ637OkHYGQGNlE8YqRXW4ztCIybnHlH+gmOCoQGqK6ik6WMoHf/iYvA+V54zr717HB69+Qn+vjS07v8aXHpyen3nmjpFGHFqNhrg5SnXGig0ZvLBFabxoaukiOCqIukIlgSDj9mvILzYiBCy+PoNCg5GStm4yViZhM1mpLaonJT1GKbGy24nPmEFjuZG4eTG413VgPNFGSLgfdseIY441A+i8sjGdTToWAKcqLwMsczb8eFcIMfcM779LCJEthMhubW09/9FOEx7Zcx9XbVrGV//rS9z55FeZsySByPgwvHw9CYtTqp1j50ThG6Tk7rl76rH1jeReDmVCANQaGrCae7EP2sn96Ly1eac8fdZ+Xtv5JjnvFxKbHEVYXAganZYWZwceKeVwjqObu44+lyrtHudeqZTQO+DAYrUxMODAOmCnJLuaro4ejJXNlB2rpjS3lhNV7QQkxJCbZ6TNMkhmVjxtZfX0t7SzYkM6T7+9nZSFs8Zkz6iDJkIIH+DPwDYpZfcp/50DzHA2/NgAvAkknnoNVXlZISgikO+99tDw94+9/V02RWzBWNWCh7c7iZmzKDhQgn+oH4uumU9ZdgVevl7EJkcjNIJeSx/hM0LxD/VFo9XgF+yLrdfG4ms+J652yZP7QSG/efQPAPiH+mLu6KGl9jDH/pXH7rJnCYkK4qWCn/Dzh3aTv78Ib38vYtJmoJ8VjU2jJTjEh8AgH9x0Gry89dj6B/DTKUGTwQE7weF+dLVbkFIipaTDmXs5YLPT3tCOfdCOuaOHhJQoUhaNvU/daHsLuKE42++llH859f9dHVBK+Y4Q4kUhRIiUsu3Uc1U+j6WzZ/h5oq+nnwZn7mVXazddbV10t1vobrcQFhdC/gFlJZ+0aDZl2ZUAhM8MZVfJz07aXJ8uuC65vXw96XL2F7B29w6nw4VEB2Mx9WBq6cbU0k3GklTyy5QgVHJqFKXFymZ1VEwgvcXVHP20iOg5MdzwwBe59tYrKPysktee24fV3Iu7jyf1dZ3ExoegtfSgc6vDJ9AH+zhND6OJUgoUodcSKeXTZzgnwnkeQoglzutOa6nz8SQmKYr7X9xCXEo09z5zBzfevwGtTkt8+gy8/RVZAK2bFr3X6XMvtTrttHQ2gCtvXML3X3+QL957DTv3fY+tT99G+KwwMtam887LH+FwOCg5UoFOr/xutDotvsEj7aTc3Eail9IhMTmLiBsM9az7yhL07joyVyaj1UBlQR3Fh8qYEetP0YES8nNqmfuF+fTZYfeOt3ji9l+M2Z7RzHDLga8DBUKIXOexR4E4ACnlL1DkzbcKIQaBXmDzdJY6vxhs/NbVbPzW1cPf6z3cePl7yl7cgrVp1Fe2kPNBMRlr0pASqgpqyVidhsVkwcPPm3df+Yj107RyfOWXs1j55SwAbnrgOnL2Gzi6L5+CT8soPFjG4XeOK+fdsoI7H7+Z8Blh/OnVQxw5UEpNcQNp6bGYu6149/QQsDSB0qOVpCxJpDKvhnnLkwEQLrmy0iVI4nDI4bzZulLjmG0ZTZTyE07qT3Lac54Hnh/zaFSG6XZpj9tn7R/e7G2sahl+XXCwlICIQEyGJkqOVBIcEciSMYSsLxV6uq3Dry1dIwEkdy93ImcpqlpXXJnErh+/C0DR4Uq8mpqo6VLel5KVSPHhMh5e9xiPvHIvqzYt4793bWHXjr9hyDlBXUUTczJnIhx2Bqz9zEyJps3YybW3rRjz2NVMkynKdXevo+hQGbY+GxvuXIvZ9HeaqluISYjA1jeAucOCl58nAy5Jtl5+Y2s0canwn6/cw3PbdtPbbcXc1kV0QjjS7sBm6aW1vp2Q6CCKPi3F01NHb+8gHh66k3Ivh7oeORwSs0lxWHdPPQlpsfxt134APD31GJ2JykIjeNXwFIHjkFanOtwUJTY5mmcOPj5cFrTq5uU8uPIHHH8vD78QP25+eCObtm/E1NrNnsf/whXXLyQ163OB4WlJWEwwa768lB23/gyA0LgQ2uo7qS+u49i+fGLmxFCWU01wVCApmbMpPVhCSHwEgeF+XPuNVfgEevPMvb8mOCKAypwqrOZeNFoNdRVNaLQCh13iF+TN0AJS56YdF2cD1eGmNK41eB5e7tQ7cy+727pZsHouPgHe+AR48+jueydriJNGS91IANzTx2M4ymvttlLubL7R3tiJt18jls4eLJ09XH/XWtbeeiUA33x8M09+7VkMh8soO1ZFm1ViNlmJTQzHL9AbQ84JkpYkoENiaTXxs60vcfePv47nRHRAVZlcjFXNvL7zTZIWz6boYCmz0mKpKapjwZq0yR7ahGPutPDo+icwHKkgZVkSer2OWkMDaSvm0N7YSVBUIBqNlsJD5STMn4GH00Hc3N2InTPSiMP1GXnANojZpCw5G6tbqStXsn3KCxuICtRTW1JPdd4JZqfPYOPWqxkLqsNdAjx770tk780DYMHaeRx/v5CK40qvg3t+dvtp33P8gwL++OO3uPLGpay77Sr2vvwhYTNCWbohcyKHfhI57xfwp6ffZvXNy1l321UXdI2m6hYMRxSxppJDZWh1GuyDDjqbu5iVPpPCjxVJ+sx16eTuV16vueUK7nziFoIjA4avs/7OtTSUG6k1NPClhzay942jHPm4hKi7UukvNNHyXi3+gV5otCP7gH6hI9sNF4rqcJcArpJ6g7aRP4Chh//T8dhXfoK5s4fsvXns2/0RxYeUZoPbf72Va++YHOmG/75hJ309/Rx99zgRs8JIW5Fy3tcIjAhgVloc1QW1zL0imeaaVtoaOtBoNcOakgD9LoW83n6eJzkbKEv0bz/3zeHvl65fwOZ9v+W99jq0sYKN8XMx7PwEi1awcF06prZuXty2Gw8vD5ZuuPCMHtXhLgG+/8Z2fvXwHuLTZ5L5hTSeveclHA7JdVu+cNrzpZQnZWhYTCOh8z6XaN3FxD5o59O3j5FxVSp+QT6YWrqG+zDAyT0azoeQqCBeOPokFcdPkLI0EXOnhX/88l9ctekKNFoNP39oN3OXJ5O6LJlnvr0LhMBsHaSjuYug8LMHPpr7nZJ6UtJl6RmOANv6Bqg8fgKAV3f8ZUwOp1Z8X4KMpj9BfbmRX27fTWdLF33Wfgb6BkjJSuSOJ24lLDbkoo9xy4L/oLakgaDIANZuvoK3nn+XwPAAYpIj2fita8i6fuFF77FQUVDHfRueAsA3wIvX8p44q3ry+w3lfO/oP4n29sOvxUHzAx+hR8vcZUkc3ZuHw+5g3ddX8h+vnD1IdbaKb7V7ziXIaP5QYxIjiU6MpPRIBTWFdSRmzuK7e+6fEGezD9qpMyh7WB1GE4f+dpS+nn6MVc1kXbeIZRsXTUhDE3PXyAa53e44p1T52uhEtqYuI6etgY80Rtx/eSWDtkE+e+c4canR/PDP3+Hhl+8Z05hUh5vGeHiNiBAFRQROyM+sPtHKjqf+QcqtKxA6LXGbF+KxOgEA90AvHLETl/OZviyRbzxyPQlpMdz/5Oi6l3bZRsp7cIzIq3c0mlh+w+Ixf1CoS8ppzj9f/hCdm5bVtyxHq9We+w1j5J5tv6XYObslXzuLT5qVvcMVUZHkdXRg7u/njpWLeOjasadJXQx6BmzsOP4eNe+V47u3BU2vg1pDA/OWJ3PHE7eQmHnuEh1VROgy5trbV0/oz+t3iRT2ihHFZKteQ3efMlt8Vlk3oWM6H7zd9Dw6ZxU3ZL1Ms/NYTHIU2XtzOf5+ATv3fZ+MVaetrx4V6pJSZVz5v8e+wlVXJpM2N4bBCguzg4NIiQpFIwTh/j7odVrWpM6e7GGelV5nqtcQQyU99kH7SZX3F4I6w6mMK8HBPixcMJOnn9sLQCRB5Pso4XYvvRv/3H4H4QE+Z7vEpBMSHcxPD/yIvz77DtfdtQ5zZw8/3/YyS6/LZM7SseWrqg6nMu64uY3MDl5+HuBQHE4jxJR3tiFSlyl7eUOMl+S86nAq4876q9Px8fGg0Wji+vUZvJlbwr7CMm5fcdo4wmXFOaOUQohYYA8QDkjgV1LKZ045RwDPABsAK/ANKWXO2a6rRilVpitjjVKORgh2PYpKVyKwFPi5818VFRUXzhmllFIah2YrKaUZGBKCdeWLwB6pcBgIEEJEjvtoVVQuccZLCDYacN1cqefzTqkKwapc9oza4c4hBDsqpJS/klIuklIuCg0NvZBLqKhc0ozK4c4lBAs0AK6dJGKcx1RUVFwYFyFY4G/AbUIhC+hyNgFRUVFxYbyEYN9B2RKoQNkWOH3dv4rKZc54CcFK4PKTjlJROU/U5GUVlQlk0urhhBCtQM05TgsBpksHnuliy3SxAy6eLTOklKcNw0+aw40GIUT2mVJkLjWmiy3TxQ6YHFvUJaWKygSiOpyKygQy1R3uV5M9gHFkutgyXeyASbBlSj/DqahMN6b6DKeiMq1QHU5FZQKZMg4nhHhACFEohCgSQmxzHvuhEKJBCJHr/NowycMcFaezxXn8PiGEwXn8/yZxiKPiDPfkdZf7ccIl3W9KcwZb5gshDjttyRZCLLnoA5FSTvoXMA8oBLxQ0s3eAxKAHwLfmezxjZMtq52v3Z3nhU32WC/EjlPO+Qnwg8ke6xjuyT5gvfOcDcBHF3ssU2WGSwE+k1JapZSDwH7gpkke04VyJlu2Ak9KKfsBpJQtkzjG0XDWe+KsItkE/GGSxnc+nMkWCQxpr/sDjRd7IFPF4QqBFUKIYCGEF8qnzVB93beFEPlCiF1CiIkRyB8bZ7IlyXn8MyHEfiHE4kkd5bk52z0BWAE0SynLJ2V058eZbNkG/FgIUQc8BfznxR7IlHA4KWUJsBNliv8nkAvYUcSIZgPzASPKEmZKcxZbdEAQkAU8DPxRTEQLmQvkLHYMcQuXxux2Nlu2Ag9KKWOBB1HqPi8qU3IfTgixA6iXUr7ocmwm8Hcp5bxJG9gFMGQL8G/ATinlh87jlUCWlPKSEHdxvSdCCB1KRf9CKWX9JA/tvHG5J/8LBEgppfPDr0tKeVHb+0yJGQ5ACBHm/DcOZX396inKXzeiLA2mPKezBXgTJXCCECIJ0DPFs+7PYAfAFwDDpeRsZ7ClERhqNr4GuOjL46mkvPxnIUQwMADcK6U0CSGeE0LMR3m4PQHcPYnjOx9OZ8suYJcQohCwAf8up+Ly4mQ+Z4fz+GYukeWkC6e7J1uAZ5wzdh9w18UexJRcUqqoTFemzJJSReVyQHU4FZUJRHU4FZUJRHU4FZUJRHU4FZUJRHU4FZUJRHU4FZUJ5P8ByfwwRysc9h4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "carbon_gdf_no_area = get_h3_vector_statistics(\n", + " '../../datasets/raw/h3_raster_QA_calculations/preprocessed/carbon_loss_T_downsample_sum_v2.tif',\n", + " f\"{FILE_DIR}/satelligence data/AcehMills_indicators_50kmbuffer.shp\",\n", + " column='carb_estimated_sum',\n", + " resolution=6)\n", + "carbon_gdf_no_area.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/carbon_loss_T_downsample_sum_no_corrected_h3.csv\")\n", + "carbon_gdf_no_area.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "6f5e292d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FIDgeometrysum
00POLYGON ((98.47767 2.24508, 98.47550 2.20109, ...54810.309030
11POLYGON ((98.44488 2.31416, 98.44271 2.27017, ...72152.463108
22POLYGON ((98.40582 2.39111, 98.40366 2.34712, ...97365.938479
33POLYGON ((98.36445 2.43594, 98.36228 2.39195, ...125210.720521
44POLYGON ((98.51418 2.45678, 98.51201 2.41279, ...95673.065457
\n", + "
" + ], + "text/plain": [ + " FID geometry sum\n", + "0 0 POLYGON ((98.47767 2.24508, 98.47550 2.20109, ... 54810.309030\n", + "1 1 POLYGON ((98.44488 2.31416, 98.44271 2.27017, ... 72152.463108\n", + "2 2 POLYGON ((98.40582 2.39111, 98.40366 2.34712, ... 97365.938479\n", + "3 3 POLYGON ((98.36445 2.43594, 98.36228 2.39195, ... 125210.720521\n", + "4 4 POLYGON ((98.51418 2.45678, 98.51201 2.41279, ... 95673.065457" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANwAAAD4CAYAAACHZ4ihAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACSSUlEQVR4nOydd5gb1dWH31HX9t577+t17zbYgDG9JYQkQAghhEB6I5CefEkglABJICGQEEoIvRuMe7d319t770Va9VXXfH+MrJXBgI1N1/s8fjySRtKVVmfuvaf8jiCKIiFChPhwkH3UAwgR4rNEyOBChPgQCRlciBAfIiGDCxHiQyRkcCFCfIgoPqo3TkhIEHNycj6qtw8R4gOjrq5OJ4pi4rEe+8gMLicnh9ra2o/q7UOE+MAQBGHwnR4LLSlDhPgQCRlciBAfIiGDCxHiQ+S4DE4QhBhBEJ4WBKFDEIR2QRCWveVxQRCEewRB6BEEoUkQhPkfzHBDhPhkc7xOkz8Dm0RRvFQQBBUQ9pbHzwYK/f+WAH/z/x8iRIgg3nOGEwQhGlgN/BNAFEWXKIrGt5x2AfCIKLEfiBEEIfVUDzZEiE86x7OkzAWmgYcFQTgsCMKDgiCEv+WcdGA46PaI/76jEAThOkEQagVBqJ2enn7fgw4R4pPK8RicApgP/E0UxRrABvzk/byZKIp/F0VxoSiKCxMTjxkXDBHiU83xGNwIMCKK4gH/7aeRDDCYUSAz6HaG/76PhAOv1HHHtX9jaig0i4b4ePGeBieK4gQwLAhCsf+udUDbW057EbjS761cCphEURw/tUM9Ppp2tnHreX9g00Nb+fq8H34UQwgR4h05Xi/lTcBjfg9lH/AVQRCuBxBF8X7gVWAj0APMAl/5AMZ6XJimzYFjQSZ8VMMIEeKYHJfBiaLYACx8y933Bz0uAt88dcM6cbxeLw/d/DivPriFqjVlOG1OLr/5oo9ySCFCvI2PLHn5VGOaNvO/P70IQNOONv7ZdjdZJW9zlIYI8ZHyqUrtioyVohUKlQJthPojHk2IEG/nU2NwcSmx/KPlLtZevoLIuAh+uO7XdBzs/qiHFSLEUXxqDA4gPjUWt8OFYcLIaPc4Wx/f/VEPKUSIo/hUGRxAWn5K4DijKO0jHEmIEG/nU+M0OcJ1t19J5eoyEjPjKZiX+1EPJ0SIo/hYz3B2m4OXH9iMfmwGgKkhHVajLfC41+s75vOWnbcwZGwhPpZ8rGe4q4u/jWHSxEO3/pfTLl/Oq//YQnRiFFf/+vO88e/tGKfM/OChb1C2tOijHmqIEMfFx3aGs9scGCZNAFiNNhq2teJxe9GPGXjjkR007+pguHOMJ/7vuY94pCFCHD8fW4NTa1V86WeXoFQrKV1aSFxKDIIgEB4dRlp+cuC8+PS4j3CUIUKcGB/bJaVMJuPKn1+GzTjLs3e/DMCazy3nuw98nfDoMBadNQ+f18eazy17j1cKEeLjw8fW4I5g1s8lI2vD1YRHS+oOay4LGVqITx4fW4ObmTDwn189RcfBHrLLM4mKj+Ccr59xzHNNOjNyhZyImLcWoocI8fHiY7uH2/tCLS8/sJmRzjG8Hi93bv81JYsL33be8/e+xpdyb+Daiu/StPOtZXrHj9fjPZnhhghxXHxsDU4mnxtadELkO56376VDOGxO9GMG6jc3nfD7dBzs5lvLf8rXKr9H0842nrvnVW497/cMdYyiG9Xz2O+eQTeqB6C7YQCrafbEP0yIEH4+tkvKjdeuIzxKy0DrMBd9e+Mxzzm06TBKlRIApVqBSqs84ffZ8tgu2vdLSc7/+NF/6DjYA0BXbS9Wgw23y8PTd7xEzYYF7H2tkYS0WH75xE0UVGW9z08W4rPMcRmcIAgDgAXwAh5RFBe+5fG1wAtAv/+uZ0VR/PXJDm7N55az5h0ee/K2F3jwJ48CUL22jMG2ER6+9b8MtA7z08e+c1yvb9ZbsAXNWOrwuZIelVaFOygO2HqoFwDdmIGR7omQwYV4X5zIDHeaKIq6d3l8lyiK557sgI6X6eG5objsboxTkjfzeJeVjTtaufXc3+OwOalYVYLH5aFxWysVq0rxeXzYbA6q1pbT1zhAbmU2glKBSWclJTuB3PKMD+Qzhfj087FdUr4XF9y4gc7aXlwOFxuvW4/VaGO4c4y86hx0o3oS0uPf9flDbSM4bE4AZsYMjPVOAtCyq53olDgsM1aGgeIFOTT7nTHnf3MDN9x1NXKF/AP9bCE+vRyv00QE3hAEoU4QhOve4ZxlgiA0CoLwmiAI5adofO9IZnE6f97zWx44/Cc2fOV07j98O6VLCzm8pZmvVX6f9gPvXnxasbKEzOI0FGolaWVZxKbGAhCdGAWiGDjPZXcFjqPjI0PGFuKkOF6DWymK4nykHgLfFARh9VserweyRVGsBu4Fnj/Wi5xq5WWZbG74Ko2K0e4JQNpz6UZn3vW5uZXZ3H/4dpLLc2nY348vLIJF5y3E4fCgUCuoWlNK0YJc7LMucioyKV9RTMehHka6xk563CE+uxyXwYmiOOr/fwp4Dlj8lsfNoiha/cevAkpBEBKO8TofqPLyRd/aiEIpJ6c8k7GeCURRxOv10V3ff8zz5UoFUyMGAGxmOzMTFtxOD4YJE6IPuur6mRjQodSqad3TyaHXDnPjkptP+bhDfHZ4zz2cv4+ATBRFi//4TODXbzknBZgURVEUBGExkiHrP4gBvxtf+tmlqMPV/P2Hj/LgzY/TcbCH/rZRxvsmWXXJEm559CYEYU6rUiYT+ML3zuZ/97zOonUVJCaGM9A0gFKjRKWZ+2o0YZrAsVqr+lA/U4hPF8fjNEkGnvP/UBXA46IobnqLEOylwDcEQfAAduByv1blh47VMFegOjk4zXif5AzZ/1LdUcYGIAgCX/7ReVz8jfWER2oByK/K4oEfPMKhVw9TsbIEeUw0XS2jzDtvKfYZE0JEBI/f/ToXX7eWrU8fBGDjlas+pE8X4pPOexqcKIp9QPUx7g8Wgr0PuO/UDu3EcMw6ef6+TRzc1EB2eQZ2i4PI2AhSchKZGJimoCYX/ZiB+LTYtz33iLGBtC80660AjPdNYsIIQEv9EIlpMUy3jNLTMkrD9laa93QBMDWs5+pbLvzAP2OITz4f29SuE6VpRxv/vPlxeur7mRycZnpET/2WZnTDOsqWFdJ+oJvrFvyYlj2d7/ga7Qe62f9yHSm5ScjkMjJLMohJiAAgLFKL2zMn6eAM8l66XZ4P7oOF+FTxqTE4/bghcBwWqUX0SStal8PN1JAUJLcabIz1Thzz+RMDU3xr+a3seGofhgkjmaXpNO5owzk2xYJ15aBVIwvTULG0gOLiJEzDU2QWplA0L4uRtmFGeydw2l1senh7oFI9RIi38okNfB/B5XDxy4tv59CmBkqXFqFQK9GPG6lak8ZI9zhZFdkIMhmGKTNJeSkYrG5EUUQQBAZ7JskukKrHTdOWwGs67S4mBuaM1Gy0M2t1Mmt1kpYSSes2KZslp0JGR73UJKhhazNhkVpmJoxExUdw945fkV6QQogQwXziDW5mwsihTQ0AtO/vIiErCf2YgfG+KSrWVtC8X8qBnHdGDU2tk/zr7s10NI0yPWGkt22M1RuryF5byBMv1VJ2+XKMtX3Ep8Uik8tp3dtFzvx8ImKkoleFQo5aPZcgrQnKvRQEaSwAZr0Vu9Xx4XwBIT5RfKINzm5zsO2J3aTmJTPeN0l8ehwK5dxH8gTJ6HlFkSOO0/FhPYPdkvdy56tN2Mcmcft8zABVSdG0+J0hCy5aRkPDKAPTvVQtzmN0QEfdoUEqL1oJej099f1ULC/CappFHaZGpVHSfqCHZectIDUv6cP7IkJ8YvhEG9w3F/6Y4c4xlGoFi89ZQMP2NtRaLwvWV2KYMjPVO07JwlzyK7NY+7ll/PNPm5gYmSEuSoUjI5bJEQPZ+UmMKuXMOH3IBPDMzjlDPEGBDafTjd6fID00qMdU3w5IzpqMknQGWkcA+MYdV3LhN896z7HXvtHIk7e9wOKNNZx3/Rm88a8dhEVpWf+l1ejHDYz3TlKxsuQUflshPg58og1uclBKD3M7PRinLXjcXjxuOx63h/6WIQDScpO46c4vA3DHkzdwUfJ11DV2o9KqqFxexOFX9xMRE86K8xYyvq8Ts81J+bJC5q+vYvF5C/nLb17CYrSh9rlJSothasxIdmEyQ+OTGMdnUGpVuN1z1eIxiVHHNfY/XnUfJp2Fxh1t7Huplpbdkve07s0mdj59ALfTzed/eD5f/b8rTuVXFuIj5hNtcNffeTX/vPkxFm+sIacym4HWYVRa1VF7q6SsuQwzh9WB018h4LK7mO6R2pBbjTY8A1NM9EgezPIVxXz5Z5cA8Ku/fonPp1/PiCiiDtdQuHEJrW3jROZlseSMefQMGBEVMsoK0pA5nfzvjpfJKEyloCbnHcdtnrHiCQol2C3OwPH0sB630w1Ah78GL8Snh0+0wZ13/Zmc/dXTA/u2nIosbr/mbxzc1EjBvBwu+/65rL5kSeD8sCgt37zrSh793XNklaQhIDLeN0VMUhSa8Ln0rfSC1MCxxWAL7P2cNgcTE5LL32K2Y/UIGP2ZLanlqTQ9tQuAP117P/fX/eGYY37unlf51y/+R0RsOHlV2bjdHmbNdtILkomMi0QUIS41BrvFwYoLFr3jZz/iaQ3xyeITbXDAUU4S0etj1mwHYHJIx9q3SOkJgsD515/BYPsoL/99CwBVa8pp2dnKoU2HKV9RwjW/+wJVq8sA2PTwNp74v2eoXFXCeP8UqXlJyCPltJgF8opSKCpPp6NZ2rupZXMbvqj4iHcc785nDmC3OrBbHaTmJtFxQJJ0KJyfG5B3iE6M4j+99xEV9/bX6TjUy4O3/he308O3//JVWnunaW0Z4WtfPw2Z18uOJ/dyxlVrCI8KO+HvMsQHzyfe4IIprMmldGkhXbW9FFRnMdQxSlZJOsZpM163N5DWZQnKt/R5vXj8ezCb0RYwNoC///ARLDNWxnonKVlSSPMOqRD1ou+cyw13XgVAaXkaj/z8SeperKViTTmCz0NvfS8P/OARzrhyNc/c/QrZpRlc+v3zqNvcFFjuKlQKlJq5RGhV0DJYqVIc09gAXvnnVpr9+717fvMszZPSZ+loH0X37C6cdhdP3fEi/2i+k7CglLUQHw8+VQaXlJXAHVt+zk1Lbqbu9Qa+Mf+HnH/jRl755zaUKgXX/P4KDtYP0zVoomhxATLRh8vuIqs0Hd3oDKl5yYx0jQX6yqm1Ko6Ew4P3XNFBxhAdrmK8bwqAroZBnHop4+XpO1/i0OsNDLYOA9C4vZWDrx0GYP6Z1Qy0jVK/pYXK0yuYuiCN1xUWFp+3Ht++cWbPyeShxjquLJ/H9if3oVDKWfu5ZViNNhyzc/s9RZgGkAxOYC7dbGpIh1zxqUki+lTxqTI4ALlcFtA7cTnctO3vwTnrwjnrYtvTB2gZlkxImxzO8Jt1gCTJFxUfyb6Xaql/s4m7d/+WgppcHmj8Ew98/xE6D/UwM2GgdGkhZUuL2Pi1dYH3S85OIDU3ifH+KXLLMxhr92KeNiPIBNyOuRDDrMUeOA7WYBnWz3AQDXhgu9pI8sYEJm06avds49Dj++m9aw8AdZub2P1SHbMWB9XrKrAnx9MyqKeqOhOX04Pb7aX8spX0vHKQ4oUF1L3RxPJ32QOG+Gj4VF4Gr/zV59FGaChamE9YpAaFUo5Kq0IbGRZwNIQH1bUJgoBxSnKGOO2uwEwRFRdJXEoMg20jzIwbiYgJ5/o7ryY2OSbw3PT8ZP6251fMX1dO9+EBZGFhLNq4gMT0eFxODyWLC6laUyY5RgpTSS9KRalWkJAeiyAIVK0sJVYjLf3CFEpc3rkQg33aGjgeH5hm1iJlrxgsTtp6pnC7vTQ1DtPTM0lv7xTNU7NkLSuhaWcbv7joNl79x5vH/H5EUWTTw9u4adktvPnYLkw6C4/8+mnq3mwGYLB9lN7GwcD55hnrMV8nxInzqZvhQPJeulxeHvjBf4AhSpYUMtY7wYFn9lKwvISwSA3tu1opW1VGmFbJZT+8gKH2Ef798ydZefEScoJUueJS58p5UnKOnT2iCVcz6s9csczYsM86mfLPsinZiTT5934pOUlMDEwx2jWONkLDXdt/QemSQq6btfFidzuXFJdjdDj44/6dnJ6dR9kCNXcdmiYhI471X1rFWP80Zr2FeauKmawfwWZzEh+jxRwUVrAH7U+DKxqCMeks3HndAwDcdvVfyChOZ7RnAkEQOP2KFWx9Yh9yhYzLf3Qe+144xGjPBNffcSVnX3P6+/hrhAjmU2lwABb9XDKyx+XGrJNuD9T24EWa5TrqBvjztp9Tsiif+esqOe/6M98mEnTRtzaSVZqOy+Fm6bkL3vY+NvMsLz64jZTcRKZHZ0hMj0UbOechVAd5C4N1L+1WB/nzcgBICgvn2mpJ6jNWo+X+DRcEzvtH420B7ZalG+fjtDtJSIvjc9Nm/nLLUxx+rYG0tFgiq3NwahW4dOEkGS0kFmTQ1W/EOGNFqVKw5/VmVp9djSZMxVjvBDK5DJ8/9c1ikGYwURQZ7Z5EFEU8bi8N21rpaRgA4IW/vB4yuFPAp9bgzrv+DHobBxnrm0QboSWnPIPB9lFKlhSgnzQzMTCNNkKNLMi58E6KXAvOeFv9bYC//PgJtj51AICatWU07OpgctxE9dkLsdjcNDaMUXXOErBaGOkao2p1KbrRGS761jmo1O+tFB0slBQZG05krNSwJDExivG2EVwON+N9U0SXpdE2IalaVK9fQOfWTjr7jHS3jmLUW7FZHPz3b9soz4tm8yM7SC9MJSYpCqtxFqVaiSZcTVJWIjK5jPDoMJRqBdpIDUq1ErfTTWJmPD6f76jxhDhxjuvbEwRhQBCEZkEQGgRBqD3G44IgCPcIgtAjCEKTIAjzT/1QT4z41FhufeLbDHeM0byrncH2UYoWF9J6oBf9uIHFG6qRy+XcfP7t7H2p7n2/T3CIwePxBRT2rBYHQ/5lZlv9IK17OpkZN9K0s53v/v16Lrzp7JP6fEBA/VkdpiIyJTpwvyrIKEQRbP693/iQnt3PH8Ln9THcMYrb6WGgdYTu+n6Ss5No2dNF084OUnITsRpnOfR6M4nZiRQtyOPAK/X8YN2vMUy9c63fSPc4rz60LdAYpa9p8B3P/axyqpSXzwYK/f+WAH/z//+RYjXOGYPoEwM/FrfTg804G2jMse/Vwyw/7+3LxePhxtu/yJ+/+x+cNjv2GSMZ+cmYjDbiMxOx2b3oxgxkFiSjd1kx660IgkBE7Klpq/XDv36FtRcvonBeNlFxETz9Uh1ajZJ1K0t44i9bqN/Wgtxup7Qkia5ePYVL83GOTdHzZiMRSdHIo+fGEdw8RSaTBcIg+jEjY1bpe2rZ3cH0kI7YpGjeSv3WFm654HZ8PpEtT+zBZbPTeaiXRRvmcet/v4M2KJPns8ypWlJeADziFw7aLwhCjCAIqaIojp+i139fHJnlHvv980SmxiGIIpYZG6l5iajDVCiUckRR0jR5v6lSyZnxXP6tM/n+2l8AoFAr0eRmUb+3B02YiqoFWTRsqicyLoIFZ1YzOaDjt5ffzQ8fuoHy5cUn/RkXra8IHH/ugrmWD1/90UZe/NNzAXXp4ouX0tQvxQuX3HQujR0TtLq81Hx5LY7Babq6dVSuKWPpaeOceVkrr/03ncfucZDzucXYusYZ3tJKXFEK9iA1M8esE02YtC+dGJzG56+ynx7RM9Ej/ekPbWrAYXWEDM7P8RrcEeVlEXhAFMW/v+XxdGA46PaI/76jDM6v2nwdQFbWh9MMY/UlSzi4rZ0tfoWtigW5NLzRAEDRogIMEwaeueNF+hr6+N3LN6NUnfg16EjhKYA2Qovd7x10zLqY7JP0Mc16SfNy1C/x8MJfXz8lBvdOeD3eo4L1VkdQsrRPwOGQEqStgpy+VunPNDk9ycVXbQLgsmuaecX+I/YPmZGlRLDsFxexv2+cb979PF/fuJimxw8x0DHO1395EU6Tldf+tYPCeTlMDulIzUlAIRcY6RwjrzKLqPh3bjf2WeN4f10rRVEcFQQhCdgsCEKHKIo7T/TN/Ib6d4CFCxd+KDJ6oihiMc51yDmidQLgmnUyPSw5Gg5vaeFEJziv18ttV93H9if3Ur6iGK/Hh2PWQXR2GgODBnJLUhHcLia6x4hJjkEdNbeEiwmK5X0QyBVy7tnxS/5+8+M4HW7cUzPER0eRkB6LQiEQEanB5fQQrZShVCtwOz2kZYcjIkdA2oPpzZJR+kQRs+jD6/Xh9cK+2l76D/YB8PidrzLa2Bd436hoDYffbEahlPOtv3yVc762/oRXDi17O0nLSyYuJQavx4vb5QnMpJ90jsvggpWXBUE4orwcbHCjQGbQ7Qz/fR8pnYd6+NM1f2VqWE/ZshJIjmEEH0UrijFPGAmfn0u2QsZg4yClK0uZGNST4dc4OR7MeitbH98NQOueTlJyk5jon4LmYaovWE6L/0dZc9EKmre1UL+zk6r183B44KX/HsItV1Jck8OzD2xl5cZqrvju2SiUp653QX51NjnlmTz/1zcAKFlZQkunNMOmpcbg6uqh/kAnKTmJpOQk0rq3i3t/vYGV33Fz/2Qx0Uu1iPtlpMdHo0aGVq1EIZcRKVcgV8rxur1ExYYxJgjSklwmBMIvHreXnLLMEza23115HzufOUhUfASf+945vPT3LQiCwI8e/Drly4pO2XfzUfGeXkpBEMIFQYg8coykvNzyltNeBK70eyuXAqaPev8GUP9mMwOtw8yaZzFPGdhvm2XY5qAxJZrBedkcsjnoKkim6vyldHdN880zfs/BN+c+mkln5s/f+DtXFd1E3eZGGne08ocv30NXXS9ej5fdzx4gKUvq0hP5lmRjT9BM6vH4Ass7k8FGb5t0Ldr02F7u/9lTDHdP8MSfX+fwro5T+vk9bs9RjiNFUBjC5/Nh8pcaTQxM09c0hNvpYdMTFu5sqWL3tIF69RBJp2lobxih4fAQedHRaAft1O3sI2lZISXFSXTuaiO/Opvy5UVkFqdStqKEuJQYKteUs/e1RlxON9MTJra+1IDPJ8X9JobeWZS746BUA2jWW9n7Uj2TgzomBqZ58/E9p/S7+ag4VcrLrwIbgR5gFvjKBzPcEyOtIAWlSoHb5SEqMQoBERGBMK0Km19KwSuCcVrKa3Q53EwOz/0YGra28PIDmwH445X3BuTvtj+5l5yKTHobBtCEq1ly/mJa9vfi8ArUnFGN3WRjqrmX/NIclEo5rhkD6flJzEyaScyIw+4W0U+YSMqIY9biwGmXlm4x79Ja+UTprO3lV5fcjn7MQNXpVYgyOYPtY1SfXonR4SbK4SRpUR4dtX0UL8zD4/JgnrGiTtAihMmlvyKgcM3NuIJXxGGTvrexCROj+6WqhZ7GQbJL0hjqkK6xVatKad7fQ2vdIAO90zS3TeLxeHnz+Tp8NgeNe7tZubGahaeV8vT9W6lZVcwlX1vLa3/fTGp2AroxA8nZCWiDEgUyi+dqFD/JnCrlZRH45qkd2smz5rJlpBem8Kdr/krTG42UL8xHtb6SUYONnPR4THoLGQ4f8iQZ+jEDCWmxTI8Z8Hq8yBVyFCoFgn+5FBETHjA4r8fLpN/j57A5MRtnccw6ccw68SEE6trCwlR0tkn1cgqVgsj0ZOq3tKKN0FKzqpjGvd1ExYax+rwaLrz2NApPsKuqz+fD5/UdVRN4hM6DPYH96dTQFJOTkgW1PbWP8CgtY/66wfKlhbTuk1p7VfxgMTsrjczax1kWnwtdIqO7DVSVpONwuVHIZRRUpjHYMUlZeTpmt5Ohul6iEyKRBSUN+Jib3Z0uDx5/XG50QMdUt2SUu19tpOVAL0a9lZHeKTq3N9K2W9KJmb9hPo07Oxjvm2LB+kqu+dVlFPizcj7pfGozTY6QlJVArz89qa+2l7iSdCbtLiZ1FpYo1bRtk/7IFUsLaNnfw1P3baa7cYjf/+9brLhwMb/fdAtt+7q44MYN1G5q4Ll7X+P8b5yFxWDloZ8+TnZlNhFxkcjkMhRK+VFpXdqIOVe4XCEPJAHbrXZ040Z8Xh9GnZWS+TmULsw9oc914JV6/vb9R1BplNz4l6/SsL+fntYRbvjVxTjtbrq6pohKiMKsM5OcnYTBPIrL7kYVpsIeVOJjM81VMRhTweyRguTWWSfjrxkB6OybwOmaS6ouyY2nsWEImUzJ4s8tp/HFQ4z2TjD/9HKsxlmG2kYoWZiLALgMZnILk5gcN5GWFIHcGc/4kJ6kjDi8QYnabuecF9Xr9gaq7D0uz6fG2OAzYHBKlYLyFcW07ukkOTsRRXD6VpD4TzAm/Vx2/IIzqgOpXadfsYrTr5hr3OFVqHjo9y/BiJWy1WWM9uuo3d9P6VmLUMxa6TjYQ/mKEpxKBWSlEiYX6HmjgfzFRajUSkZ6p4iI1uINygyxzFjfth88Fq//ezuj/tni3798mrYeqR/eL0b/ybA/HzI6M428nBSa9vaQnJVA+tpc+gZmiI4NQ+mwo5YLeNweYhKjiE2KQj3oITxehdPnIckShk5hwe3xEh+hZXzGgujPQTUbJSP1+USsVicuf4jB5XDT5W8NFjZuYGJAEnmSyQRiYjTU1ragUCup/uJaDo0YCFMrmVeZxYzFidFsp3idFnVMFA6VmvQKB7YpI5EpsUyOzJCcEUfP4X6SshPfsTj3k8Cn3uC0EVru3PFr7vvWw7z68A4Uzx5i5YWLmGkbpX9IR/niQgSNGoPDQ2FNDqYpExd/fd17vzBgCZodPB4R04zkoBjuncTaI6mGte7pIOPzpzHcJ/345p2ziJa90pJz3hmVtLeM8eA9b9LTNYlrdIr9rzaw8Zq1fP33XwjEBGctdl78yyYiYiM49+tnMN43iTeoz0Fw5bhSKQ/MDlaLHaM/v3JySIcmJxXTjA3TjI2KijSaXpOy9IoX5tFZ2wcN/ZQuSsOdlEBPVyfZBYkkRmnofr2FyqJUPOVpKD0CCqcX96yLjLRYNIiowlTItZByjoq2QwI+t0hUXETA4ERRZGZMuiB4nG50Fjs+EawONy61koFGadkdW5JKi38fGBYegUfpZO/2Lho2/onqimR2PbmXuNRYfvPCjyhakHd8P4CPGZ96gwN/R5wZG6JPxO304BmZYahZMgjDpJERz9ys9+z2W47qpvNunHvVSrqbhtBNGNGEqcjIT2K0b4q8/ETGHDZ0I3q0ERp8QZ27PO65pZNHlPQuATqbRxjf2wrAyw9u48pbLkLpv5L/6Zq/sOsZKUG6YVszu545gM/rY97pFZimLRzeVE/F6ZXIYqKZHjNQuSSfkZ4JMlKj8GTH0nagh6ziNCL8TgiZTEAWpMFyVChiwonRKDmRxnumcdqtOGxO+g4PUBIfRXu/ZDiV87NprpdyJcu+UEXEtQ1M+mo5bWsWUz+NoW1fD0UL8xBEEZd1Fm24msG2EbLLMlC43cgFgfAIDeqwOc9pWNjchUOrVWLwr0BmLQ7a/fvMmXEDQ+2jIYP7uLP8/IXUvdmMUq2kfHkRnYd657yX4zZEpNnheI0NICk9jlseuIbLyn/CSM8UcoWMnNRwml6vQxuhYfHGGtr2dmHd1Uj1WQvxjemZ2ddOTk4qysgwmHWSlhmHbspMalIEjpRoDBMmYpOiICh8ZdLNlRoZJk2BshqrcZb+FinBp2NPBz5/V9nJEQOZidpAHd6CdRXUbWlB6Bpn/oWLGRsz09Y2Rc15i6moSuesL6/i8T++yOHtbcSnRBMXFk7nkJHCzGh8Rqkvg1KtOCqmFhxdk8e7sfukZbhONkrzLr/kRG0fWXkJDPg1QqvWlAXGVLWhhjanm31NQ5QtzEJu99B8eJDy6kxEtwdrzxjplWkMDM6QnRaJ6HSiG5JqA2cts3xS+cwY3OmXL6dqVQkRseFowtSsvWwp997yNJ2Nw+SXpxMWH8HMkJ7fXf8wX/nxOWx7Yg9mvYWrf/059GMGGre3seEra5Er5PQ2DARq2cxB1QJejw/dsLSMslsdWAw2KQ5mtCEOjNO2T1pKpsllDBokx4VCrSAmXEH98wcIj9KyYF0FTbs7uGH5L7jq1ot485FtTA/ryKnIIjwlFldCNMk5ScxaHcQVZBA9PINJZya9KJVppzygeWK3BhWl+vsciKKIw2Jnwt9mWWd08KWbLwTg2/d+hc9lXM9YpxQjrF5bRuOmWmQygYUba+g60EX3awep3rAAX2QEw11jlFVmYBG92AgncaoSR1IbqfoipvNsjPVNER6lOSp750gcDsDn8eH0+hOkTbMYuqW8+NbGYWItJoxjBoaBkuoMGl+vB2DBmdU0bG3h3m8+yFDbCDfe+9UT/h2IosjMhJH4oMLiD5PPjMEBJKTHBY4zitLoaJCuvH0tI2QVJjPWP81Y/zTGsRkaN0klO/0twzTvap/Lgre76KrrY8EZlSw4s5qn73yZkvJM7B5pienQGXn41ifIKEojLFL6wQly+VEKWtpIDfgNzufxofMHgm1mO/pxI26nB92Ygdcf2UHjZqlTT9HyYppEBUzbiK7MhxET9U3jRGSnM29VOS1tUySmRlOSFoNuUloSZseFExUdjtvrIy4lBpVGybIzqhga3Y3V7KCkKjg5CGxBKXAWv0fV5xNxmGYDGizWoSn6bNIMZrUMoSuOgk4LQpeWBa4SXnuuDYVKwaL1lTTvbGdq2EXNuiocNgejPZMULshDJpchOt3kpEQxYXOTHR2OMsXF1ISZuIQIMM+VALmCdGHcDneg9GewfeSE//6DbcP87gt3M9I5xld++wUu+8H5J/waJ8tnyuCOQhQpW5hLW20/sUlRRyUti96gfZbLE8iC143qmeiXZrC6zc30HB7ApLMwM27k1se/xepLlwIgV8r567cfhiYoX17M9LiZQ280U7wwD5VWRXd9P2Xz87CLAmqtGoVcoH1POwWVWWjC1QiCgCZcjUo1t7dSR4WBtN1DpVZi9gfLrVYXY9OS82Z63ERCQgQj/jGWz8+ixb+Eyy1L597NNyOXy1h78UKmxoyU1WQf9ZXc9sYt/O37/0ETpsbj8RIZH0FMQhQqrVSg6rK7iMmIR95rwOvxEZUQwZF6LVEEXash8J3ZjLOBmdXt8tDu199UaVSBfn1yhZykRWU0bW5FHaZi0bICGnZ2Eh4VxbyKTCxTRix6C3nVOWgjNLhdblJyk5g12zn9CytP+E/etq+Lfv/e/dUH3wwZ3IeJSqPk9qdv4oFfPcerj+7FYrQxf1URhsFJeg92UbFCyuS3mWYprMlhcnSG9OoC1FHhDDYOkD4/D6/THdhfhUXPxd8sQWEFp8ONbkz6IfY2DgY0MFt2tZOzqJCOdskrV72qlAa/iM+81SV07G7j0Ct1VKwqxZsST7PRTlVlJi6XB7fLQ+byAvoahlh/4XxcTjevP1NHdGLk2/QtjxAepUXur3lLSI4mIfntNW3ly4uZv66C/972IgAli/LpONjNcMcIaQUpkJZMfaeezLxE4hMj6WkfZ15GErYEDVqtEnl6PHadhYwcf/mTP3EguyyD1j2dUqgiPjJgcD6vLzAbO2ddzIwa8Lq9mA02fNlx9DZKxpFfkU7rHintLSI2nMeH7j/hcp+pIR3d9f1oIzXYLQ5S8pJxuzzvqzrkZPjMGhxI3kub2REwAqfNSc9ByRs2PTrDpN+tDZBQU0xD7SByhYyar53Jgd5J1GoFCyoyGDvQze+/eA83/PlqxrrH2fnMPvLn5TBrniUiJoz0gmRpOVWTw/TIDLoxAyqN8ijXfnDg1+VwYzNJe8OpIR3jKsmYm5qHiY0Jw+Bf+t1622Wcfno5AGllafzzP7uZGtax8IwyzC43ByZNVF+yCJ/NyZRKwTMv1rF+eSHP37eJnPJM1ly2jMGOMaxGG+VLCwEwBy0rg4tSnXYXhinpQjLcN43N4sBqtmM9MEj2eaU0do0BsODKlXTfLZX4lK8o5tbHv018WhxrP7eMwfZRNnzlNPa+WMuzf34F0edDkxRP74CB3PxEVCoZMpmAJkyNSjX33sG9IrQRmhM2ttGeCb5W9X08fjHgjJJM6jY3c9OyW/jNCz8iMSP+hF7vZPjMGpzP52PX0/sxj02jCVMhkwlo1VK2iMftJSYxiqlBXaAw9YhzxOvxYfDnEzqdHpw2GOuVpBSevuMleuqlCgGVRtICGe+bQqFSULKogLa9HWgjNCw6o5LOQz2Y+scom5eP6Hah7xkluzgFmUyGzOclJTeJqWE96cvLcDh9GEyzRGqVeFzuwGeIiZkr93F4vIEuPjOij27/rNowqAssie+5fwuv3fEig7ul2WLvq43sfEHaq176rbM4vKeboa5x5p05D1GE6SkT5StLmRqcIq0kk4TwCLo7xsktSEIEZqYtyBUyxCDHiCwoI0UmkxGfJu2b551WwbzTpGLZ0z6/nOfvfZW2/T1AD9WnldP4gpScPG9DDT3No9S+MkrZ0gJEEdpq+6g6vRKX3YU3LJwn/vImF1y1kjf+tQ1NmJoN7yFupB+bCVxUjVNm9P7vpq9pkOlhfcjgPgxef3gbd35NSgfNq8ljsn+K/R19pBenEZ+RSFttP/kL8tBGh2P1ygiL1DI9ZiClOAVvYgTqGQuRkRrUGnlAASsydi4DIiImPFCY6nF50I1KjhG71YHVaA3oYGbM2gKtqlJyEgPBYrVWRep5yzncbyQiUsOy7Dha32giPDqMivWVbLhkMTVBe7BFC/PY9EYzJtMs8bERTMxYsVgcpKfGMKWz4PTPoI4gjcnp0ZlAkLztYC+9zVKIYXzMFFgGTwIxsVqa/aVG1WtKaXi9HplCzqJLltE/OMPkll4WrS9EcPmYqR+heFkxs3ozKo2S1r2dbyu0tdscOIPSy7xBGT9uqwO7P89zetTA9IgU92s9NEBscSbG/hn673qdg0/vpmWHFLecmTByxU8vfse/deGCPM752np2PLWP/HnZOGxOOg/1klGUSkruh9s48zNrcMGxLZ/bg80o/RDHusaZmpSC5H2to+SvKGfILxdQfloJtaN6mDBQXpZOZ9c4+/Q+Ci5ZhrxzhMNbWyhaWIA2Qs1ozwTlK4qZGTeSmJmATCbDOGUhJScRbbgGmUyaFrQRwd7LuWOn3cX4pDRGq8WBod+BY9aFY9bFxrRYVq08+kdcWprG3+67ki9f/XcOHeojOjqMBdVZHG4eJjEhkrT4CKy10nI5syiNmOQo8HqkCgWZgDYlFk3kJA6Lg8TMBAz+fgyCTMAclFFjmTRK35nHi0NvDuzBfJ0z9PqzRIxyGe7uCYa7xjm8pZkHDt9Odpmk9bnjf3u555sP4vP5qFpbjtftZXpET/68HARBCsqn5iQwPWYkvSgVr8fLzISJqPgIPLK5qdRhm2vp7H2HFL3A9xqu4dt/vZbexgEat0tOpCt/cRlX/PSiD12F7DNrcOffcBbjvROMdI9z6ffP47UHt3DotcOccdVpjAzoaTvQQ3RC5FEJyL6gPziiVOcGYHR6MPmVirvq+khIj0E3MoNuRE/5ihKa/Uu46rVlNGxtZah9lLKlRcxMGDj0Wj0lSwrRRIXT1zVJ1bpKjJNGlItzUMXE0n1gkNySFMLdDmgcQqVRoog7tgiRy+3D6o+/mUyzDI8a8PlEJqfMpNgdgaVk+Ypimv21dxmV2UxGRnOwfZKE0iyywtW0tY6SMS+PhAgVk6MmwqM0OGZMxKUn4BNFwmOniYyPwF2TgGLMjMfuIVqrQBAkb2VUlAadf+b0+USU6rmf2YHX6jH7NUN9Hm/AGUIOgT2zUq0kuaqAxoMDhEeqqbpyObs9NiIjtZTpvHi6x7HqLWSWphMZG0FP0yCTg9NExEWw47laVp03PyAnGMyRMiyQVhMfheTfZ9bgwiK1fPfv1wduLzt3IWa9haj4SHw+Hwc2NVKztgyZXMbDf3yF1p2t9L9WR+X5C3HHqJhM9lEgpDA+aCAnLhxDaTpD7aOk5CQhU879IX1BhajB8g52m52Jfmnv13WoB1lcLKJPpLV+iMQrFtDgmAXTFIvPK+RA9wgoYeW1K+kdMXLPpnr6nC5uvuHo1sYx0WFcdskinn+xnnWnl+EVYNOWViIjNaiCUrmUmrl0KkW4JnDh0OssGIalJdzIoB5VTjwT/iVd5ZI8mg9Iy8rClaVsqnIjCjPkX5lNxoMd1P1vF7lV2cy/ZDmXfnUNbbvb+e8fnufMq9aSHKRYXbQgny2PSn30wqLmZvSImHAmkQzO4/IwNW4EwGZxMhynxDHpw2G24XOIdO6XerAXzs8NhBs6DnTjCwvHarLz2J9e4d7NNxPn98S27Ongnzc/hjZcRWpeEvGpcRx87TCLNszD6/Gy5/lDnHnVGtTaD17G4TNrcMfiiNiNTCZj2caawP2FhYk8+3vpSjy5r5W6L6ZLMbE0WHJAT8ubTcjkMhadt4DD2ztQa9UsOn8x0yYXEyYHZavKkCNi0lnIq8rGrLcQkxhFWkEKYz0T5M/LxWjzBJwQrqB6Mrc458m0hasw+HMvDx1D81GplPON69fxlatXo/EbVU5uIv98ai8HnG4WfXk1FqXIXp+LhZctQbR5cUZGUB6lpb97koLCZFxmO10toyQkR6EOMkxZ0OwuqhWIgrQntJtmGe6QslP6mwb51VPfJS4hkpUXLmblhYvfNsYLbzyb9IIU7vr6Axx89TDFC/NZcdESLrhxA9uf3MuLf30dTXw0qugI2uv6ySvLwIs0e6oUclTauYtZsIHIFfLA0ndm0hQIkAO88JdNtPhn98pVpTTvlPZ+Qx0jDLeP4nK4ee7Pr/D3pjuOWVt4KjnuVxcEQQ7UAqOiKJ77lseuBm5nTsfkPlEUHzxVg/woccw6GeocC3gvY7PjECBgEtZhybng8/owG+yIovQcD3JGRvwNQuLC6NnWAEiudpkgohvRoVDKqVxdSvPOdsKiwli4ror+rkl8W3pYtKEUb0okBqudvNQ4BI+IRpSRkhjFlM7C8qDk3VmLHUEQAstfTZChuHw+HE4PIKBLjKBdLzlv9odB7LATn07aC+VnxweqGBauLKR+Xy8zOivz15UxMzJDe/0glUvycMQo6C2UU5MQy9jINDVdbpyVWfQ1D5FZkoZ5xkpydiI+nw+r0UZU3Nur2NVh6kBxbPfhfu498HsEQWDjtevY8lIjbbVSiU/1yiIad3dBwyCrvrCARtHOFreDZdesQtU5RVddL1WrS7HbnAhaDelR4XQeHqCoOpvWA72svVjykAaHEZRBMhMCBEqLJvqnPnBjgxOb4b4NtAPv1DX+SVEUbzz5IX18MEya+PqimzFNW8goSuWiG89iw9VrODg+xt+27EH+xiCxRWmMD+pIW1CAIkyDqmscrUaJSgmCTED0iUREzGXBh0drA30PPG5v4Ic3a55l1jSL3r+UShoys9si7TmSo8IxDVoYRY9aJeeB//sCZf62yK8+uIV//PgxImLD+fqfr2HPvj5Gh/R87xcXMjWkp2dPD/Ex4ZjtDiJyIoiYtWK1O0mJi8SjcODzu/HtljknhN3mCiRI2+1uBvzCQ2NDeg5UR4ALGDOz6OE+2odnEASB+esqqN/SwnfX/orLf3QeWx/bxcy4gW/c9RUmB6bY/dwBrrv9ShaeWU1KbhIFNbn0HO5n2XkLAknRLqf7qLZeb41NmvzFsYNKEdceybPbtLOduIIMTP3Sha9sUT6tB3tpPdiLYcrMRdev4zsPXEdedTYJ6XEs2jCPf/3sSVr3duJ0uChbVkx/yyAliwtp3N5K9dpyJgamcM66Ao6eYP3Nk+W4DE4QhAzgHOB3wPdOyTt/AtCNGTBNS8Yx0jXO+i+uRKFUsDwri5eff5K6Le2MA5UXLqWpS9p/lK6uoPflfRx4ZoLc6mxUYRoaXzlE8eJ81BoVurEZssszmeidIK0gFUEmoBvRk5ibgjYhBkEYQRRFtLHhHGm2GK5ScSS70Onykp+ZEBjjzqf3YzVKSdLPP7qHZv84brvlafrrBqTnx4dj/3wyb5qGSMoLY15EMnsNo2Sdk0SZTom+zI4LLynPxBKVGYM9SUVkfxj4RMIVoNYqcdrdxKVGIRd9eP2rS4turgnIEa+v2+mmYWtrYJn53D0v09sgLX9/fv4feNXxBEmZCdy7//8Y7R4nu0zK59z93AHuvfGf+Lw+ymoKkCmVGCeNZBUmIwO0RjupGRFMmW3kRIQzER+JWW8hLEobiD8CRzWsPFLZLpPJuPDGOWn5q379ec6LvDJwO7s8g8NbW2nY1saGa05j8392IpPL+NLPLuHQpgYGWoa56d5rOO3yFSf8G3orxzvD3Q38CHg3lZtLBEFYDXQB3xVFcfitJ3wUQrAnQ2puIkvPqeHgaw2svnRp4CpnM80edfUlqIpcdM31l9OPzAQ0Mbtq+0jOSWRyYJrxvinKVxTTtFOSd5i3vorWDh3Te3spWVGKGahvnmR5TSayKCVjjRMsKEth3GknNjmSx96o56pzFtGysz2wDJIr5aiDQgzq4EYhahkzdmnmmHLOotQocPt89PosJG6IodEmZYnM+04Ob241gRuKVsfj/cs+DhxoJik/hdzCZNpe3M+KwUzkp+Xg2tRLeHEqFuMsiRnSMlsboSYiJhx1mDKwBI+Kj5zThQmq1FYoFQFjA9j74iFmxqVZKtPhoKV2AIDkzDhJxbkelJFqyvOS6GlsJDI2nEXnldDeOk5EdDg5lZk4kiOwiD6SbQ6io7QMNg8yM2kiLFLD3pfqWXZODdoIDXarA7lCHtjnWf1JDaIoMtQ+itfjxevxUrupIbD3e/K2Fz4cgxME4VxgShTFOkEQ1r7DaS8BT4ii6BQE4evAv4G3hf8/CiHYkyEiJpxfPf09ZiaMxKXEALDr+UPcecM/cTvd1JxRiT0yioERE+VVmXi9PnwuFwWLChhuHSJ/Xjb6cRPDnWMkpMehDNojBG/qRQgEoGetDoZt/qLUw8OBH65pdx/J63M43DPK4Z5R2vZ20njbKwDMO3s+ox45tfVDVNRkIQgCPR3jVKwqwjppRh2hJDIinv22KSrTUpALAqMmM+FaBSrlnDNE4Z0bn8LjYdaffDzVO4F+cApRFBluGCLPJzDaKmXrV60pC/Q+L11SSMeBLib7Jsguy0AmFzi8pYWCmlzCY8IY7RrnD1++hxvv/SoRQVky3fV9OG0uZDIBUQRNcGVFUFqXx+pkqkWaOS0GGwazC7tN+he1Jp/6UWl2r6hKo/PJg3QegLYDPdJyVCfFQO/eeiuxSdH8ec9veOiWJzDrLFIKmwCpuclS16AIDQqVAm2kNvD9J5yibJTjmeFWAOcLgrAR0ABRgiA8Koril46cIIpisNDgg8Btp2R0HxOOGBtAy94uZv2ZELNegY4OaX8zMqTHFMhD1JCelcjhLS3IFXIWbZhH3eYmVBolC86oZmbCyFjvFGXLipAr5NiMs+QUp2CYMhMTJiNVrWV8xk5OTjwmswPDjA2ZIC3XjnBU40Uf6I8sfQf0GP2PNTUOkxShZqBrAuqHWfq9GvaMSsHptVXptMh7OGTUsSQuD5pg8E0dy1alY1X58M26KN5YRf+2DkqWF2M3zdJd20tcSsxRYQUhODYpENRzzhaYsXoO95OQHodudIYtj+1i4VnzWP+l1QBsfXwXv//SPQCULS/GMGHg0Mu1lC0vQR0TQV/TEBXLCzFMmomO0SBTKGg91Ed+VRbhsVKOqVKlQBk+t0/WBJXHiuJcksPEwHQgSF68MJ+ImHDq/QnjVWvKaN4lrTgK5ucy3DHKwdcOk1GcRkRMGAdfO8xPz/k9P/nPTSelqXI8Mnk3AzcD+Ge4HwQbm//+4MYd5yM5Vz6VVCwr4vVHduJxeSiqyqJH14nH4yMqUo3JaEPyfQkY/RkZXo8Xs96Cz+vDYXPidroCVdqxyVI7Y5C8l0qljPqWXlQaJfPOmk/Tq7WEx0aw6MxqRtvGcG8fZP6ybMLsHhx9BjIrsvA6XGjVChKTopieMpORFYfX58NisqNSK3AFGalNnJtVnQoHVrc0g83YbOhflIy0941BZqpVeH0ibSVa1grVtDZIY1xyyTIO7+7GOmBg4TkLMJvs9PboqFpbTmpOIhuvXcfj//cMLbs7yS7NICounIHWEdIKU48KKwTnLo775QZByh4Z75NudxzsRlBrEEWR5t2dZBcmB5Z388+spmFfH7SMUnXhfA5H+dimG2NxdSaiKFI/OcWii+fj7JpGHRNJck4i7fu7WXPxYmIS53x+wf0A5UF9AgWk6gWA6WEdI53Sce0bjUwP6T5Yg3snBEH4NVAriuKLwLcEQTgf8AAzwNXve0Qfc1ZdtIjC+TnIFXIS0+PY0DnOP3/6BM2bD1FQnoU8Nx0EAUV+AkPbD5O5sBC1RoWqWcoS0YRrAhkZkbFB3VG1Kmb9FQIuhxtdnzRz2gxWXDoLk/4i1eQhM+1+Z0h8chS67kkmhmbQRGopmJdH64sHiU6KYv4Z1TTPmPCFqSh0C/jitcyMeclMiSJSpUY9ISc+NRyT206qLYZZrRu73UVscgQGwc2RwMesKch76fAGZginT6DPP7tPGxz8abOURPCbF37Cl/O/yeGtzVJs8pwF1G9rR6lRsO5La7js++eSX50TeM3Tr1hJ3RuNTAxME5sWT6rVyXjvBAXzc9FP2zBMmpAr5EfN7i7n3IXDEiZj2uMABIZtFsZmJM/u9ggonvViHpGWoD/59zdZc/7RbQt//O9vkluZSUpOEovOruEfP3oUw5SJC2/cwHP3vErDtlbO+dp6Wvd00lnbS0J6HAkZcZwMJ2RwoihuB7b7j38edH9gFvwskJKdGDguKE6la1crLruLntoeSpLi6Bo0AlB5zlKaayUPXfGGRfS/fogDL9eSW5mFJjKctn3dFC/KR6GQSVkulZmMdo2TWZKGXKVkcniGuOQYNBplwPEQ7J7WhKkDez+Hxc6oXx7BNGVmxmrDOOvAOOsguTyThlZpVs1zJNA1PskEEBUXTrYrnJahURLiI8hZncFB3TgZMdEkuuRENhkQwzQkpEaTmBqLQiEjPForhTqitYEmIOl5R/djMPiTtn1eHya9FVEUcdndpBamHmVsIO2b/vDGrVyY9HX029tRaZRUnF5F2/4ewqPDWLi+gv7GfpyzDkqXFqBQKrHOmEnLiUeuUhJu95KYFIbeaicjIRqz3YHV7iJMLj+qx3n8Mer/5Ao5X/jJRYHb333gusDx/HWV2EyzhEeHSQ6UNxqZv77qpOvnQpkmp4DMknTa9nWhCVejjtQCRumBILeQKJMHKqAnB6exz0or8M5DvaTmJjLWI80WlatK57yX6ypprR1g+pU6SpcX4/DA4V2dlC7MQQ6MtQxQubKYif5pkjPjEJQKWg8PkpmXRIRfZFUmE4iNegfvpVPAMCzNqjq9FatDg8PtYWDaQMG0hq79UgC6dEFOYFbNzE1AP6zj0JutpOYk8oXvnc3pl0q9Nw9vbebhW58grzqb6WE9qfnJyJUKVFol4ZFa3HYnXq8vUAh7BMvMbMCJ5HK4mfKnl9lMUmxS508vS8lJCuyz0gpSGBvQM9w1QXhcGOFXzuNg1zAJUWEsJYLBTZ1EJUcTFRuOTC7jsT+/znduu5zkE5ihwv1FxXKFnCUbT01T35DBnQLu2PZLdj69n/nrKtBEaHnozk10bW1g4JV9lCwpxaPRIrNaKZify1DbCEWLCtFPmBnpHCUmKeqovUSw99Lr8c45IfQWRiekuFd77QAKmwXXrAvdsJ6CqgyadvoVus6oom5zE9R2c9rly7nu9ivJTIvluU0NWGwOzl9fxVObD7NlbyeJJheK5GgaJo2UJUfjNIoMA1qlgpigEEPwVV0QBGaPtDAemGbtRYsCBvT4756hfb9UkRCs0FW2vJiuun6e/OMLtO3t5M7tvzrq+4tPjeHb936FJ+94mbOuXI1PFHn8Dy+SnJ2AJqjkSROUMSLN9NLFwml2MDFtBEBnnsXSa8JqkjrcxidH03xAahDywC+f5ecPXnsif9pTTsjgTgFyuYzTPr88cHteZSrP3voIAO6dTTiYm1Wyq/Jprh1EoZSz5ILFNNQO4HYJLNhQg8VgZWJ4hpIlhcgVMpw2B1lFKczobSSWZ+FRTjA5PEN6XiKWIS8u/8b+SHoScJSTROH0kJkmqVNdtGFe4P6vXbqCA3e+QU+vvyPqqmIaX2sE4Krr13DtD88nWqvhuYodREZrWXF2NY/e+RotB3uRuV2UzM+hp2WEkpps2g/0ULWqBMOUKdBD4K2IohjoHnREE+atbLzmNDZec1rgdlRmEn+9fRPjfSYqz1+KoWOQ2jcaKV9ejFwpZ7hrnMql+UyPm4hPjiQzNo5DhhnKlRFERUkXBLlCRkTM3D7546DYHDK4U4zX62WofSQQWI1OjMIxPZeuZPIXgHrcXiw2Fx6XV/onyOhpkvZZEbHhDDVLez+ZXEbEimrqm8dQKeVUn1lJQ8MQETnpzF9azNTQDLMOF8VLClFrlMyaZ8koTMUnipx51dp3HOfRMnpzx3EyJXER0o/00uvmDODrv7iIc2K/GpiBixbk0rS1mR9ta+Gcr6zh9Ye24vOJLDijGovRSl/DAOUrihF9Ii6Xl4KaXMZ6J8ipyKSnYeA9+wVYZ+f2X7MODyNdR5bgPfgnfYxbm8kqTadleytsb2XDxUtp2NmMHlhzwQK+cvN5JKbF8OzftyPIBDZ+cfkx3unDJWRwp5BZi53ra37IeN8kmSXpJKTH0XGgm7ySdGRhYSiUCmRyGR63l4zCVMIitShUchQKORq1POC9jIiauyor1Eqs/iWcy+1FZ7QjImAxO3BnxDHm15hMKE6i6c0G6Tg9jkf7//K2vVIwv3/62/ztp0/icXtxzDpJyogjLjmaVecvOOb5MxPGo3QlLTNz2Rl9zYMBB4Xd5qDrkLSEm+ifDuSGgtRY5dCmBg5vaeb2N39OxcqSt72Py+nm1adrObizi8zcBKzGWWIjVCRmJgT0OadG9FhmbAgyAad97mLhss4ZqTZcHdivXXr9u0swfJiEDO4UYpg0Mt4n1bgNd4xi1pmxWx101/ZStrqCjlqpnqxqVQnNddIMVlSZwdDBdg48N0RedTbaSC3t+9opWZxPbEoMl//oQnpHTfzn/m2sPauCqOgwHv/nTqIiVKi9c8tHTVCRZ0RM2LsaG0BWUSo1a0p5+LfPA1C2KI87Xv7hMc996q5XePz3z5GVn4QmOgwBAZ/XiyM5mqTMeNThGrSRGsl7GR85pwuTHM3MhCngST0iK+Fxe4/yIAbT2jDE/be/BoBao8A3Os3hNg9qjZLK1WU07+ogOjGKBWdWM9o3BYJA0cJ8NJFaHGYbSWkxKBRyHEYLxmkz0QmRNGxroWRJ4QmLD30QhAzuFBKTFM3ijTUcfPUwC86sZtZix6SzoFQrj8rIEIPkiD1OV6BL6WjXeOCH2HGgm7/V3UZBTS5lwDkXLwhUKCdHq7j7aw9Q6/JQuqwIl8NNwxsNVKwsQRCkYO0/b36MK3/1OZSqIK/kWzjikIF339+88e/tzJrtDJpHpU5EeyXHSPmqEtr8OY9ZpVnMTJip29VDekUuMdFq2vZ1kV+TQ3xqLJd971x0ozM88MP/sPz8hRQtPHZvAFdQjmqYRonRv/dzOtyBoLhp2ox91hWITSYuK6LZP6aMwhRG20YZbR2k/s1mEuK1dNX1kVaQwh/f+BkpOR+uhslbCRncKSQ8KozfvfxTxnonSMtPwev18vAtT/D6w9voOdhF1ZpKvC43Q7WdFJdlo4yK4MJrVvEsHlr3dFC0uAD96AxjPRNEJ0QSnzYnxx0sB+Awzc61MJ4yBVTD2g70oNHImTXb+e8fn6diZQlLzjn2EhHg89/egCZMjXnGygVfO/ayq25zU6B9lkKlOCojI7gJIwhYTVJq22i/jnGnHa/HR2/DANfd9iWq10pyfqdfsfJd+34vWV3MzX+8jJcf2Y2hf5KMZQUMd02QkRWL4PWhH5shKSvxqBxLVVBDELVWFZhRbWY7MwPS3m+sZwLjlClkcJ9G0vJTAJDL5cgV8oCWhnVST7e/f9qsaZaXrI8CsHxjDd9ZeSvNO9pQKOV84acX84WbL3rHJdD8dRUULchjpHuclJxESZJgWC/1HJgxA5KTJjL+3VsYC4LAhde98/7mHzc/ztN3SQnSi86qpqdhgNY9XcxbW4rH7WOwaZDyJfnYLA604WqK5+fQ3ThEybxMrNMmBlqHiYgJO+pi4fOJyOXvbHAAa86q5J83P8H0qIHR3kmKy1Jo2ir1Xp9/ZjVNuzuZ3tZG1aoSjNNmDm9to3J5ESIwMTBF5YoixvumSEmLxuNOoXVPB2XLigJ/l4+SD19F5TNGwfw8NOFqZDKB3MrsgLhqXNDsJQhCoBDV4/aSU575rvuN9PwU7t7xS1QaFfVbWjDpLSw4dxF6swtZbAwLzp5P7pJS/vSdx2j1N6k/wtSQjkd/+2xAmzEYr8d7VDutUX8wHqQ6M4NfusAwaaJlTydmvZWW7a0Md43TfqiPzvoBCoqTaNnewmD7CIvPrsHj8nLruX/gmT+/wq8vu5PLM65n59P72fXMAW4974+07O7AbnPw/H2vBfoFTA7pjpoFPUGhDq/HG9CJsZlnGeoYQxRFOuv6aNnbhW7MSPOeLtQKkcbtLbTu6eDaP3yRP+/5XUBC46MkNMN9wKy6eAn51dl43F6yStI5/4azqNvcxHnfOPOo867+zeX89TsPk16eSafexiq3F2Vw3zbAarQFylp8PjHghHDOutBPmvH5RCwmO16VmuF+KcTw7P1vUr44H0DqBlT6XTxuL8/d+xoPNv+J2CQp5WnP8we5//v/JixSyw1//goHX6lnZlRHfGoMYXFRqBPjiIiLwDpjJT4lmrG+KdxOD9EJkVhm5wzC7M/MF30iNvNcf4GdT+2nbZ8k/vO37/0b3aiUPXJo02GScxIZ75tCpVFy1jXreP3xvWjC1dSsLsYwYcQwbaJwQR5qjQKHZZb0/GRs5lmiY8OJS5EcM5nFqYwP6Jg1S3ITDutcDuiHKfT6XoQM7kMgeClTvKiA4kUFbzvnzKvWYouN4O77t9LyaiMD0xb++KtLA4/fff3feeNf21h+4SLOvPp0nr77VSpXltDXPERuRSaKyHBG+mRERIeh0c6VqqQEVYcbp8wBBWKLwXaUJ/P1f21jwp+5/+9f/I9mf+ZK3qJChqZdjO7vJzYzjYjIGeo2N5Gal0xKbhJdh7rJzExAFRmOQhDxeb3YTJEk5yShjgpHHabG5/USERsekJyIio8IGJzPJwZmd5fDTUdtH16PVyrytTnpb5L6C8TERwaqBcKitbhmnRzqHyc8OpzK0yppqR0gLjGakkX5jI+ZkOEjPy6S8Ogwtjy+m4pVpSQFfRcfFSGD+xhhCgpAu1xBeh5ON6/8fTMAO/63j4H2cYa7pOVe1aoSmvwak9VnVNHZNEzt1jYqlhZw2Y1nsni9JC++7cm9/Pe2F6haXUp/6zC55Zlsf2o/519/BsBRP0ZVUIhBFaZGEjGRxqHzhz3G+yYRvV6sBhtWg42KlSVBylhltDWNQsckuVW56PrGOPjqYbLLMohJjKJtfzfFC/NBBj6viFqror9liJyyTNThamRyGWGRGtTBHVEjgvoLhGuw+RMIbCYbY0OS8c5MW0jOimfCn4tZviCbxlcOAfCbz9/FvXt/9z7+KqeWkMF9jLjwnBp6+6YZ6RxDM6ijZX83pYvy2fHcIdLyUxjrnfAn1Abtb4JzL91eXA7JUM0ztoCxAdx700NY/QWyxYvyadrZTtPOdhxWB5/7wXnceO9XySxN54X7XqP+zSaq1pQBAuOD01TMK2RqykJinAZ3ZCHt+7vJrcxCqZYz3jeJXCFDCHKMyJTBuaG+QG+5wbYRRv0xus7aXvKqs+nzC+hWry0LqCJXrSmjt2Oc2s1Siy+AtoN9VKwpl1SybS7SC9Pob+xjwzXrcCvVvPyvXcSnRKMOulgoFHPfU1jkXDLBR0nI4D5GxESH8bMfnsMFWd9iAmja1kbxglzaD/WhUMlZcv5imra3oBuepnpVCQ6bg4mecfKrs1Bo1Ph8IhkFyejGDKRlJzAxpCMlK4HJYf1RnsLg7Izg3sGJ6fEMd0j6Jv3NQ1jN0nm6kQOk5ibRdFBactacXkH9m80IgsCis2voaxqkfX8X806vwCfIGe2bomxRLlaTnchoDYUL8+mp66V0aSGWGSvDneOERWqPalscHBP0en04/A1T9GOGQJ+DtkNSLz/DlJlh4OaHvsGaSyTty8TEcP75w0eYqO+g5pyFmCaMHH7xAFWryxBFkYm+cZ6751UuvOnsoxwyXXW9eFweypYdLR3/QREyuI8ZR2JZ4N/f+Pc6HpcXm9UZkLNzO120+xWIVVoVk1PSUk+ulBMdF8m+l+to3NHKaZ9bxuuP7SEiOpKa+bmY9FZmrQ7yq3MIi9LQsK2VFRcsQhOupmFHG9GJUZimzaRV5jDUNITDYkcQYNY6lw9q80tMiKKIw+ZE7x+jYdLEcL+0HzNMmRFkQsCQShYX0La3U0ra3lhD694uxvunqFlXgcvlY3zUQMnSIhBFBKWSrOJUJob0ZFZkISjkTA/piH1LTVtM0lz1tk1nnhMFmpihr07K6umu6w04bv76nYeZd1o5uZVSE5T//PopHvnl/5DJBL55z1c5/y1K1h8EIYP7mBGXFM0v/3MDj972EuowFYIgYDXZSc9NRK2WBZZv4UE1buHRYTDl1zgRRWb88g6zFget+7vxenyYZmx48xLp94v/FM/PpcWv7fjDM36LecaK2+kmMi6Cii+vo7VrmsSVlZTJvIy2StXqcSkxRESH4Xa6iU2ORhupRR2mIixKy6zZTnxaLOMjRkmtKy4Cc1CnnuC0Lpt5FptZurC43T466gcAUCjkgQuMXCEnsTiThgP9aMJULDyrmoZtrYRHaVhx3gLO+epaqleV4HF7eOPfO2jd20lyTiKz5lmiE6KISojErLOQlp/CaM84Dps0W0cHSSz0t0gOGZ9PZLR7nA+DU6W8rAYeARYAeuDzoigOnMJxfqZYcmYlO56vZdszBwGoXJzH4VdrASheXMDU4DQHXj1MQU0O2kgtnQd7KFmQjyY2gktu3MBQ5xiP/uFFcisyUWlVDHdPEhalRRMktKMOckIo/b3sQOrtPThsBGB6ykJcrCrQZKNyZXGgxi2/OpvexkHGeiaIT4slNiWG+s1NZBSlklSQRm/TEHlVmYheEY1ahugTsegtJOcmodFK3VERRcKjw5DJBHw+kYiYsIDBeT1epv2V445ZFzOTJjwuDyadlcJ52cw/TcpcqdvcxF3XSW3HohMicTk81L7eQFR8JFWrpWLepKwEVl60hMt+cD5xKbHYzHZe+scWrBY30UlRqLVq3F5pttaEq+ms7aVgXs5RdYqnilOlvPxVwCCKYoEgCJcDfwQ+fwrG95nFHeSlPJKqBJJyl2FSmi0GWoYDbv7WPR3cs/e3lC4pZNEZlcxMmXnmr5Jns3pVCZ11fdRu76B8dSn2lCj2m2eZ/7mlyEYM2GbdVK5NpL9xgNzyDLzpsbR2TZGWHktqtJJO/3trI+eC8YqgolSnzYne3/9upGscn0yJZcaGZcZG2YJsWvxV2pWrSueUsWpymRk3cODFg+TV5BKdEk9HbS+li/NRqpRcctNZjI+ZeORPr7LkjAqSEsMZaBokLFJL0fzcwHsHx9tUWlVAocustwQEmqaGdCy/YBF5VdJSctMjO/nXr54BIK8yk4G2UV79104O72gnMlxB+/5uShYX8JuXfkJM4tulGU6GU6W8fAHwS//x08B9giAIYvAvJcQJ8b0/f5mo2HCG2keZ6BmjZHEBNoudyMRocquyGWgeonhxAfoxAxP9U2gjNEflXpqClnMelweHv75Mb3XSY7GDIFBrd5EyOIPNv28sLEqkcWsz0Mylt17Gtb+4FLlcxpJ15aTlJ1O0II8n/vAc9W82Mz2so3JlMaO9k2QWpeG0O+k40E3p0kK0cdFMDOmQyWWogiX1gpwVbpc70LCyv2EAZfQMXo+X9oO9/GnTzVQsLwLgnC+vCFScr7lwIcnZiUctp1dftowbp800bGvhsu+fx/6X63j+vtcoqMlF9IqYdB3EpcYcVZ1wRFENJEHaI/tMs97CSLPUf7zjYA8mneWjMTjeW3k5HRgGEEXRIwiCCYgHdMEnfdKUlz9KtOEaVp9Xw4/uk0pV9KMyfAiMDuiRyQSKlxbStq8LlUbJpd87lyt+etFRHVi//OPzmR6ZCYi5puUloZswkrAwB6PVjs5gIzFMdZSnMLgraWykOhAYX3fFysD953/jLP798ycBqQFGSn4yTf5Z65v3XMOFN56Nz+dj82O7qVxRTHxqDP+8+TF6GwcZ75ukdGkR5hkLUQlR5FVn0980RNnKUswmB2N9U2jC1Ef1kwuWd8irfPtvRhAELvjmBi745gYAypYVM9w5xu5nDwCwaMM8Dm9p5rar7qO7ro+ehn7a9nZSsaoMFEqM02bKlxYy0j1GVkEyttQouuv6yChKxRJ00TpVvGcuZbDy8sm+mSiKfxdFcaEoigsTExPf+wmfcWQyWUDPMTIuIrC09PlEDBOSq9zlcJNbmXWUsQEkZ8bzzduuoLthkNYDPUyNzCA/u5L9wzrsDjerYiLxbG5HqVZQvbKY/MpM3DIFORVZlK8ooWlnG+P+/nXBuF0e1P5MlmB9E4CkrMTAuM/68mrS8pJRa9Ws+dwKmna0MT2sp+NAN2M9EzTvaKO/aZCytZV0HB5iakTPorOqUKgU3HLRnex7pf59f2+moMaLTrsLj9uLKIq07u2gaUcbHreX3sNS7uVI9wSt+7vRKAQatjTRXdfHwjOrGeka54en/5I3/r39fY/jWBxP8vIR5eUB4L/A6YIgPPqWc0aBTABBEBRANJLzJMRJULmymDu2/IyFG2sQ1GpKlhSSXZpO5apSUgoz0ERoqFxVSsWKY8eQZoKWTl6vj2mDPzvD7sLQNYHH5cEwJeVg9jYPMz40gzYuktY9HRx4pZ7vr/3F214zPjWW+w/fzsXfPod/NN/Bb577EcUL8/niLRdTvbYMgKGOUZ687QXs/rbAQ13jAQdEVHxEoDGlKErhA5DCHrNme6Axyb5XDr/v7+2m+75K0cJ8zrhyDRfceDZJWQlExkWwaENNIBc1szj9qJnUYrC+7djjluQyTiWnRHkZeBG4CtgHXApsDe3fTg1lSwsZG9Bh1Fkw6iyULcmnxa9CdfZVp/Ptu6885vP+cfPjvPTAm5TV5OJ0e5EjokCgUQGl8XGEy5QMtY0SFqE5KjsjLEjX/51aNGUUpfGNu64O3L5331zKVGdtL99aejM+n8gr/9hMTHYa3Y1DZNYUEBcXxmCfjtKqfOw6A5FxkQgKOWa9lZS8JNTxUSiUckRRaut1BKfdFZhVj4fcymz+cvAPgdsLzqhCJhPQRmg557r1dNX1sey8hQy2j/LSP7Zy9tVrsOjN3HfTQ8RkJSFoVIRHjxMZF8HCs+Yd9/seD6dKefmfwH8EQehBUl6+/BSNLwQQmxTNeP80QnAnSKTZ4lh4PV6euftVaRm1p4PssnR62iSR2AUbF9K0TaqOrl5fRffeDmq3tFK1sphzr1nLivNqeOHeTbTsaefyIJHU40U3op8rnzHOMm2UYl0jfTpc7nhMM7OYZmYpnZ9Nqz9BunJdJU1TDuiZoej0agz1PTx792sMtoyQU5HBqw9uY+WFC7nhziuPuiAcL+FBGjEJ6fEkpEvVAzllGdx019wF64zvXsi/7tkM2Jh34Up+949rTnlo4FQpLzuAy07lwELMcduL3+fh3z7Hnhfr6W8doXpVCVUri7ngGMWjoiiy98VDJGbEMjU8gzpMhc87Z6We4GOXN7AHM0yaWH3hQgAu/s45XPydc97XWGvWVbLhK6dx4LXDZJWk4xKUdDcNk1mYglIlZwpJnFYRVDmOfO5H7XZ50I1JsbjD21qp39KMKMLmR3ez8aunU7a08H2N63gwz8w1SImIjfjI43AhPiIUSgWRMeFMDEpOX6/Hyxd/eO4xz/3VJbez5/lDqMPULDq7hs5ePSYRKteW4Z11oWsfJCc3HblcQDQaScmMQz9lJj0vCf2Ygfi0WAyTRlRaVWBmEEXxXWURggmL1PL9f97AV0q/TeN2qZf2wrPnU/taPXKFnHVfWccXfnQ+8cnR/P0nTzDSN8n0kI7igjQsdg9RMpHs8gyG2kYpXl6EfkjP1OA0qnA16qgTn92Oh6khHXdc9wCt+7up2LgYERje18quZw+y6uK39yk/GUIG9wkhIz85oOUfnxSFz+dDJpPh9XiPuhIf6czjnHVis7uxmqUZTMyIpmWPVD6TKvoCgjwqjZKYtFj2PrOP5q1NrP/iSl6+/3VikqK55ndf4M1HdzIzYeTH/74pEDg+Ho4UogJYdFKg3uvxEhurJSNf6kWw7ooV/OAcqbPZ5JAOAZjwicjkMgovXUrTuBl1XioLT6+kddzMD3/2LD/58bksXnxsAaL3S8ehXg5vlS4Ow7uaA4kFv7n8bh7ru/eUFrCGJBY+Iaw8fwH3vHkLmZlRbP33Fr6/9hc8d98mriz5Hr/5wj30NQ3yl289RGJGPGqtipzKbMLiIhFkAjK5gDZiLkskLGim8Li9TA9KDmWLwUb95kZJ339Ix6v/2ELt6430NQ7yyC+fPKHx/vzp75NTkUXV6jKUaiWRcREkZSXgsDlxOfxBaEEICnuEB/Z+Pq8Pnb9awOn2YlEqMJvtGI2z7Nrdecz3Oxlik6PR+EWJ4tNij7qARcSGv9PT3hehGe4TRExiJAPNkhOiZXcH0+NmdKMz7B6dQT86TevuI4Wo1bR26hnZ20tJTTb6CRN1BwcpWTcPtcdFV30f5SuKsVscqMLUqDRK2g/0UFCdhVqrhNZhtJEaVNq5LJHopBPLuKheU87pX1jJQ7c8DkDhgjx6GwZ44S+baNzRyj+a7qRiWSG3v/IjHr/9ZfpaRyhZmIvN4iCyIAVfYhTG7knSUmPQalX+7qgikUEXDrfLc9LdbAAqV5bwQN0fuPP6f9C0o43MkjRyK7K47HvnnnIty5DBfYLQhKmYd1o5DdtaSS9MRRUW9GPwBUdh5vZbToebab/6cW/PNJ6hMb/3spOcyiw6/SrJ1auLafArY9Wsr6TrYC+1rzdStbpMysh/eBsR0eFc87svHLczwR5U0iOXywIpVEcKUgHKlxYy1j+FYdKEYdJE8Tk1NExaYNJCdXUmjY3D9A/oKCtNY3rKwn+fPMDw8Aw5SoFXHt7O6Zcu4dpfXfqOIYzjJTUvmY6DvYgiDLWPccOdV1G04NQuXSG0pPxEoY3Qctubv2DjtesY7ZlkuGOEhesrSMmKo791hMrVpVStKUM3NE1BYSLJuYmE5ySSUZoGQFF5eqChoEqjDCQ+A7iDBFjdDnegfEY3qqdtXxcet5f/3f4CsxY7x8uXfn4Zl33/PM752nq+ff91nH7FSmKTo/niLZccdV50gpQxKAgCMk1QvE0MunA4PUz72yofPNDLU/dsYtbi4OWHdzDUefKlNaIoUrlKkl6PT4sl9S09704VoRnuE4YgCMxM+GvLXB4cVnugt5zNZKfPL7oj65uCJeWMNo0gl8soLk2k9ZX9aMLVLD57Hp2HurHoTNScXs7qS5dStqyIu772N1wqNbKCdJJ1VvR9E6TkJmMz2zH5ZcPlyuN3lavUSq67fS7OdfOj336bkwfg9pd/xCsPb2f+2jLiMuK47543mDrYieG1gxRV5mKK1CAvjCQVL+M9enLmpWCd0KEfM6JUK44qO3q/CILA/730Yxq2t1K2rAiV+p0Vq0+G0Az3CWT9l1YTHh1GfFosmnA1Sv+PIzI+MuC+j0yMCsTfvF4fen9Nm8PmxGayYZq2YJo2k5wZzznXriO3PJPvP/Zdel1ymtomMKakkJAeR/2bTfi8XhaeVY3d6uD6eT+ku77vfY/9WMtRpUrBhV9fT1ZxGhHhGs5akkvzCwcZ6Rhl+KUDdITNsn9whE7tLBkbsjlg1zN4WgYLzp1HWISWn15yN42nyJkyb235B2ZsEDK4TyRrPreMnz/1XYxTJg6+1kBSdgJ5VVk0bmslryqLeaeVo5QJlMarycqO5+s3refib5yBWquieFE+lavLkMkkD2FBzVxtmSUoEdnj9jLhN1LLjI3pkRlcDjfjfZOB+NoHyZELR0RcBEeSBD1eH+NGaVlp9XmxWO2Y9BZ040b2vPz+k50/TEJLyk8odosTryeoO6peSrjtbRwkOTsR3egMutEZfvDPb3DW5UsBWP/FVQH14RUXLCIiNoKMwtTAa5ZXZnDT9zfw8rO1aC1mFKtLpZ4HK8vRRGgZbB1GE65GEdQgxGl3otaenMPirdScXskf3vgZB1+t5+LvnMOhiWkefG0/KTonzIqYFHKyYqIIn7EgCAKCTCAiqDj2WMvWjwvCR5VjvHDhQrG2tvYjee9PA+YZK3/+xj84vLWFS76zkbo3m2ne2U5OeQZKrYpuf2usP75+C/PXV53Qa9+07Kd0HJDyLedfvIKmOmlfWLMkl45tTVgNNs65bh1Oq50d/9vLZT84n9JlRTxz58usungJ533j1Ivx/O6Ku9n+3z0AVJ+7gJYdkoBS+bJCJrpGmBqY4rQvrCA5K5GXH9jMhmtO5yu/+8IHujx8JwRBqBNFceGxHgvNcJ9QouIi+NmT38XldKNSK/nCzRfRvr+bsmVFuF0eXvzr68xfV3lC2SEgib0GyxZ4PHMXZKdTEn4FOLylhdFOqXTlsd8+ExASOrylmfTC1BM28ndDFMXA+wIQ1B3VYZllakDKmtn3Ul1g7E/f+RJnXrUmoND1cSFkcJ9wjlzBZTIZ5cuLA/dd+t1j51q+G3ueP8g933wQ0eejYnUZ8tgYzBYnmQVJRMdFsOGShejaB5ga0pGcnYB52oBlxkZkfCSuoGrx8JhTl53Rtr+Lu752P/pxA+Uri5HL5BgnDOSUpuKYdRMZF0lqQQrjPRPkVWUz3juBYdKEUqNE+wHlXp4MIYMLEWDP8weZGZcqyTNrCmltkPIys4tSuP3JGwFYvnEeX5/3ferfaCA6MYqFZ1bTsreL2JRYskrTOee69ac0YHzotcMMtErjcNnddNdJ3khtpBaPoGBiYBqVRknJijI6avsIjwlj8bkL6Wke4cfn3Mb1t13BwU1NDLQN8517ryG7NP0d38s8YyU8SvuB7v9CXsoQAXIrswPey6SsuV4DMQlzUjYKlfyoTqSTw3ocNicTA9MsOLOa5ecvOu7KguMhLT8lYADJWXOyHOExYYHcSyn3U/Ko2oyzWC0OjNNmJgameeaeTbz60Dba9vdw900PveP7PPa7Z/hi9g3ctPxW9r9cx88uuI1bz/sj+vG3t/U6GUIzXIgAl33/PMqXFxEVH0lGURrLX2lgpH+a86+URIT6W4Z44vfPUrm6jJbd7RQvzEcVpma4Ywx1mOqU5DW+lTOuXENWWQZup5uKFSUceLWe5+57nZG+acpLstCPG0lMjwNEzDOdZBamBIpUBZlwVKV4dMKxFB4lNv9nF45ZJ911ffz3jy/QuleaSR/9zTN8+6/XnrLP857fkCAIGmAnoPaf/7Qoir94yzlXA7cjaZsA3CeK4oOnbJQhPjSCNfZXnTPvqMf+dM1f6aqVci/nnV4RyL1ccGY1XXV93HvjQ4z3TXHdbW9V4Dg5ihfmB46XbJzP3d/6N4YpM7oxA8ULc2n2K0jXrC2j/s1mBttHqVpbysSgjtrNzVSsKGLRGVWcd936d3yPvKosRrvH0YSrj2qrHCynfio4nkuSEzhdFEWrIAhKYLcgCK+Jorj/Lec9KYrijad0dCE+VgTL6LmCdB5ddhcWf7V03ZtNH/g4wqLCpN4FgoDXPdcEJDg31GFzMTUklR0Nd4xzx+u3vOtr/vx/3+Ox3z3D03e9SsueThafPY81ly1n3RdXvuvzTpT33MOJEkckjZT+fyGBoM8g//faLSw7fyGVq0qxmmbJKE4jtyobRZiW+PQ45Ao56UVpWPwufPOMBVdQu+BTxX07f8HGq9eQlBrJZPcIpYvyqFxRhElnJrs0nZScRMLDVSSmS8K4OWXpmHTm93hVCavBis/rw+X0cOZVa065A+W4nCaCIMgFQWgApoDNoigeOMZplwiC0CQIwtOCIGS+w+tcJwhCrSAItdPT0+9/1CE+EpIyE1h45jyad7Uz1DaCKIoM9elp2tOFywtJBansfbWR65feyoM/eYwvZn+Dby78MYNtw6d0HNoIDWFhCsa6xjBOmfDY7DRtb2OwdYSZKSOTfePUv9mEedJAYUU6DW82ct28H9LXNPiOr9m4vZXepiGi4iOQK2TEp8UepdZ8qjgugxNF0SuK4jwgA1gsCELFW055CcgRRbEK2Az8+x1eJyQE+wlHkAU3OQyqHPd4mfJ3HtWPG9nzwkEcNicDrcOBRouniomBKQxTJo44Q+P9JUcAEVFz3kuHzclot1RJYZg0Bdocv5XG7a38YN2v2fX0fpQaFTFJ0Wx5dBffWPjj454Zj5cTVe0yCoKwDdgAtATdHyz6+iBw26kZXoiPG+ddfybhUVrGeic574Yz2fzYHt54dDfh4SrkKgWtB3opqMxAKRcY6RxDrVUdJbjqcXtQKN+/N7Nxeys/PvM3eD1eShYX8vU/fZmKlaXseu4QL/9jCyO9E1SurWBqYJKkjHgQoHVPJ5kl6UwOSqsqr9fLaPcEWSVSTC64IFb0+ZjxF+wOd4wdVSd4KjgeL2Ui4PYbmxY4A6k7TvA5qaIoHqkCPB+py06ITymnX7EqcHzpt85myyPbadnZA0DNaeUc3toMwMKzqumq7eWu6x5guGMUk97C7mcO8MVbL+GyH5z/vuJ1432TgcaLNvMsFStLAVh10SLu9rdV1o0aKKhMp2mHVNUw/4xK6jc3c88N/6D9QBetuzsY75vi4m9v5Po7r2b5hYv4/I8uYN9LtUTGhpOSk0j7/h6KF+Uz2DZMQnocdqudmQkj6QWp7zi24+F4lpSpwDZBEJqAQ0h7uJcFQfi1IAjn+8/5liAIrYIgNALfAq4+qVGF+MTgdnmYNc9VgTuCPJnOWRdmvRVRFDnwaj1v/Gs7sxY7//jxowGjOVEWnlVNzbpKYhKjuPDGswP397cMowqqFnfZ55w1wbPUaNc4Y72TiKLIzmckR7tSpeDa31/BrMlG654OqdnHyiI6DnRx84bf8ZfvPMQXc27ga5Xf56W/vf6+xn2E45E6bwJqjnF/sBBsQA49xGeHXc8e4K/f+RcIAqXLilAo5VgNNtIKUlBrlShUcmKTYzDpzCRkxqMbnWHWbCcxI/59LysT0uP54xs/w+10BwzsgZuf4Ln7XicsSsOC9RWM901hs7koXVaMUinHZp4lvTAVr8eLNkJDXEoMMxNG5p1+tCsi+MIxa5prq9zXOBjopHNw0+GTqoYIZZqEeN/sfGpfwBGRmptI805pJ5FVmk5/8zAwTER0mFQ5/kYT8WmxfO6H53Pxt9+fqvMRBEE4ajZr3deFKIrYTHZcdjdj/tSzpIw4mnZIroaE9DhmxqVeemFRWu7Y8SuqVpUd9bp37vw1f/vuv/B5RVxON3GpscSmx6FIjScsOgy33cW8tW/1F54YIYML8b7JKssAQBCObvwRnE7l9fqYGpIUo/VjBpZfsBhtxKnN4l972VL6moaITohErZmLm2mDvKjaCE3AezlrtlOy+O2S6fnVOZQtL+a/f3wBgOLlJbSjglErGesXcvtdV5y0KGzI4EK8b778s0tJL0jlXz97nEObDlO+ogRluJaBznHmnVmDfniamNR48Hlo3dlG4YJ8BlqGyK04tc04L/7mWUTFhPGna/7GVO84pcuKcMmUNBwcoHLDQuSITIybmbdxEWMtA6Tkp/Dqg1u54IYz6WgaxmyYZcnaErxeH2b9nGK0IkwFkngZMo3qlCgwhwwuxEkRGRceqB7obRzALUj1ec37ekjLS6LtkFR5XrW+mobNTfzfF+9lckjP5T+64JSOY9Y8G3DEWGesjM9Izpv2+sGARLxu3EhOXjzNuzpo3tVBw/5e9tdL6b8bL6im/tk9TAxMU722HF9UOANOkcqqJIzGWWLjwtm9s5OVq4/di+94CZXnhDgpUvOSSStIAaB6bXlAY1KhlB+Vb+m0zXkvg/sOnCoWn11DxcoSYhKjOPPqtWQUSLqSGbkJhPmXu4Ig4A4ak8U05yQZaBlirHcSn9fH5JCORp0Dk8VJc9MwM3orjQ1D/PJnz9DY8M7ZKsdDaIYLcVJkFKbyQMOfGO4YpXB+HkadmQd++Bj1bzSAy0Xx/ByUGhWzFjupecloUuPQKdUYZqxERYWxf2838xflotWqsBishEW+vwLQlJwk7tj2C9xOqSXyRTedzR+u/it7njtIZFwE6y9eyqXfPhulQsY9Nz2ExyfitDtJTolCJoBGrSA6MQrTtJnEsnT0dgGn3Y1KLcceZKQazclpYIYMLsRJowlTUzhfqvKOSYjC6Q8SAyQXpNKyVxL8yanMoteroH97J4cbR1CrFUxOmEhLj2V1SQIv3LuJ7NJ0fvroTe9L+VgmkwUcNmqtirFuKRfDMmOluCab7GIpaL3uyrXc+e1HAEjNSWRiUMeEKBIRE0HS+fPYbXOQkh1JhSKC3o4JYpLDCI/UcNbGagoKTk6RObSkDHFK6a7vw+vvISAIR3ssVWFzxz6vj0m/gvTYqIFtT+zFYXPSWdtHy56TE3Wdtdj5359eIjY5GrlCTmJmPLOm2cDjbtdcIFytVXFEuW7W5qRnVhIhmtBb0E2ZMRlnGezXsfa0MjaeO++oWrn3Q2iGC3HK2PTwNu649n5A2s9NDU1z6OVaKk+rQK5SMtgxRvWCfPRyJdGxYQgItDYNUVyQgjxSwdTgNOoIDcr30VY4mAdvfpyX/74FgHmnldO4o40Hf/oEA63D/OjhG9h45SoEQWDbswcZ75+mcnkhY5NGolcXkB6uorFrjPzMBML9W025XEaY6tTMTaEZLsQpY9Tf4wCkzjlHvJf9Df007+nCrLfS8kYjHpuD1qYRWpqGqSlJp+dQP51DZpZ8+XS0xbn86ecv8PRDu973OCxBrYN9Hh+iP/52JCAOcOYVy2nZ14Nu3Ejz3m68K3KpHdXR2DXG4oosekZ17DfrqFmaRezkFH++4m7+d8dL73tMRwgZXIhTxhlfXk3RwjzS8pM548o1pOQmAZBVmkGkv7GhUq3A4Zmr0rYHaWA63SIWkx2vx0ftrve/rPzGnVey7LwFVKwtx6FUkVWWQXRiFHGZiUz4q8A7Dw8QHu3XPhHA7pjLvbQHFc3adUb0fZN43F52PPVWkYMTJ7SkDHHKyCpJ5549vwVBQC6XcdZVa/npxt/TsqeDmKRoFpxWSvehHtQj45QsKEENOKxOElOjiYjSolDKiYjW4rC5qFlW8L7HEZcSw+W3XML3PvcXAGRyAYU2nH07umg4848sPK2MXS8fJiY+gvmVGQw39SO82Ubc6aWo0mJxuNwkx0WitbkI19uJiA3HZpwNtLM6GUIGF+KUEuzS10ZoGOqQAsvGKROmCQOGCSNMGEkpzqKlbRKA/NJUetslj2JCchR/eeYmktJiTmoczqAKgbAIDdYpyUFjtznpPDwgjUlvZTYpnIl+aalZVpLGXqu0HC0I06L/917qRZGYpCj+euj/yD9BFetjEVpShvhA2Xjt6chkAoUL8siflwOATCYcVZQaLK8nwkkbG8C8ZQXcct+XOf2C+fz+keu4/lcXE5MQScWCbJLTopHJBJIz4tAEtVVWRs85azReX8B76XK4T4mxQaiZR4gPgekRfSAP8bWHtvHfu15jalhPxZoyhPAwBhoGyKnJwWi0Ex2u5KxLF7PussXs3d6BNkzN/CWnRsn59mvv583HpIYg88+spmFPF6JPpGp5AUaLi5FhIyWnFSNq5OgaRklJDGesZZD0wlTO/spaTvvcsuN6n1AzjxAfKcFJv5HxkUz6qweGW4cx2SQHRfPWFuKToxieNNOyq4Ot2zqoqx1AEOCmn5zDORcf8/d7Qpj01sCxx+kOeC9nHT6GhySF5YED/dj9aWi6MSPJkWoad3XQuKsDuULO6osXn9QY3nNJKQiCRhCEg4IgNPqrun91jHPUgiA8KQhCjyAIBwRByDmpUYX41JJRmEJSZrz/OJnwSCnPUalS4Aiq0jYFCkDBGOTmfz/0twzzgzN+S1/jIEULcqlYUYzD5iAtN5HYpCii48KIS5JyQNPzEtFG+HMv5bKjvKjBy+D3y6kSgv0qYBBFsUAQhMuRNE8+f9KjC/GpI6csg7/t/TW3XHQHLXu7iU2OZv6aUnq7JgiP1JBekIwsKYpZtZKEpEiiYsMZMVixWBxoNEoO7u9h0ZJ8VCcgq77v5Tqa/S2JY5OjA5ksETFhOEWBujdbCIvSUr6ogNbaAeKToylaUcSgxY7a7SF+YgZtWhwv7emmYEkhiUG9Fk6U45FYEIH3EoK9APil//hp4D5BEATxo9oghvhYEx6lZdDvvTRMmjAZrJhmbJhmbJScW029P0BdXJhMW/ckbdtMNHWO4TM6mJ62kJObyN33fjnQ9bTzUA///sWTRMZF8I27rubAK/WM901yxS2X4LA6mB6ZQRAERFEkLH7OWDThamwz0kw6a7Yz0iepeuknTUQLMOlX86peVMjhpmHQ9/PH217mT7d94X1/9uO6TAiCIAfqgALgL8cQgk0HhgFEUfQIgmAC4gHdW17nOuA6gKysU1uEGOKTxYar1vD8XzdTND+HrIpMejsnEWQCiqCZSxkUYnB7vMxMS7lWA/3TgXxNgEd/8zSHNjUAUlX5kR7k7Qe6advXjcPmpGhRAbKiLJp6pij7/CqEcR0mi4vK8kiGO0bJKklH1KgxH+onOSsObVAOqCJoHBERc62N3w/HZXCiKHqBeYIgxADPCYJQIYpiy3s87Viv83fg7yB5KU/0+SE+PXz9/y7n4hvOJNEv4lo0L5un799K6/P1zD+7Em+4hoGhaaorMyTvpVpFSrmW9rZRSkrT6O+fZl6N31UfpLbn8x2dxeLwO0D002ZmBGnmbO2cJN7lwjhpYmxohuKaLJrrpDq3mvUV1HZPMnKgn4XL8pnUWzjcMMi86izKStO55CSdNycUhxNF0QgcEYINZhTIBBAEQQFEA3o+xbQf6MZikFbaXo/3A9HQ/7STGKSYHB6pZWrUgOgTmW4ZpbFlGJPZQWPzCNYJM+2Nw7S1jlJemUF72xg//O5jvLFJahzysye/x8XfOYfSpUUMto5QuryIwgsX4ajOIW9BHpoIDWmrCknJkHoNJCZHIQtSkA6uHnB7fYh+C561OhkemcHnExkemeHar64hNvbkurueEiFY4EXgKmAfcCmw9dO8f/vdF//Mjv/tIz4tlsu+dy7P3bcJTZiab9x1FQdfPcxg2wjfuu+r76um67NKVkES8cnR6CdNpGbEoXM4sdvdqFUK7Na5AlCbVZqxRHHOk6nSqChfXsyzd78CgGxMw3hSLEyYkGXGE7Umh632WdTRIstrStg1PkpETiJLzemYxkxYLA7yq7LQahS49GZSE8JxujxEGk1Ea5WY7G6yojXYbQ604Se3pDxVQrD/BOIFQegBvgf85KRG9TGnZXcHIO0Xtj+1j8mBaQbbRnj8d8/y7J9fpW5zE7d/9W8f8Sg/WRRUZPK3N35EXmY0Tc/uI65jlCW5iUQ19ZOmN1CSFk1VjArtyDRxkWoKC5MZHtBhszlxOd0MdIwhV0p7rei02MDr+kSYckmufafXx6jgxCOKGD0enGoZA50TTI8ZUajktOzppKuuH2//BOZth6l9ai/CvjbKnbM0PbiZ6+f/mJHu8WOO/3g5VUKwDuCykxrJJwCLwcrz920ioygVw4SR5NwkwoIk35TquTShiFPYWP6zQmR0GAONAwDo+yaJDFNiGTdiGTdSlRJDs79yvHR5MS3t4/S0j9PROITlQDszkyYyy7KJSYqio7aPapUa77xsXIKAKkJJ+6yB3LR4VAo5CrmMKJkCrWduvtEEOUnUKkWg15xlxkr/4X4AxnommBrSkVH4/uXOQ5kmJ8B933qIbf/dC8D89ZUc3tLCeO8k1WvL0Y3OUP9mM5WrSqlcVcJFN539Hq8W4q2IosjGr57OSw+8SemSApJzEhloGUGukCMPCjpLx9Ke2T3rYGZSSkwe7p5gcliP2+mh52AvmVkJdJmlSu+q+Vns7ZVCEcviEhh7qoXDDjcl87LxeLw0HeijfFUJotODcdpE9foqBpsHyCpJx+cVadndQV5VFpnFaSf1GUMGdwKYgjQLPS7vXGm+xc6of6nR3zzEHVt/ccznh3h3BEHgm3ddyWXfOyeQjVK0pJBnnqmjYcxK9YZ5eH0ig3o7lVWZGKNsqFZBkayQni29lCwvZtZgZaBlmIiYMNAqwd8Yx8Oc91KwunH5699MM1bG/TVyrXWDaAQRh83BGJCbk0jTDklN+opbLuYrvz75XI6QwR0HvY0D3PethxnrnaBoYR4qvwpVRlEqsxY7kTGSnLdudIac8gwsBiuRsRF43B58PhFV0FIzxHtzxNgAtCmx6AySc2TSKTI+IuU8th7qx/1HH3avC66HBSVLaH1zCkGmYvHFy2ipH2R6Vx9LNlbgnLahe7GDhWuymM0JQ6fwkbw8E0vTNCmpUXg9XqbGjCSnRmELuqg6bXNpXQlpcx7VkyFkcMfBvpfqAo6SuJRYmg9KV73w6DCcNjt1I3q0ERpKlxbQvLONayu+x+d+fBEvPLAFTZiaHz14HQXVp6a847NGbkEycfERzOitJKfGYNDbcNhdaBNU2HxzycgWs+TJFH1g94g4Zv1hmgEDvbUDAMg7pqmNlvZq8jKByoMW6p4fRB2uZt6qMho2NxEZH0HNsnymBqdxO90UzM8lLFzN3hcOsPDMqpP2PIfq4d4Ds96CfswQuB0WdbRe/ZHNtd3qYMzfbXNm3MDO5w4xNaxnqHOMbaegNP+zSklFBg88eQNZuYk0HOonMkpD5bezmf2Rm8ywBMqiMqiMzkZ5oZzozDCKSlNRhmvQaFWoNArCw9WBrq3haVGB1xUEAZO/Y6vT5mR6YAqfT8Q0bcFlczDcMcZE/zSaCC1NO9uofb2Rn1/w1mjYiROa4d6FnoYBvrv65zhsTgpqcpAr5DTtaKN0aSEKlRLDtIWq09MYaRsio1jqpmmaNpNWnEZYtN9LKQhEBAVLRVF8X40IP8uERagZ6pfyHKcnzXgzRCxuOxaPnXkxuTQYJS/ivK/l0vVzaS+dW5aGsX2EQ280kVWUimxVNg3j0yzSJuONFvBNu4n/zhlMPX6ArPl5yDUqRnsmiUmMOqozjzroOCw67KQ/S8jg3oXxvsm51KAxAwa/N6x9fzeJOcnoxwyM9U5SsiiPJn+rpgXnLKRxXy8TU51Un1bO9JiBR/7wEjOTZqKiNbzy4DbOv349S8+ex9N3vULVmjI2XL32o/qIH3smhnQ89ZfNVBQl0tI1TV52HPJuGQM5oPTKUEz5wG8TckfQhcwrYjZIZT3DvZPo8jSIInS1TpCbFkf/2Az9wKKvrqWubghmXSy6cjVtD73JocEJKtdUYJ910bCjnarTKsksTObzP77wpD9PyODehdKlhdSsq6B9fzfZ5ZmER4Ux0j1OYmb8UUm2nqC0Lm9Qaf6szcmY/8q89ZkDWCekpem/f/0Mr/1zK5MD07z52G7CIrWsvmTJh/jJPjn8/usP0eXX81+wppTDO9phL5z2uXL6N/fSN32Y5V8tR/SqGd01QWVpKjabgzCvl8KqTPraRildlMtgYjT9UwaiIzTIgu0yqBOrWwCPP83LrDcz3C3lXrbt7+H2zbcik538DixkcO9CQlocf3z9Vq6r/gENW1tQKOUs2jifhu3tqLVu5q+rQDeiQzeip2RxASqNEuu0mcyCZOyzTsl7mRaLbsxAVmEKQw4XVqMNhVKOM6g1b7A6cYijsVmC2hkHNQRxDzowjEsrDsseE8OT0mzWcaAXcdaO6K8mKKjKpGVfL7JaGau/vpIDA2OM6ywsKc3CrrczOWSkpDAFpdONt22IzOI0DJMmEtPimLW50Y8ZyCpNZ9b8/+2deXyU5bXHv8/MZLLv+wohGwkkgYAQQHZRAblV24tiW2+1UovWilKvvd7aeqty5dbaunaxBaGtrbXtdblFobUKFWQJS/aV7HtCMslMklnz3D/eSTIgSyAhCeH9fj75kLy8M5zDmzPv857nnN/pG5ViBjXgLoIQYjBpYrc56O4w4bA76DU6sFlsVOfXAhAcFUiec7C8d6A3Np2e9kYDHl56ps+Ko+ifxQSE+jFneRqnjp/C3UNLytx43PQ63v7xu8SmRNJW38Fn7+dw5+O3EhDqd16briX+a9cmXv3uW9jMFnq7TITHBKH3cEPrsOEb6IXJ0EtwsDctnWasVgf+wT509fQONmwOyCr02/ox9pix2ByAA5vFQXmRkuTy9XCj6vW9AOj0OtzcdeTsPYmnrweZS1PJ21/C/XOf4Km3HyFp9tQR+aMG3DB46JWv8/Mtu5i3ejZT06dQU9SAp48HHl56NBpBf7/Ey2/ogdrL15MOo7LMNPdaB7OXhrZujKe7BwddhMaGkLevCIAfrn+BU86l0/63D/FmzWtj6OHEJXpaGNkrU3l1y28AiEuJoOpACVWAf6gfoUGe5Lx3iIj4MGIXzqQ0v4G4GbHo3QQarQ4EWPpsRE4JRttjx91Nh1Yj8HMweO38dBoGNKM9vN0xOZ/9+oxmmqvbkFLS3tBBbUmDGnBjwfI7F7F0/YLBNXxMUjhP3/ETjuw+zrTMKejcdOQfKCV1YTI6nYbW2nZmzJlCS1MXEdGBSKuV7g4jCelxJGbGUXK4HCFA7z60lHTVy3Dt6VIBh4tSs95jqIjAZrHR1KaUkjRXtaKNaKXXZKG6opW0WbEU5SjZy5lz4ynYVwSHK8hcmEhTSRMFHYVMz07AQyMoe+swM1fMQvbb6bNBor8nlUdKiM+IR+i0tNaeJiQ6kD6X5e3logbcMHF9YLaah0qDOpsNGNqVZUvp0UoCgr3paOqkpaqV1OxkcvccB+D2zWvZ9MLXAEiZl8jvnvkTOXtPMnNxKhqNhurCOjKWpGJo68Yv2JcPfv0PVn99xdg6OUG57cEb0Xu48cnbh6gtbSBj+Uzaa9sIigpC9ksKD5SQPC8Jt/AAWlpMuOm1aLRD18t1E0bTY6XPKUrUWlBPr0H5vvhYFZFJkTTXKCIFaXOSyHdmnmevnEHuvmJefmQXdWXNbHr+K5ftixpwl0HagmTmrMqg+FA5N9+znKN78ziVW0NUQjjS5pqxHMqA+Yf4uXzvO6j2W1tUT7fzFyBvfzGhscHUFjdQ8GkJPoHeLL5dzV4CLF+fzUsPvwGAoc1IeKQvBf9UAiJr3XzyClugvZ65y6ZTnldHcW4dmYuSsVts1JxqJW1hMhazDZ2PJwlZU6ktaiBpfjLt1S00lDYSEO5/xv6ozWXWgMPmoN+ZhKkraxyRH2rAXQbBkYH89+4n6DX24eXryVe//yVy9xUza/kMzD1m/vKTvzJvbRYh0UG88tCviUqIYM3GlYOvj06KJHJaOE2VLcROj6K2pAljhwm9hxtWF6k4D2/38XBvQlJwsAyfACVJotVpzsjy9pqHOrYtvVa6nB9gxq4+KgvqAKg02zDbBubWCeIyp5F3ok7JPN+eTe6Raux2mLUsle7mLjpau0maMw13Tz3WfohKCMdsMrNyw6IR+aEqL48TfaY+nli9lYIDJfiH+rLiriXc+fit9HT18urmHVh6LGi0gkdf/ybNVa0c/utx7vrP2wkI9R9v08ecZza8yP4/HyYgzI/E2fFU5dei93DDJ8ALjwAfrEKHwWjBx9eTQH93ysva6O21MHtREnn/LMVmtRMZF0xzU/fgHqlfiN/gxnhyegxl+fUAzJwRQb5ThCghI47KUiWd4hPgxe9OPHtGFcr5UJWXJyCePp6Dgy662oxkrUwnKCKAoIgA0q+fzhtP/gGAZ+/8CeXHlYf/g+8e5bdV1172suCgoiNpaO3G1NEzuE2TsWImhQVKQExLi6Jiv6JxEjIlFPeoMHIOVRE5NYyIMB+Kc+uInx6Jm16LlKBz01In+4mJD8XdQ4/OTYuHhw5PT92gpJ63S92st6/nsILtYgxHeTlWCPGxEKLIqbz88DnOWSaE6BJCnHR+ff9c76WicLqpk198Zxfx6XFotBqmpMUMPtM5HA4MTj1EAJ1La88klom5IDf92zI0Wg0xSZF4OrUohRD4hw3d7d30Q1J2Dns/7S3K/2FTg4GaijYsfTYqixsBQVleHUXHqpmaFEHxiVpOflZBcmoEtpbTHPkgl8TMOFKuSyD/aBVpc6eRNm8aencdb2x99wzBocthOHc4O7BFSnlcCOELHBNC/E1KWXTWef+UUt4yImuuEV7+1q848L9HAMi6IYPjf8/j1Ye3U3y4nOJDZTRVtpC+JBWBoDK/howlaXSd7sYnwJvdv/qIm+5Zxr63DuIT6MO81bMxdpo43djJ1Bmx4+vYFeKeH67H28+T1x//LXUl9WSvm8PG575MbEoU727fx6d/PEBNTikzsxPobDPiH+hFhJ8vpVVdJGfE0N9nobPdqOybnmdGt8NqH6xk6WjuoqNT6RQvyqkkIMQXQ7uRt17eS0rWVBbcnHnZvgxH06QJaHJ+bxRCFKMIv54dcCrDxHU/x+7yidl4qpmmSmVmWl1pIwZnsXTe/iKCowKpKayn8EApH//+U05+rMiC3nL/Kv7x5qdY+qxs3PYVvvjI5PzMM3YMNYZqNRripivdGYvXZPLqRmXwoqG1i+CoIOoKlAKCzDuWkFfVhkBy3eoMCsqbKW7vJnNpClZDL9UFNaTOilPqX61WpqXH0niqhbiZMbjXddBU3U5IVMBghhIYcQXQJVVjOod0zAbOVl4GWOAc+PGBEGLGeV7/DSFEjhAip62t7dKtnSQ8vushlq5fwJf/84vct+3LTJ+XSOS0MLx8PQmLU7qdY1Oi8A1SavfcPfVYzUNScSbDUONlbUkDvcY+HHYHJz+5ZG3eCY+518Iftr3D8Y8KiE2JIiwuBI1OS6tzAo+UcrDG0c1dh9mlS9vkzF5KBH2AqdeKzdZPjxAUH63E2NFLU3kTZUcqKDtZS1VVBwFJsZzMbaLdZCdrUSLtxbWYW06zZN1sXnh/C6lz4kfkz7CTJkIIH+DPwGYpZfdZf30cmOIc+LEGeAdIOvs9VOVlhaCIQL73h0cHf376/e+yPmIjTZWteHi7k5gVT/7+YvxD/Zh70yzKcirw8vUiNiUaoRH0mcyETw3FP8QXjVaDX7Av1j4r1930OXG1q56T/yjg10/8HgD/UF+MHT201h7i2N9y2Vn2EiFRQbye/2N+9uhO8vYV4u3vRcz0aNwiQ7D5+RBsh8AgH3Qagbe3OxaLFT+HDa2bBoetn+BwP7pOmwafjzudtZc2q4PTtW047A6Mp00kJIeTOnfkc+qGO1vADSXYfiel/MvZf+8agFLK3UKI14QQIVLK9rPPVfk8ps6ewQtu7rHQWKFk3rrauulq76L7tInu0ybC4kLI26+s5JPmTKMspxKA8KmhbC/+6Rmb65OFgY56UGpUu5zzBXq7+wbL4UKigzEZejC0dmNo7SZjXRz5TT3Q1ENKWhSlRcpmdVSkH31FleQcLCQ6KZIvPPIFVn95EQWHT/H7l/ZgNpnRe+mpqzcQNzUEnd2GtrAO30AfHKN0exhOllKgCL0WSylfOM85Ec7zEELMc77vpJY6H01ikqP49msbiUuN5sEX7+W2b69Bq9MyLWMKPgE+gJLGdnMZj+vaiazVaSdlsAFcf9s8nnzrEb7w4E1s2/s9Nr1wN+HxYWSuzGD3jk/o7++n+EgFOr1Tq0SnxS8iYPD1roM4sNoHn4sbypu4cf189O46spakoNMKKvLrKDp8ivi4IAoPlJJ7uJL0VbMxO2Dn1nd59p6fj9if4dzhFgFfBfKFECedx54A4gCklD9HkTffJISwA33AnZNZ6vxKsO6bN7LumzcO/qz30LPje8pSatbKdBrKWzjxcTGZy2ci+yWnCurIXDYDk6EHd18vPnjjE1ZP0s7xJV/KZsmXsgG4/eG1HN9XwtG9eeQfLKPgQBmHdp9QztuwmPueuYPwKWH86XcHObKvlJriRjJmRtPV1oVPTw/+8xMpPXqK1HlJnMqtYeaiFACES62sa/G4w9E/WDdbVzoy1WUYXpbyU86s/zzXOa8Ar4zYGpVButuHHpMtvRZOO1t6GqvaBjd+8w+WExARiKG0hZKcKoIjApk3gpT11UKPU9wVwNQ1NB3V3cudyHhFVWvh4hS2P/8hAAVHqvBqbqa2S3ldanYSRYfKeGzV0zz+xoMsW7+AH2zfyPat71FyvJq6imamZ01F9Duw9VqYmhpNe1MnN9+9eMS2q5UmE5S196+i8LMyrGYra+5bidHwfzRVthCdEI61z4qxswcvP09sLvIOXn4jGzRxtfAfbzzAy5t30tfdi7G9i+jEcKSUWHvMtNWfJiQ6iMKDpXh66ujrs+PhoTuj9nJg6lF/v8To7BZw99STmB7Le9v3AeDpqafJWagsNII3S54ncBTK6tSAm6DEpkTz4oFnBtuClt2xiEcWP8nJj/LwD/HljsfWsX7LOgxt3ex65i8svGUOadmfSwxPSsJiglnxpflsveunys9TQmir66S+oJZje3KJSY2h7FgVwVGBpGYlUHqgmJBpEQSG+3Hz15bhE+jNSw/+muCoQCqOV9Jr7EOj1VBX0YJWp8Fh78cvyIeBBaTOTTsqwQZqwE1oXHvwPLzcqS9VPnG72o3MXj4DnwBvfAK8eWLng+Nl4rjRWjeUAPfwdh8SburupeJENaAorXn7NWLq7MHU2cMt31jJyruuB+DeZ+7gua+8RPHBEsqPVdLeKzEaeolNDMcvyJviY1Ukz0tEh8TUZuCnm17n/h99Fc+xmICqMr40Vbbw1rZ3SL4ugcIDpcSnx1JTWMfsFenjbdqYY+w08cTqZyk5UkHqgmT0eh11pY1kLJ5OW0MnwVGBaNx0FB4sJyEzDg9ngLi5uxE7fWgQR3f7UOWKzWrHaFCWnI3VbdRVKNU+5QUNRAXqqS2upyq3moSMKazbdCMjQQ24q4CXHnydnD25AMxeOZMTHxVQcWIHjadaeOCn95zzNSf+kc8ff/Qu1982n1V3L2XPjo8JmxLK/DVZY2n6GRz/KJ8/vfA+y+9YxKq7l17WezRXtVJyRBFrKv6sbHAJ2NFsID5jyqAk/ZwbZ3HiE2XPcsWGhdz37AaCIwMG32f1fStpKG+itqSBLz66jj1vHyXnk2Km3ZxIb2U3dfmNBAT7oBFDz8h+ob6X6fkQasBdBVh6h8q67NahjeCBh/9z8fS//hhjZw85e3LZu/MTij5TZqtt+dUmbr53fKQbfnDrNsw9Fo5+cIKI+DDSF6de8nsERgQQnx5HVX4tMxam0FLTRntDBxqtBpvFpRHVpRTO28/zjGADZYn+rZe/Pvjz/NWz2fD+Tt4zNaC9Hr64P4XcXYcwagVzVmVgaO/mtc078fDyYP6ay6/oUQPuKuDJt7fwy8d2MS1jKlk3pPPSA6/T3y9Zu/GGc54vpTyjQsNkGEqdm12ydVcSh93BwfePkbk0Db8gHwytXWeIrrrOaLgUQqKCePXoc1ScqCZ1fhLGThN//cXfWLp+IRqthp89upMZi1JIW5DCi9/aDkJg7LXT0dJFUPiFEx/NKNsGDgHG5k7sFht2FA2bU87nwje3/mVEAad2fF+FDGc+QX15E7/YspPO1i7MvRZsZhup2Unc++xdhMWGXHEbN87+d2qLGwiKDGDlnQt595UPCAwPICYlknXfvInsW+Zc8RkLFfl1PLTmeQB8A7z4Q+6zF1RP/qihnO8d/ZBobz9CPzNR//xhdHodMxYkc3RPLv2OflZ9dQn//saFk1QX6vhWp+dchQznFzUmKZLopEhKj1RQU1BHUlY839317TEJNofdQV2JklHtaDLw2fs5mHssNFW2kL12LgvWzR2TgSbGrqENcoej/6JS5Sujk9iUtoDj7Q3sSerC+6nrsFvtHN59gri0aJ7683d4bMcDI7JJDbhJjIfXkAhRUETgBc4cPaqq29j6o78yY20WWp2WxKXTcb9eqbJ3D/SiP3bsaj4zFiTxtcdvITE9hm8/N7zppV3WofYebP1DTamNBhbdet2IPyjUJeUk58MdH6Nz07J8wyK0Wu3FXzBCHtj8G4qcd7eUG6bw6Wll+3hxVCS5HR0YLRbuXTKXR28eeZnUlaDHZmXrib9T8/dy/D5sQZgltSUNzFyUwr3PbiAp6+ItOqqI0DXMzfcsH9N/z+LSwd7nMmm5V6+h26zcLQ6fqhtTmy4Fbzc9T0xfxq3ZO2hxHotJiSJnz0lOfJTPtr1PkrnsnP3Vw0JdUqqMKv/z9L+y9PoU0mfEYK8wkRAcRGpUKBohCPf3Qa/TsiItYbzNvCB9zlKvAQZaehx2xxmd95eDeodTGVWCg32YM3sqL7y8B4BIgsjzUfYLvfRufLjlXsKdPX4TlZDoYH6y/4f870u7WfuNVRg7e/jZ5h3MX5vF9Pkjq1dVA05l1HFzG7o7ePl5QL8ScBohJnywDZC2QNnLG2C0JOfVgFMZdVbfmIGPjweNTQZuWZ3JOyeL2VtQxj2Lz5lHuKa4aJZSCBEL7ALCAQn8Ukr54lnnCOBFYA3QC3xNSnn8Qu+rZilVJisjzVIORwh2NYpKVxIwH/iZ808VFRUXLpqllFI2DdytpJRGYEAI1pUvALukwiEgQAgROerWqqhc5YyWEGw04Lq5Us/ng1IVglW55hl2wF1ECHZYSCl/KaWcK6WcGxoaejlvoaJyVTOsgLuYECzQALhOkohxHlNRUXFhVIRggfeAu4VCNtDlHAKioqLiwmgJwe5G2RKoQNkWOHffv4rKNc5oCcFK4NqTjlJRuUTU4mUVlTFk3PrhhBBtQM1FTgsBJssEnsniy2TxA66cL1OklOdMw49bwA0HIUTO+UpkrjYmiy+TxQ8YH1/UJaWKyhiiBpyKyhgy0QPul+NtwCgyWXyZLH7AOPgyoZ/hVFQmGxP9DqeiMqlQA05FZQyZMAEnhHhYCFEghCgUQmx2HntKCNEghDjp/FozzmYOi3P54jz+kBCixHn8f8bRxGFxnmvylsv1qHYp95vQnMeXWUKIQ05fcoQQ8664IVLKcf8CZgIFgBdKudnfgUTgKeA7423fKPmy3Pm9u/O8sPG29XL8OOucHwPfH29bR3BN9gKrneesAT650rZMlDtcKnBYStkrpbQD+4Dbx9mmy+V8vmwCnpNSWgCklK3jaONwuOA1cXaRrAd+P072XQrn80UCA9rr/kDjlTZkogRcAbBYCBEshPBC+bQZ6K/7lhAiTwixXQgxNgL5I+N8viQ7jx8WQuwTQlw3rlZenAtdE4DFQIuUsnxcrLs0zufLZuBHQog64HngP660IRMi4KSUxcA2lFv8h8BJwIEiRpQAzAKaUJYwE5oL+KIDgoBs4DHgj2IsRshcJhfwY4ANXB13twv5sgl4REoZCzyC0vd5RZmQ+3BCiK1AvZTyNZdjU4H/k1LOHDfDLoMBX4B/AbZJKT92Hj8FZEsprwpxF9drIoTQoXT0z5FS1o+zaZeMyzX5byBASimdH35dUsorOt5nQtzhAIQQYc4/41DW12+epfx1G8rSYMJzLl+Ad1ASJwghkgE9E7zq/jx+ANwAlFxNwXYeXxqBgWHjK4ArvjyeSMrLfxZCBAM24EEppUEI8bIQYhbKw201cP842ncpnMuX7cB2IUQBYAX+TU7E5cWZfM4P5/E7uUqWky6c65psBF503rHNwDeutBETckmpojJZmTBLShWVawE14FRUxhA14FRUxhA14FRUxhA14FRUxhA14FRUxhA14FRUxpD/B5icIH8jTsbdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "carbon_gdf = get_zonal_stats_correction_factor(\n", + "'../../datasets/raw/h3_raster_QA_calculations/preprocessed/carbon_loss_T_downsample_sum_v2.tif')\n", + "carbon_gdf.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "bd259c0f", + "metadata": {}, + "outputs": [], + "source": [ + "carbon_gdf.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/carbon_loss_T_downsample_sum.csv\")" + ] + }, + { + "cell_type": "markdown", + "id": "e349cd7a", + "metadata": {}, + "source": [ + "## LG core indicators\n", + "\n", + "Calculate impact associated with palm oil consumption in the different locations. We assume that the purchased volume is always 1T.\n", + "\n", + "## Land Use\n", + "\n", + "Land impact = land impact(ha) = volume(T) * sum(Harvest area (ha)) /sum( production (T))" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "c8982541", + "metadata": {}, + "outputs": [], + "source": [ + "#get sum of harvest area\n", + "#%%time\n", + "oilp_harvest_area = f\"{FILE_DIR}/core_indicators/materials/palm_oil_harvest_area_ha_clip_v3.tif\"\n", + "oilp_production = f\"{FILE_DIR}/core_indicators/materials/palm_oil_production_t_clip_v3.tif\"\n", + "#mills\n", + "#gdf = get_buffer_stats(oilp_production, mills, stat_='sum', all_touched= True, column_name ='production_true')\n", + "#gdf.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/production_true.csv\")\n", + "##\n", + "#gdf.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "b8145a65", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FIDgeometrysum
00POLYGON ((98.47767 2.24508, 98.47550 2.20109, ...43619.566752
11POLYGON ((98.44488 2.31416, 98.44271 2.27017, ...47821.533207
22POLYGON ((98.40582 2.39111, 98.40366 2.34712, ...51549.914197
33POLYGON ((98.36445 2.43594, 98.36228 2.39195, ...52289.701241
44POLYGON ((98.51418 2.45678, 98.51201 2.41279, ...51958.511047
\n", + "
" + ], + "text/plain": [ + " FID geometry sum\n", + "0 0 POLYGON ((98.47767 2.24508, 98.47550 2.20109, ... 43619.566752\n", + "1 1 POLYGON ((98.44488 2.31416, 98.44271 2.27017, ... 47821.533207\n", + "2 2 POLYGON ((98.40582 2.39111, 98.40366 2.34712, ... 51549.914197\n", + "3 3 POLYGON ((98.36445 2.43594, 98.36228 2.39195, ... 52289.701241\n", + "4 4 POLYGON ((98.51418 2.45678, 98.51201 2.41279, ... 51958.511047" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMIAAAD4CAYAAAC+ADn6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABixElEQVR4nO2dZ5gcxbWw3+ru6clxd2dz0u4qByQkosgYbLBJToCNjRM4fcY44ozTdbq2cfbFxpHkQDQYMDmDEEignDfHmZ0cOn8/VsZgEGmFJES/z6NnZ7pruk6V5sypcOoc4TgOLi6vd6S9LYCLy76AqwguLriK4OICuIrg4gK4iuDiAoCyJyurra11Ojo69mSVLi48/vjjKcdx6l6ozB5VhI6ODlauXLknq3RxQQjR92Jl3KGRiwuuIri4AK4iuLgAriK4uACuIri4AK4iuLgAL0ERhBC/E0KMCyHWPuNaQghxuxBiy86/8VdXTBeXV5eXYhH+ALzxv65dBNzpOE4PcOfO9y4ur1ledEPNcZz7hBAd/3X5VODona//CNwDfH53Cuby2uLx259k7QMbAEFtS4KmrgYiiRCK10MwGiCSCKH61Gd9xtANfvaxy3jft84kXh/bK3L/m1e6s1zvOM7IztejQP2uCgohzgPOA2hra3uF1bnsCxSzJUKx4HOuT45muOnXt1MtVakUqxi6QTASRPZIjPWnGNw4RHNPI+3zWpFliWK2RDARobW7nnK+jCTv/anqtCVwpo647fKYm+M4lzqOs9RxnKV1dS/o7uGyD/PgDSs4d+b/e957tu2gawblYhVv0Eu0Lko2lWf13eswNYNFx8ynpjHOwMZhhraOICRBNV9m08ptJJrirH1gI5ViZQ+36Nm8UoswJoRodBxnRAjRCIzvTqFc9i30qs63z/wxF1/z2ee9bxkWvsDUsCc7nmVo6yjhRIi5h83CtmxGt4+hqB7q2hJ4PB5s28ZxHDrnt7F19Q5W37WW2uYEs5Z1v2zZqmUNj1dBluVptfGVKsKNwHuB7+78e8O0pHDZp1F9Kmd/8a1c/4tbuOq71/G927+K6vUAU+P8G395G+mRDKO9E/hDPnoWd2IaJoObhhGSoLm7gRkL2+la1IFlWWTGcqy6ay0nnHs0589/z7Rk++qp32PxsQs46wunT+s5L6oIQoirmJoY1wohBoGvMaUAfxVCfADoA94xLSlc9mkGNg1x55X38eEfnktqMI1H/c/X5qEbHuOhGx9DVmTaZjejV3W2PdWHbdp0Lmhj1rJu5i+fTce8VlpmNvHw2l7iFYPtG0e57brHeFtjnEQ8hCSJF5VjxS2rOOCYeU9Puq/58U0YmsEZnzxp2m0UezKKxdKlSx3XDfu1h1bReOQfj3Pk2w9FiGd/YT9/wjcB0HWd3jX96BWDGYs6WHDkHJadeABNXQ3Ut0/NDYdTOS75270wXKK6IcUWLEJhLx865whOOHb+C8qwddUOvnb697nw0g+z9IRFAFRKVT520EV86tIPM//w2bv8rBDiccdxlr7Q8/f+dN1ln2f7U/08ed96/u8zf+LGX93G0NaRp++947OnsP2pPjY+vIWmGQ0sPGouikdmzX0buPV3d1EtawDomsH1Vz/AZL7MU+U8hWyZtiUJfMtCXH7er3lvz8cZ2TG2Sxmu+u51tM5u5qrvXPv0tcu//jcaOpLcfOnt027jHj2Y4/LaJBD2Md6XQlIEuYk8rbOaaO5uBODANyzi9xsv4bqf3cqKmx9neNvURDkSD5NPF7jzivuoaUwQrI/x2KX3MPnOmTTOTmC3R9mUzZPD4LAFDSzqaaOmKfGcum3bpnftAKd89EQ+d/zXubL/10/fO/CERax5YAMHvWnxtNvoKoLLi9I+t5WWngaWn3Ew85fPeda9v/3vjdx/3aOM900QTUamFEQIbMtCCImNj24lny4gx2M0LJiBtyqzWp+kUtKZ0R3ngBEP3lof/RXxrLnHvxnYNMwnDvsi/pCfeYfP5pof3cR5P5iaYD90wwqC0QCBSGDabXQVweV5ueyLVxKvjxKtjXDcu47gwz8693nLvfnDb+CW391J54J2JEmg6wYCgZAE5XwJgFgygqV62NE/xurFcWZ7E9S212HmDcrbyphxlXBO57Y/3IPXr3LMmYc//fz2OS0sP+MQ0kOTZCfyvP0zpzx9LxQLIYTA1Ixpt9edI7g8L4oq89itqylMFl+w3BXfuoaGjiR6Vada1pBlGdOwMDSdUCxIIORnaMso63IW0c4mjrfr8aoeRlJ5fBurJKIB1LAPLSS4/5qHeeredc+p46OXnMsXrriAWDLClid2PH39qHccim3ZLD5uwbTb6yqCy/NyzJnLMXWDpScuesFyBxy3gFK2hEdVUDwytmXhD6p4/T7GB1JsWLGFi6/7LG8/93DsZi+P1+YoyDoNdRHEvCC5Vhlv0cLyKIz3pznloyc+p45vn/lj/vi1q1E8Cv/6w91PX/cFfSAEd111/7Tb6yqCy/PSNruZ5u5Gnrp3/QuWe+yfTxCIBnAAxaOgqArFbJnetf185S+f4pqJ39G1sIN3vONgqsNlZodqqA+GMGWbakhAuUJpJId17yZaZzVx+5/ufU4dx5y5nO1P9aNVdOo76uhdN8D91zzCtT+5GUMz+PuPbsKyrGm1150juOyST/7f+S94/8HrVzC0bQzJ70dUNfKTRXITeS749YdYctzCZ+05XP5/d9PcHGe4YuNUbWSvjJnTUG/ZRkBVSC5s45O/Pu9Zn9m0chu//tQf8Aa8BBZ1YhsW0SXd/ONPD9D/+CaGtoxSLWl87o8fn7aLxT5jEQa3jPDFk749bc122TOM7Bjnjivux7IdqlWD9GgWxa/SvbiTv//wH8/ZeDtgaQfajjQeSyBJAgObuvWT+BqijE8UuOPK+9mxpg/btgGwLJtf/Ppu1PYGJL8XR5YQzTU8urafVVtH6R+aJNlWS8+BM7jim3+fdnv2GYvw+y9fiQM8dMNKjjjj4L0tjsuLYJsWWkWnmC6g+j0kZ7ZiIfjKVR/DMp/7Y7byzvUEVBVjqEpldhDhg60HRsluK9EV6mZuay2/+MTvGdwyTCQRZtaybsJIWPEIdraAGM2Q8ivkVYf4siaSPXGqd2zk+3d8lcJkadrt2WcsQl1LLUIIFM/0TJzLnsEBZEUmWhfBRmL96n62rNrOyrvWoXie+/vqC/rAp6A6gmJBY3tqEm9GMCdRg1QfYFVUZbgqUX/u0URPXUx/SCJXq1Lo9JCp95IxNcKKhw7hx3pigs0/vIXCZJ4V/1xFTeP0TwrvMxbh2LOXc+9fHuLQt7ygS4jLPkC1rHHjL26lkq8wsHkESZFpn9NCx7w2lh33XJ8hy7ZJd/tJV70M1ZkENZmZ/gQln8aq7cOEJiUWSwGCCyIUSib5Gi/mgXVIBRvD0Im01eKrl8j15xnYNkFNXYSFpx9GQmW37CrDPqQIMw/sYuaBXXtbDJeXwL1/fYhHb34cy7JpntmI7PEwMZylf90g7/rMydQ0xJ5V/p5rH2HV4BCeeg/Nip9SRePh1ACS4TB/VgPBgIchU0MZsIkZAk/YQ1VxCKgy8VEH/fFherePE5AdFhw4E0fA+Ir1ZDwK2Yk8ydbaabdpn1EEl9cON/ziVlpnNVGtGIz1jpNJl2meUUfzohZ+/6Ur0So6oWiAc772dop5jbv+dB8NSxrJ+FWe3D6MadvM60niD6rkjSopUaHO8RNK+tEkC8cr8AsJLZ2lzzBpLlTp7EliVTUGH9mA8Cg0NtfQtbCdaG14t7TJVQSXl80vH/seqeFJzpnzaZo761g4rx3LsMiO5ynnyniDXkzdRAjBptW9WL4AYzdvof/4JhaaIWjzMaRojGaLJINBmkMRRBVMx0EoMpphUtyWIXlHPwsTIQy/TP/6QSqTOWYs7SEcD2FoOhNDabx+725pk6sILq+I2qYEp110OlvXj5BOFVALRWLNdTi2DTgk2+vYvKqXmQe084ef3UH8yFnUyR5yqSITAxkiC2toaanBlB30ko2MwFRs8lUd2YTuHWWcsI+tj22iXND49s1fIBDy0b9lhJt++S9Uvwe7KnHv3x7CF/Rx8ElLptUeVxFcXhHrV/fx0L2b8CsytQ0xRH0I26siUllaehrZsmILq+7fQqSzkdaZDaS2ptisQkM8xKxFrVgeQWXUxIxL+IREyTaxApDw+ZG35+h/YAvZ4TSdC1qJ10X51+/v5qI/f4Krv3c9odoIlm4iHIvb/3Qv0brItBVhn1k+dXltMWNWIy1HdFLTXQeKhBkNY/u85FN5TnzXYfzorq9y3NuXku4d4NFUFsOwOTBZQ4vHSzlboWDrKF4Z2QJHd4goKgFbYWBzmtXZIuHZ9Rxw7HxUn8pozmA0VeF337gW3bCRohE84QC25TC4eYR3f/mt026PqwguL5uffuy3XPbN67BHShh5HSvgQbdtNNOieW4LK297kvH+CX73paupzG1naUeSxniA7JqtjEbB7vYj1XnQouCVZLy6w8hIlvVj48QjfpZ6Q3izVbat3sFHf/I+Zs5KEvQrbF3di1BVtJiP8YEx0iMZapvj3PjLf027Te7QyOVls+jouVz/f3fgb2tCyBKlgIIPibaAh7eefRjxhiggOPn8E+nfMU5mqAATKRL1YfSwl6IKtl/gKUA6X8Jz5zCtxQIz/R6yuT76NwwRT0Y55ytvRytpFCZyWKaN7PeSt6CqykTbk8iTBSYG05z3g3Om3SZXEVxeNk/csQafT8UpVxFhlbAFueEU9929hpWX30OytQbHcRjZNoZQZJrmtKI2x7EAOWcRlCTGIwbZSYNAjZfgqV3knhxl6+/uJ7Z8EXOOr0OpVllz/waeeHArtgOWYWLa4F3QitcjkVq9g9HtYzTOaOBff7yHE889ZlptcodGLgxvG+XJe557IGZXeH0qQpEhrKCl8gytHUbfOEDHvGbiyQi9a/rpXTtAfUcdHXOa8SuCI99xKI4QWPkq+vY8iTFBcyRM1TBZ/Xg/lRtWM/fw2XTEVLRgkEKmSAkPpg2OJOMN+WntqiP/4AbW9KcRIR8Lj5xLrD7C3/73xmn3gWsRXFhz/wYevG4F8w6f9bx+Qs/ENEwcHCqVKkPJWqTuEJGIH9EbZ/vNm7GKFdpnNxMK+9CrBsVsmdP+3xvxqB6q2SJezSAU8JHLlFgTdPD7Pcw6uBH5oBp6UxViG2yidWHURA+2CXLVxmMZlCZyfPBPH+cLb/o2i8azaD6V3vUDqF6Vc7729mn3gWsRXFj2xgPYtHIrj9z0xIuW1asGW1ftwCpWaUYhqsus3TbM8LUbaJuRZMHy2ajxGNmxPCeeewwHHr+Qo99xONuf6mPmgV3omsHGhzcy2ZdibnMt7R21jIoKOxwdtT1GZH4S4l6qbVGcqJ9yWWdk8xB61eDBG1Zy1hdOY/PKbQxuHKJ1VjPt81vZsaZ/2n3gWgQXfvP5y+mY18Yfv3Y1y08/6AXLyopE5/w2+reM0Ht/P3q6xNLZjQSPn0fOJ1F+chC/MInUhvGHfE//Wi88ci61zXG+9Jbv03LSUpyGKEPpIqOqRaM3RtTvw9Ztyn4HOSAwTJuiVkHtDFDj60QtVTnmzEM5o+Z9dC/uJBAJoFd0ipNFZi2bvo+aqwguXHjphxGSoJAuvGjZ3rUDPHTjY5RyZTqOOxDfknbyFY30w+uJtdRQG1WxqzaSLJCV/7jU/+aiy/EFfdR1NTC6boTi44M0HdhBYzxJxQCtYuDUO/iGBWXbRPZ7kA+PkkVn0y15jIBE/uxLWHj8AVQ1m8xomkDEjz/iJxh1w7m47Ab+HdA30fDifv2zlnUzc2kXOhI5j8qO1YNE5tXTfkAnUq6EUSojhEAogs4F/8mHcdZFp/PzC35PHpWOBe10JCMYDmS2F/BU8nh76slHbOSqIJj0k6kx2DQ6RjVgsHhuDbVjNsb69YwUq8Q7mogcOgvHsPCUTbSyPu0+cBXB5WXzhcs/AZLEJ879LT1L23G0KvrQBBIgSQKtomMaJiPbx56Oe3r4aQex5PgF5DNlNj2xg8u/dQ2+kJ9EbQg7V4IiRDKN5CMOm9NpUnKVWUoNflshK1UZClSY7ZFo7KzDqQuh1YWRHIEYrzDvyHnTbpM7WXZ52fhDfv7ys9tJhlS0gTTVionH68GxHUzTwh/2k2yro6m7Ab36n1/rgU3DXHTCN7jmB9dRUxskFJBRNJ2FR81FZIqMbhlmq5kn3hZgTk2SjFplw5ZR4ms1Dsx6iMdCGLqFU9IwZYditkhuIsfDt62ZdptcRXB5RRx03FyK43k8dWG8sRB2Ioo34EVVPUwMpHj0n0/w1VO/x3U/u+Xpz7TNaaFrUQehaBAccCwHWZE56YPHUUoXqJmYpLsqyBV1ntg2jDzkcEB7M7H2KFZVoJU1FL8Pq6ShFwtEDYugIrhub7tYCCEuBD7I1BHWNcD7HMepTlsql32e7gVttHcnGS9VkUwTvB7SY1kKE3midRG6FnVQzJa4/Bt/4x+/uo25h84kloxSypcxNRPZI6GVdcrFKuMDaU7/xEn8+cc3sWVTlobJKEfPasEOCDJUkVYPEA5HwO/FkWW8kSDyuElfRKU8kOV7//eBabfnFVsEIUQz8AlgqeM48wEZOHPaErm8JsincpRHJhCD45TWbGfsoXWoqkLzzEYcx+Gpe9cxMZBm9kE9tM1uJj2cZcvj27EsG8TUfoQaUOk+oINYMsLyMw7GyVU4sK2OZHOUiVKZbL6CP+aBA+sotnhwuuuQ62KMKwprsYlkTWbNb+Gq308/0t10J8sK4BdCGEAAGJ62RC8Rx3GeEzvHZc+hVw0K2SKFySL+oJ/69jqyEzk2r9yGP+Rj3uGzUb0eyoUK5WKVQMSHR/ViWRYeVUH1eshO5Lj76gdYefuTNHbUk2iKMX7LE4iASv0pB0Czj3LAQuuIIVmQmajguydFKOxjbjJCXjfZvKKXP9z6mWm35xVbBMdxhoD/BfqBESDnOM5zBmtCiPOEECuFECsnJiZeuaTPYKxvgjObzyM/+eLr3i6vDrIi4/P7iCdj6LrBk/euY7w/zexl3XQv7kSr6Jz7rTN5+2dO4eh3HMb8w2Yz55AeVJ+HUm4qJKReMeg6oIPuRR189vcfZWjLKPE3LSH55gOw67xUhY2DRMUwmCiW8RqC2lm12DLcFkqzKlmkdV6Mu54nTOTL5RVbBCFEnKnE451AFvibEOLdjuNc/sxyjuNcClwKU6mjXrmo/6GutYbDTjuIG35+K+d8dfp+Ji4vn40rtpKbLDC4cQhJUZh5YBeyIpEZy6NXdZJttVSLGstP/0+wtlKuxKeO/hqSLNEyqxlDM9j+ZB+X9/6KH37gl/Qs7qScK1MJxdEVG8eEYlXH51HoLCnY6wqs2zSMOprmgAsPJmCBd2Arh1/8wrvhL4XprBodD+xwHGfCcRwDuBY4bNoSvQQkSeL4dx/Bugc3cvk3/87aBzfuiWpdnsHCo+YyOZyhbW4rbbOaSA9n6Fs/RDDq59izlnPCe4+mvuPZebW9AS/zD5+DL+Blw6Ob+d7tX+H/Vv8v/qCP5acfTC6Vp9AsQVTGMUFxJOrLfmzL4p7ECCNr+pjph55ZSdQbN1K+chU4DtmJ/LTbM505Qj9wiBAiAFSA44A9lilw9kE9zFrWjakbmLq5p6p12cmfL/4rdW01jG4bJ58p0jKzgePffSRdB3Qwa1kXtc01wFRGztHecVSfiuJRuPvqB6iWNGYsbOO6n/yTw047iAsO/xI1y+YSmdWOlgxjBAReWUIvWmxPT1Lq1Dn8AS+h2U1MDqXJbxikrjlBsj6B4zjcdeX9zFo6PX+jaWXVFEJ8HXgnYAKrgA86jqPtqrybVXP/YXIsw1kt59Mxv42axgSq38MFvzqPeDL6rHK3XHYnd1/1AAObhrmy/9eYhsm1l9zMfX9/hHK+TLKtFllREI112AEv6YMCVPwOI3IWzw6Zen8IOwgD1Tyxr6/kG3//NOVMke2rd7Dq7jVIkkTH/FY+/MNzdynrq55V03GcrzmOM9txnPmO45zzQkrgsn+RqI/zh00/4+wvnEFqKM07P3fac5QA4MA3LGT7mn4u2Bny3aN6ePP5b8CyLRpn1KOoCrZt4WQLmKbGuFUhU67QICI0xQIUNubY/MgItcMqXeceyW3/XMWdl9/L1id7kWQJvWqw0HWxcNmbNHQmue5n/6S2OUFmNPu8ZX7z+cvpWfLs0O3X/fQWEvVxDM3AqJrgQLlYoTqQoq7sod4OMra9yKN9I3g8Css6m6kL+SmkKwzct5b8ZIHCZBHbsvGHfWxcsWXabXGd7lymxZyDexjYNExkF6EXP/fHjyPJEqVs+elrsw7q5ok7nsLjU7FNC0O3CHS1YNSG2KSXGZ3I06XGOSrYDLbJgFnEqyjUzI6gOEmcviwer4xtOYz3p/j8n/7ftNvhWgSXV8QTd67hpx/7LWN9ExxwzDx2lfneo3qQZZlIzX8UZc19G1D9KjgOqt9D6+xmUqu2sG31EEFNYll9CxGfly3FHCOKTnfWQ1vVi2IKnPoEkiSolnUmBlJE6yL86w/3TLs9rkVweUXE6iKM9Y4TigU55WNvenkfdhwkSYAsyKUK/L+ff4DvvPtndFllJtePsfLAAuGgl9n+OAHbgzNSQZ7QkOt9aKki+mSJz1z2ETrmtZKfLBBJTD8QsGsRXF4RqaFJbMumY0Hb0wd7XirHnL0c1a+SHc/jD/m45PxLMQ2D9Q9tItfncNRAhIMmIwRGTIqmRrlWwZAcilUd/0SeA950IB3zWjENkw/M/SQrbl017fa4FsHlFZEaTNN1QAebH9v6sj/bOb+Ni6/5LAAbV2zhwiO/itevMnPpDAIdcbRJCz1dxOkIEiyCIUz0tgBqSCKlNnDLzes59eMn8LsL/0Dngnau+p9rOeiN00sYMq19hJeLu4/g8nwUsyVu/d1d3P23hzEb6gnXhPHE/JTjEv6sDUEPWQw2hIvIikRjNEQgb2Bf+jj/c/MXSI9kmXvIzF0+/6XsI7gWwWWvUylWuenS2/nQ98/hodvWkBnPYQuDYF6gVQxG/Qr4PHQ1xzA8DoOZHJHvPMTFV3+K+vYk9e3Jacuw384RyoUK5UKFSsk9J7QvYhr/cYv54Yd+xTFnHk59Wy2FoXGcYhm7b4zsE1upbOynVrXwtXvpG8rw5OAosYCfGR84nJV3vfTofC/GfmsRfvrR3zA5kiE9kuGydZfsbXFcnsHEYIoPzL2Q3238CbVNCd5y/gnMOaSHfLqIZdo4jkMwEiDREGdyJMvAzevJTeRpev9y5rU349M9vOvth6Dou29Yv19ahLuvfoDVd69lw4ot+IJe7vnLg3tbJJdn8I23/4h5h8/mmh/9A5iKcJFoiNMxr5WGjiTv+OypfO3vn+Hcb7yTtQ+sJ1YXZu5bl+FPRhgezZFOFalprgXb5rqf/ZN//PpfTHeuu99Nlkv5Mm+v/wCdC9qJ1kXQqzq2ZfOje77xqtbr8tLZ9mQvhmYgydILZlL97PFfRwioFKqMjucINMWom9+OFPLRE/Iz2ZciMzqJXtFf8P/3VXe62xf5zrt+wqKj5+HxKkwMpDCqBouOmr5Tlsvuo2tRB7MP6nnRdMLv/urb2LhiKxdd8QkOOHwOrTUx/KkSx8xrw6fI6BUdo2rwsZ+8f9oy7XdzhLde+GYuOf9SIrVh6lpqAPGsiZnLa4eFR8zlx/d9k+auRpaftox//OYujjllKW963/RyITwf+51FmHfYLD7wnbNZcvxCLNPCsiz3kP9rFCEEXYs6AFhy7AKiiSByyMu/VmxkxV3r6N00grGbDmXtdxZB9akc+bZDaZvTwtbVO6jkK8w+uGdvi+UyTYqZIsK2uff2p5hoi6LfvBmvz8N7PncyR5x8wLSfv98pwr/pmNdKQ1sto30pNj66hcNOWba3RXKZBpmxLLlUgcmsiZo2Ofebb+Pgo2fjUXfPV3i/Gxo9k5PPP4HMWJb3f/vsvS2KyzSZe+gsfAGVjpYYbTNqWX7C/N2mBLAfLp+67H9oFY3NK7ez4Ig5TI5lOLv1w/z80e/SvbjzJX3+dbl86rL/cddVD/Ldc34KwHfe9VMWHj2PSz/7Jz604FN8/oRvMrh5+gEWXUVw2aexbZvLvnAFn/rNhwE4+0tvpXdNP5NjWWqaEygemTuvmH7sU1cRXPZpJEni9E+cxBXfvgaAhUfM4UtXX8jyMw7BsR0MzSQQ8U+7nv121chl3+dPF/8VXTNwbBtJkki219HQmSScCOH1eQhEAmgVnT9//a/8aesvgKmYq4uOmkc4HiIcCzCwaYTTP3HStGVxJ8sue427//Ig/7z0DmSPhF4xprLthLzEaqMMbBpmx5o+/jLyG6oljWRr7Suuxz2Y47JPs/SERax/aBPlQhWPqjA+kEIra3zhiguwLItqscraBzby52/+HUkStM1toamrEa9fRZIFoWiQo9552Ms+M/18uIrgstcIx0NPO8xlJ3Kcv+gz/GLl9wCQZZlgNMj85bMJxQLIHoX0cIbU4CSy30c1W6CYKbHkDQupaXzxbKAvhqsILvsEsbooVw9d+hy/sGA0yInnHku1XOWevzyEI8mUclVkR/CG9x69W5QA3FUjl32IXTlHHnPm4ciyhF7RQVaI1YRQQ36u+p9rpxwrTWvadbsWweU1wY41AwQifoxKhS2rt1IuVGid2cRXT/s+siLxjes/P63nu4rg8prgTR88jotP/z7FXImGjiS+gBdDM/jM7z5CKVeZ9vPdoZHLa4K22c3MXNpFz+IZVMsa6x7axORojsFNI7T0NE77+dPNsxwDfgvMZyrX8vsdx3l42lK5uDwPn/39xxCSoJyvkB7JkE8V6F7y0hzvXozpDo1+AtzqOM7bhBAqUylmXVxeFWRFBiAUCxKKBXfrs6eTVTMKHAmcC+A4jg7ou0csF5c9y3TmCJ3ABPB7IcQqIcRvhRDPUdNXI8+yi8vuZjqKoABLgF85jrMYKAEX/Xchx3EudRxnqeM4S+vq6v779n7DMyNlXP/zW/jZx3+7F6VxeblMZ44wCAw6jvPozvd/53kU4fXCl9/yXQJhH1rFID08iT/kY3DL7lnRcHn1ecWK4DjOqBBiQAgxy3GcTUzlWV6/+0R7bfGJX3wQ0zD5/nt/QaIhRrQuQijmrh28VpjuPsL/A64QQjwFHAD8z7Qleg1hWf/Z2m/qauDhGx8nUhdGCMGbPnAcsbrnplt12TeZ1vKp4zirgRf0895fGeub4MOLP0vzzEY6F7TRNruFzgVtxOoj5CcKLDxy7t4W0eVl4LpYvELq2+s45uzlDG8dYXDTMOmhSU5471FEayPk0wXu+/vDhBMh6lpqiCYjCASqX90tvvMuux9XEV4hm1ZuY/PKbUiSRCDix7ZsHrrhMd70geO45bI7ufOq+8mnS8Rqw0RqwuhVnYGNQ3j9Xv7nli/RMa91bzfB5Rm4ivAKaeio45SPnMj6hzcx2jeBpCg8fscaGmfUc/Nv7iBaG6F9TpxSrsyGR7ei+j10LOzAF/By1Xevx7YsahrjnPrxN9LYWb+3m/O6xz2zPE0ev/1JnrxnHWsf3EQhWyISD6L6VLITeXrXDRCMBmmf24I3oFIpVDE0g0DYh+xRsEyTZW9czNs/9Za93Yz9GvfM8h7gwDcsontxJ0NbRvCHvEyO5Vm/YjvhRJC5h03F5ixMFiikC0RqwwTCYWzbATEVsHjVnWs48b1HPyszvcuex1WE3cC6hzYxsn2Mgc3DRJMx5h7SjSTLZEazGIZJbVOCWH0Mx3awHRshCQzNIDNZQlZk7vv7Ixx+2jKCsaA7md5LuEOj3UClVOWCw75ENBnFMi3G+1JYpk1jVz2BSADbsjENE1mRsU2TSlFDVmT8IR+GbjCwYZjMeJbOBa28+bwTePP5b3hZ9Vum9bRnpstzcYdGe4ir/uda/GEf21fvwBESrbMbCcfCGIZJOV9BUWUkSUKr6MiKRKQmhF41pvI3FKq0zmmhfX4rWqnC33/0D+684j66DugkXh/FH/RxxidPfsH6z2w+j9mH9BBLRjE0A1M3qW2u4dSPvZHGGe5E/KXgWoTdgK7pnFHzPrqXdBGMBtArOtVSFdWv4vF6sC0bSRIoqgetojG8dYxqWaNpp8UoZEqkhiaJJALUNdcgyWLngXQJf8jLiR96A+FECMWj4PPKxJNRgjv98WVZ4m8/vJEHrluBoRkEowFor8MxLJYdPJuG5jjL37IEWZ5yIihkigTC/teVBXEtwh5C9aqc89V38OANK0gNpQlGAoRjwan5gACPKmPoFkNbR9ArGnWtdag+D5mxHH3rB6ltTtC1qA1JkjA0HdMAxSOj6xZausSNv78P2aMwOZal78G1hOJBOg6dRyAaIpcrU9VMgi0NBHwCUwKnpQZPxeLxx3pJX/kg7bMb6ZjdzC2X3cVffnwT+VgN7ckQ7TMb8chgTma54Ffn7e1u3Ku4FmE3MTma4VtnXYI/6MMWAklVwTSpqY8wuGkYXTPxB1WEJDExmGasP02yrZbGjiRIoJU0HBy8fu/UpNp2ULwKsqqSK5uM9qcJRoPUBgUIQVaXME2L2oYYgVgAW0C5MQxeBatqYGycQDgQCXioTYZ472dP5j0dH6XprGOIt8YwDZ1q1SA4UMBn6Rz1jsOI1YZZ9oYFe7srdzuuRdiDJBriLD52AWvu34ASjWALQSld4J2fPYWFy2dz/7WP8tuL/szojgmaZtSzYPkscKaGKggIRYMIWeDYDsrOTDC5dIH00CShWIie7jq0qsFI3wS26qWxu5FQJIBlWehlHaHK2I5DuVDBV7WJ1YWxixp9QxlWjubY/NVrWfDxt6ApMGprKD6ZcCKCZEnYE0Xuu/4xwmEv8boQjZ1JgtHdexRyX8e1CLuRvg2D/Oaiy6k4HiRZoMqCeE2IT//6gwgh0DWDcr5MKVdGK2t855yfkWiIoXgULGtqGCUJiWK+TD6Vxx/yEYoHCcdDfOKXH+LceZ+mfU4L4boIpulQrep4gz4kIdAtG7shitfrwaqaDD26lUK+Ss2b51OnOZh5jd56haDfSzziR7EFmDZK2UTJVMkNTlDY2E84EeKE9xzNqR97497uzt2GaxH2MO1zWqhvrWVsNI+NxPCmIdan85z8/mPoXtyO6vWg1kWJ1UWxLIsDjpnP4MYhTMNECEGlpFEpVPAHfTR01KFVdDY8vJlr07/nf97zS+Yd0oNWNciMTKLKAl/Yj2NaODgEwgGMyRIjA5OUClUaWxM0HJkk5xFsmsxRn6rS3t0CYS+OZuGYNooBxaJOBYtwdxONNSHssUne8pETcBzndZWW17UIu5kda/r49tmXUJgsUt/dTCAapFzS6H9iC5HaMF/5y6foWTKD9EiGn3zk0qns8bqJoRmoPhWvX6WYLbHtyV7+OvpbDM0kWhOmb8MQWkXnV5/6A/5IAFs3EJI05aqBIF1xKG7eTsOcDrwBL7l0iZHhDMGlM2joqkMt6Ji2jS0EVo0P3bAwSwaxvIHs95DGZttQGr9XYaZjsXheK+/+ytv2dnfuFl6KRXAV4VXgO+/+CblMmUy6xNCWEeKdjTS3JlCEg0+VEAKitREqxSqVUoVyvoriUShki/SvH0RRZJpnNhKMBqgUq/zonm88/exLP/sndqztRwiBZTsUMmXsWJyQZCBbFunRLKOpKjE/tMxsRvIqVCQJBwgk4liKTCXhxaPIqBWL8kCWgR0TyB1xGlviyD6FTL6M5Th0JRO0+xXammIc964j9l6HThM3meBe4pyvv5OnHt1BxeNn/hsW0zariaphkc9VKKSLFLIlxvtTvP3Tb6GpuxFNN9m+ZoDJkRwzFnXQsaCd7ESezY9tQ6vorLprDQDVskZ2PAcOFLMlykWNcG2EmGSQ7h1j1V1rqJYqzFvQSHNXA8XJPLnhNGqpgq9cxcmX8BgG0bESxnCeTUOTZHWTziXttDXEyI0WGNiRxhfw0lgbpVLW2dCXZsUtT1ApTj+s4r6MO0d4FWjpauCN7zua4b4U+Yk8jpCIxfwoIS+WZoBtEWmI0bdhiAevfxwl6KNldjOWrjO6fYx8ukDzzKkvs23b3PTrf3HvXx+mrjXBaF8KgUMoFsSRJMaHMwxv6CfZVseio+biOJAaSiNJErFkBI9XwbGn5JK0CpWKweRQGqW7ka7mOGbZYOyxLZTCQRrmNdEYD2LhoFcMhEdCsW3y6SKmMf2I0/sy7tDoVWJ4xzhfOfuX1LYm8Ho92KaJbTlIAoyqQTFXQTI0QokQCMH2tQPkRyfpmNNMvD6KaZhPZ5LxBb1Ypg0OeHwebMtiYiBNajhDsquRWE0Io1RlvD+FrMrUt9WhBlRs08K2bGRFplrSKOXL+BJRApEAuuWww5Yw1vbRcXAP0YY4VQnK2KhCRvErGMJGXT/AogNn8O4vvXVvd+krxh0a7UUa2ms5+NjZSNUKelnDdsC2HYq5MpZpkqgN4g142fTIJr55zadoaU+w6Mg51DTFec/X30m5UCEcD+ILegHweBVkj8zEYJreNQOofpXZh83GF/Sx6dHNDG8fo7GrnrbZzUiKhFbSsG0Hy7QpZIoISVDTGEe2TTY/soVNj22jWauw6OAufKbJZG+KimMTDHpRPRLCcfB5FORIkPuuWUExW9rLPfrq4irCq4QkSRx1+jJsTcfRqhgVHSFLRJJRJEli4+M72LxiKy3zOvj6u36OYcHApmEyYznuvOI+IjURYCp5RvvcVkzDIjOWJdEQpW1eCw4OT975FIPreuk+oIPuxR04jkMxW8KxHCRFQq/qSIpMpCaCg8Omx7ay9fHtfPnKj/OuC07AKZYYWtdHZSJLvCFMRJZRMmWEIiEcmBjPM/LoFgJhP7f+4Z6926GvMu4c4VVk1tIuahrjTI5m8SoSumYwNJDBTGVo6UmiepvJTRTYvHI70bBK25xmhBD0bxgCB4QkkGTBmRedxljvBLOWdbPmgQ189tiLCcaCzD24G9XvpVKskBnLEYj48QV92JaFLMuokSDVksaOzQOYusGXrr6Q2Qf1EAj76VncyX1/f5imGUmE14PhV5AniwhVIVusoukm4bCPwOFz0UZzvO1FPGBf67gW4VXm+HOOIpaMMrp1hPENvdTX+Glb3EVeg00DRaxYhJ7D5lA3qwVTVjEkBdnnw7JsLNPiPRe/g5svvYNLP/dnAL53zs+Ye/hsuhZ1UC5UmRhIISsysbooiiojJPCoHgzdZGjrCKmhFI2ddSw//WCWHLeQQHgqOfcNP7+VRFs9VjCE4fUjVWyMikFRtwh7FOpqwpSyJdbes5Gx0Twr7ly3N7vxVce1CK8yS45bwJLjFvDrT/+Rga1jDKfKTKwdpqmjjvkHtuMgUSpWkBwFbyKAY1lYlo0v6KeuPopWNbnmkpu45IFvoVV03vP1d3Dlt6/F1E3qWmtINE6dfLMsC0mWsHSTzGQOSRLUtSRwHBjdPsb6hzZx9hdPp7a5BoDZh/Sw8u51BBqmlM7Ol/CEvKheDxMTeYZSBYI1AWYf3EVDQ4ylx8wB4Ds//idNXi8tTTGOO+3Avdm1uxV31WgPYe/MLl8uVrn8BzezbcMQxZKOrCiEakJITE2mZWXKSOfTRSaH0oQifiJBD1ZFY3jTEIam0dzTQDAawjZtTMNAUmQc26Fa0pBlCV9oapVpcMswk8NZWmY2UttUgy/spZyv8P3bv8rvv3I1m1duB1VFVgS2ZlDIV0iXbAK2TqIpgWVDejCFZdm0vOtwWhrjDGweQxovEo0G+H/fPINAyLd3O/Yl4Poa7UNI0tQXPBDycfr5x5IezfG3X/wL3QJHAM7UIZtioUopW8Ef8NA6s5FqocqW7RPYtk17Wy0LjphNY0eS2/98D4pHRlEVDM1EkgXheBDTMOnbMER2LEvLrCZaeprQNZ3RvnFUn4c3f+QEACI1YRYdPZc1K7ZRzFfJDk4Qbm+ivc6DVqoyMFai1Jag7rRF1Dg2+YDNE/lxPA0OoYrC6FiGlXc8RaI2zPzlc/Zex+4mXEXYC9Q1xalrinPAYT089K+1SH4vWlmjqpn4g16SDREKqSxrV+/AKZXoOWIBfsmGSoUzPnESQsDjt6+mmC0jyzJdB3WSGc+y6bFtZMey1Hckae5poFKosu2pXkLRIA0ddSiqQmYkC8BbP3kypmHy8EnfR1gmTbNbKFcMNq4Zx5YlWg/vob0+StWySYds8NvIfoWKY2PN9hAJy/zzV7cx2jfBHzb+dO926G7AVYS9yGEnL2bFHesoZ4p4fQr+oIfCZI4t64dQbIvuA7uRmkIM9vgoFyu0TYS49k/3MrungQVHzKWUK7PtyV7O+sLpT6dSuubH/+Bff76XjY9uJVITontRB4rqARyOOWs51jN2iIUQzF/SxrpHNrP+8V6cWIzORR0EakNk/RJboxo1eZmI6kU3wRCCoKngGDYjkxr66h186eoL91Lv7V7cVaO9SE1DjHmH9tC1oJVq1WDLk/1MDGXpmtPIjIVtlMezjD8xjNEgqJufxFia4DE1z8M3r+Lk847n8NMPYmT7GI/+8wlgKprGaZ84iVKmzOxl3bTPacHQTUo7N8NmL+vmxHOPebr+4W2j3Pq7uxjYMEjn3CbmzkliAYPpErpX0BAI4Y17cSSQFIGn6DA+WSS9cZKagQlmLOzgym9fuze6brfjWoS9zJmfOBGAjx3zbWbMbca0HCYmChQ1A+NTnbSkPYiEl0rFQPHL+DMO2VQR23K48/L7iNdHuebHN3HMmYfz4cWfpWVmE4uOmc8pHz2RaqnK1d+9DhDIiswzF0ZyqTyheIjFx80nN5FncnCCwad6qe2sp72rCb1sUKpYGD4BEuR0DTFpkvT68IWh6PGy+dZVXNH3673Uc7sXd9VoH8GybHITed7T/XE6j1hELBlBCwmqqkLmVBklE0Sv2kRXpjmqZybzFrbi9St8cvmX+cWK73Lr7+5m6xPbyYznkBWZ7sWdNM5IsvHRrdi2Q6IhyhFvO4za5jj+sI8rv3UN4/1pRnvHyYxlaeppoLYpgWM7mLbACXsRXU1kEhKGV+D1KyiORH7dBOnf3E28PkrjjHrmHjKTD3znXXu7+16QPXIeQQghAyuBIcdx3vxCZV1FeHEu++IVbHxykKojIdeE8ScCpE8QaFU/iiwhSg72vWPkHtlGjSITrQkTq4vwwe++iwuP/DKNnQ34g+rU3oDlIMlTkTFK+QqKRyYYDWBqJoNbRsiMZWmd00KyuQbTsqaWXyUJX1DFskE0N2B0BKg0+klNlhiezNM+6aGhqiENp8iM5xHAD+66mHhy302KsqcU4VNMJQuJuIowfcb6JhjpneCm399LIe7HiKpUWhXKSUFazpGbtEn4AtQWvcgrMqRuWsMfn/wOoViQy75wBVtW7cDUTRTP1FBIK+soXg9ev4pe1eldN0ApU6JtbjPxZAxDNylkSni8Cke+7VC0koahmyh+la1PDZKyLPraQkQCPhIRP7Zmkd6YwjYsOlUv3riPlkVteMYK+MM+6pMhFhw+i/r2fSdx5Ku+jyCEaAFOBr4NfGo6z3KZor69jvr2OvrX9XPXui1UY1HGAhZaSaeuXiaZDJHO6Gy6ewifKrNoSQf/d9FVaPkSmbEsbzjnSEZ7J5gcyYCA1FAGraKxbfUOyvkKbbObCS1op1KqMrB5mEAkwJvefwxCSJxw7tEEIwFuuexODnnLUr54xo9xTpxFlyJT0Qw29o4hELQuqyMU8qKnquSFQyaXRjE0xKpB5P4Uk8OTHPSmxa+pHBDTnSxfAnwO2GUoZyHEecB5AG1tbdOs7vXD8jMO5qEbV2JsSJE8ZS6xTh09OkFvcYRAs5+693biWx/CeDDF1pWbCYYDqH4PkdoIJ77vWAAGNw/ztdO/T7lQoaEjiT/sIzueZ8uqHURqI7TOakJWZNIjWT703XcD4DgOt/3hbkLxIL964GJW3L2Ob11wJbJuMPOUhYQifqpFi7RUQU16UCWJquUgRQIEVYE6muGm//sXf7r4r/zwnovpXtyJLO/7UfVe8fKpEOLNwLjjOI+/ULnXS57l3U2iIc6C5XNoecNc8hWNjefex1O3hQj2HUps5UK4CnKPZnEa4yTmtqOGfOA4PHj9Cu675hGyEzlaZjZx2bpLeNeX34auGVx83ef41k0XcfBJi2nuqsc0bKoljYENQ4zsGAPAtmwWHjmXO/58HwDffdsP6IjArK44ng0D5DZNUArYRAI+VFlCIPD4ZFChV5hs3TxEpLmWuUfO45ef/ANnt354b3bjS2Y6+wiHA6cIIXqBq4FjhRCX7xapXAB415ffyhe+8E5if19L24cOpbGxluFMnjVmDp9XpaW1Bn9IRa+PUZ3fjOP307thiL//8B/0rRt8+jknffA4qsUqT9z+FP0bhhntTVHIFFEUCcWjUClWePC6FQCMD6S45bK7+NwfPw7AORe/Hb2sM7C+HxGNk0yECHoVHAWEImH6HAZFke1yllrZR8OHj6c4p5GNK7czsn2UD+60NPs6u2X5VAhxNPAZd7L86qBrBsWqzjnvu5QZhTyBnnokx4tm2tj1ISRFUKlUCW1Jo0oQj3j59GUfeToukeM4DGwapqGjjvxkkTX3rWesd4LUSIbhzSMIWaBXdb76t88QjoeejmmUGp7ko4d9lbqWBLF4AKM5TqUjjhGRsHyCPDpV1SLoVfFIMqlCkd6hDAuvS9HWVotHlfGqEmahxJeuvnCv5X7YY+FcXEXYM2zaNEJ1LIPpCIoFjdGhSYYkG8sDobES/ZvHGN84zMT6Hfzg9q/Staid9Q9v5pLz/4/fbfjJc563+fFtXPPjm+lfP4Aj4OQPHc8xZy5/2l3DcRzWPbyFzU/188idG7BiXszuBIWAjamAGpJxVMGIXqI3PUnc76cjFCM+YGEO6RimRdir4DUMDjlqLp5MAa/fy7HvWr5H5w1uXKPXEZZlc/Z7fk1zWcfrVdBKGn2PrMUf9HHut87i+HcfucvPXvmd63jijqfo3zRCYSLLr1b9gI65/1nxGRvK8Otv3UBJgkpTEDsxNTQa0YoM5fJEEn6a1BCKBsX+EsqEQW0ihN/vwXZAWDbycBpraIKJSpWLLv8EkWCAsEfBH/K96iHqXUV4HbLqyT4+95W/E1/by4e/fSaxujDzl89G9am7/EwuneeslvPpOnQ+obAKukZuIs8vV34fgKce3MQ1l92HFvVSbQoyJlVJFysEEl6iMT+mblF+aBLLtmlujBO1BSKvYZerSIqCEfNTXrUVLBP7lLkISWGyL0/uF7fT0FnHR378Pg4+acmr1ifueYTXId/+35uZO6cJX0ctD/1zFV/+88df9DP/+/5fMv+IOZSLFQYm8vjQOelDx7PqrjVseXw77Qs7MbN5KmMmk2YdnlY/HY1x8uhs6B/DUB2WtsSJKT4M26ZY1gkMjCN7PRiOhBnzEzhqHpoXeqt5RnIFeqQwc99zJEnNZPGx8/dAz7wwrvfpfsZPvn8WH3j3ciZTZfL+IJd/7wbu+cuDL/iZd3/lbWx8dAvlsk5bd5LGOR0MTOr841f/whvwcvCJC9GyBaS6EPW1YTxlm5W9A2xIpeiKxTmopgk74WFYqaIbJn5Nh2oFu1DE4wcRVRmcyLF11RDRrOCgZBPhphA74hKrOqP86NN/YPXda/dQDz0/7tBoP0TXTX7xhatIjWRxhExEtjj4pMUsOGLO02eWn4njOPzwg79iciyPVjUQ9bWo2JjZAm/+4HF4VYlSrswNl93N5powhTk+WtviBB0PzkCVvK7hj/qIe3xImo00kUfCwapUyW4eI9XdSDIUJBD1UXJMhibyRCZNIocm8Xk9ONkStU0JeqQYp526hNBuPv7pDo1ep4xuHyO1aRBLSEiJGCN949zwi9vITuQ58A2LaJvd/KzyT96zjr4NAzgWBOMh5JAP8iW8kRC3X3k/WqbAN268iD//5gHmSSq6HmJkSGMslaM2HKA5FgVFYFsOSAKzIUKupFEIScRmzKPVo5DVqqwqjuFVZRYnYkRDMoWiQ0EyUGr8pEaKTA6naWyJEZ4d5qD6Peue4Q6N9kO8fhVZljA1A8uyiTTX4YuGuO7nt/GxQ77E4OaRZ5XvmN/K2z99Kh0LWhECRLGMrEhUyxoDa/pIj2Z54o6nOPuDy5lYu53BO7aS2JBnnhKk1lGwqyamZeEIh3LVoFDWiKLQEo5Qreqs2DLA2GiOxdEkSxINmJgUHtmA8ngf4YkyUqqMf6xCoFnlxoee4sIHbqJiGnu0z1yLsB9S315Hz4EzMCSFrRuGGRnJUZjIU1sT4U3vP5rmnoZnlY/VRTnyrYfgURV61/az+u61ZLMVvI1JGme1Eo16WfbGxUiyxA0/v5XWmU04sow2nMe2dNSGENWoF1OSCONB0WGiWGLzeIFgwMuizkZURaZQ0siWqrQ8MYy3PYFT1vA/NkREEpRm+dl2EAyOeWjyRrhs/WN8fOFhe6zP3DnCfkzfhkG+8pbvEq+P4gt6KWTLDO9I4w+pfOPaz9CzuPM5nxnZPsZPP/ZbpMY6dNNm4KGNFDJFOmY3kWyKUUznKRaqKF6FcFMSp1rF0XVkvw8RCpBVVFIbRwiGvIQWNKDX+RgvlaiYFvWxIOGAD9/6MapNEfxrhiFfITeRo++9Mwi1x4lNKORKZbbMGGDFm7+AR5r+HoO7j/A658fn/ZpcusjIthF61w1QM7OD1pkNqD4Pqs+DlS/wpas+iUf9j+vDv/54D7f/6V56Nw1R7eygXbEIhVQquSk3b5/fQ01TLUIChASOAziUSjq5dBH/wi4ifhVDN9gSFehVg5kVGXV2DXpQRhcWkhDIFRtzdR9UDQI+H3bSy+YDAqQeyZEIB0guiVLbFkAXOkZaoSEU4v1LDqQ9FnvZ/eAqggsA53R9jPr2OjyhIGXNwjRtApKFoghOPu8Elp9+0LPKn9V2Pg0Le/CFfOTTBSa2jRDySyRbapE9MrYQOAiEaVCt6JTzZXwBH/6wj2pJp299P3rVpOGDR5NUA4iMRsU0qcyKQkzB1C3kqoMSUhA2pEYLDI7niMf8NCVj4BMMN5YxhUUipqCWfPjx8qWjjqY5EnnZ7XdXjVwA+PF93yA7keNbZ/2EREstkYY4drkK9lQmz//mbZ89jVv/cB+bNw1Qf8hCuo9cgGQaGOkMWlnDE/JjGzZaScMb9FMXDVHKl1n7wAZs02bGwnaCi2ZQ8fhJZ8oExnME62I4VRtNdwg6CrbfYbRUIjVSJBbzM2deE6bHpt8oYloOdSU/vqQPoZgEEmUaAhJP5QfxeztIeAO7vY9cRXgdUNtcQ7w+xoHHLWB4JIseDSHlS0jCwRfysXVVL92LOwBIDU/y2y/9hdr6EPMPm4VS46eqmZijE/hUCVmRMXUTj9+LLxinVKiy+fHtGJUqMxZ04At6KefLDD+0gcDRi6iVJKSQDzQdT9pC+BKkzDLjcpW48DGrvY6qabJjNI0lbBq644SCXizZwTANVGEjVIMBY4hVmzJUrQoH1XXSHEjs1j5yFeF1wvC2UYa2jGB5PAiPRLVUQQauveSfxBpifOY35yOEoLYpwUnvWU7/xiGyqTwiWyLaVIvXP5ULWlIkPKpKtWwwsGMUxzJpmpHEo8rkJvKMbB8lXh+jpbUWdB0yZWxVRVSrVB9PoU+YcGSc1nCcoqaxcmQU76hNT1uSSNBHxTDJCw1ZSHhVh6plYWsSUV+IzoTJNUN38YO1Wa478jMkQ7HdlgLXVYTXCYFIgAOOXcC2J3vJV3QCdRHsfIXhgTTrH9vGphVb6VrcwfqHN/PYbauRZYm6rkZUWcLSNGxnKkCxXjGZHC8iZInGziTgMLpjjMnhSerb6+he3ImQJAzNwNk2jMenYlkOldEJ/CEfwTo/bNV4pGYCxYSZ9XVEGrwYBYPxYgmnTcanKNgCbMXEL7w4ps1AbpKqGCegxDnkmiDffehP9B/hJXBPgJ9+8W3EI9MbLrmT5b3ME3c8Rduc5ud1fXg1ePD6Fay8bTVbVu0gXzSJz+/AJ2wq/aMMbR7hqoFf860zf4wjJCwkzGJpKty8YVEuVKZyuoV8WIbJ8LYxUkOTtMxqoq6lBhyHcrGCQOAP+3BssCwLxaMgKxJ53WRTRwIFiabGOL6Qh/GATiVdJRrwEfX70KOgBx2EZ8r1I6WVyBSrJHwBEjEZ9ALVT61m/KddzFzbRBgfS+a28q43L9tlm91Vo32UK751DQ0zksTrY/zl+9fz5vNP4IgzDt7jclz/81u47Q/3sGNtP+FDF9JRG6C5q5GxwTS6ZkJTGGU0i57Oo+Dg8XowNIOBjUPk00WaZzaSaIhhagaFTAnZIxOuCSPLMo5tI0kCIQmK2RKpwUkUj4L0kYNxol7SxTJ6X4XaeIiaUADHIzCFjR4FKwA5u0rJ0Al7vQRllWJFZ8t4ChI2swIJkkkFf9ognfLykWWHcPDCjl2201012gd54LpHWXn7ajyqgsfrIRDysfCoOeiascePMp76sTfyl+9dz/wzj0YNBahkimy5/ykCsztRagJUE37skEJIltFTGQY2DFHMlaaSFs5pnjr4v3EIX8BLbUsNHq8Hy3bAcZh76CzW3LeeybEsikemqaeBcneczVaVzGCW5poI3T1JZA103ZpKgRuVKAsTs2gRUbzEfX4mrTIrBgdRJInZdbWEoipVYTBWLhGOSki2iqdm12ctXiquIuxBhraOcOcV9xOMBKgWq+zY1I9W1fjKW77H0hMW8Z6L37FH5RFCcMkD3yKdLvC/5/2aaDRINLbz1znsxaz3QN5hrGxT2T5OoilOY1c9hUyRjSu2EooHaZnZNKUApoVe1ZEViXhjnBPPPZq1D24i2VaHVtHp3zBM9t71tB/YyQGHzUEUZKqVPLkeP0FVwfA4aF6bAB5kRSWbr9C7YxLZp3BAbSNqRCIrqvSVM9REFcJSEKoyjuFwy8bNLGlumlZfuIqwBxnvT+ELeBnYOIRhmDTMqENRFCZHs1xzyU3cf80jdC3uZN6hM3nLR07cIzLVt9dx6Wf/RGNDDMeZCucilarYNT7SpTKBHQWiM6Ik/LNIrdnO5se2EqkLM2tZFx6vil7WKVXLeP0qQgi0is785XO45pKbUf06m1aMUM5XaJ3TRMe8VgxNJ/fARpSgn+jMVmxHxhGgKBJCkchqFUazRXyOzMyWJEISpPQK2ZEKiUYfbcEYsgOmBsIQSBZsmUhPux/cOcJe4Nef/iPbn+xlrD/FWO84jTPqqW+vQ0iCaknDF/Tylb9++unEf6821/30nzxw/QpkWUJSZHTJQ25JHGbWgANjqRzmTaPUDo/S2BxHVmRKhQq2YeGP+PGoU0ursiwjyRJaWWNk+zhfvP8Bbv7WEaR31FPOV5gYyhCM+KltTiB7ZEQkgt4Ww/Q6FIIeRkIackgirvixDJuhbJ6sXqW5NkJtMgiyg2ZbSIBsy1QtA5E3OOewJby5e9en3NzJ8j7KSO8Y7591wc4I1DXYtk1hsogkS4TiQWRZ5qA3HYDX7+WkDx3/qssz3j/BLy74PeVCBSEkPH4Ppl9m3UF1jOeK1EVC1IcCSDkdbVMe/2CRWCKIkxDYlSrqaAVJnvIrSg9PYpoWNQ1xvEGZzGiR0R3jaJ8/ivZgkOBwCc+qYWzLZulJBzI8UWbw4bVUu+rxzmggHzDYQI6UVqanqYa6YAjbcSjbBo7fxi8p2I6DaYI/bOPzO0gIfnnYWbtsnztZ3kf54ft/xcKj5qJVdIa3j6H6PNQ2xlFUBcd2sHF47NbVmIZF95JO/CEfiqrQ2Fn/qsiTGcthWzaqbyqKdmooQ24iT3BWjAWtDWimxY5sFgQsqVoEG6NYpkmlUEW2bWzLIpeaSkZS25wAIUgNpBl6eIRkWx2zl3Vj9VWoGgW0dBnFmZqfNLbX0NZTz5Namc3rBtioGQzMl+iOxZnZUIeGwXipiF+TiQR82KqDbTt4ZIEaEBR0ne3aBH8+8txp94FrEfYC+ckCAIXJEr+96M/oVRPLsrBNC0mecmGoFCsoqkIg5EfXDIa3jXFl369wHOfpxIS7i8duW811P/0n2fE8lZJGrLkWta2GdH2Yrak0siLR2lNLbVpH3ZrDKFWQJQlHq6KXNYQAb8CHbduM7hhjrHeCZHuS0KmzEAjEA4PYlk0oFkBSFGzLRpankpdUSxrDW0epVjSauhoIJMLk/IJtS+vwBzzUJoKoQsYSDpbXwfE7lOQq6WoFjxDUR3x0xRN87YCTdtk+d2j0GmDlv56kXKiQHcsxtGWE7EQOSZbIpwtoZZ0d6/qpFqq0zmkm2VJLIOrnoj99YrfL8cWTvo0v5EfTTHK5Kr2pKqPntjCzpoaQ7KFiGxipEhHNS3x7ATFZBk1D8ciYVY2xvgkmR7PUttSQaIhhWzaZdAFwSNTF8PpULI+gPLcWT9VEWjPG5HAG07BINMbweDxkU3nGeseJ1Eepe/OBKGE/ml+imBBIHomyx6TgL6P4ZEKKiq5bDGQK3PfuDyGLXf84uIrwGqVvwyBffvN3KBcqNHbVEwj5KeXKpAbT/O/dF9M6q/nFH/IKePLedXzlLd8lNL8Hz7t7EFGVglalZJtEAipx3YtScAiPW8yNBNj04EZSw5NkhyaoaUoQigbRKlVGeyeQZZnGrnr8IT+2bWOZNgQ9ZA9uIOOBxPVbiXhVhICJgRTD20apa62lcUY9nngE0x/A8EjQEkGXbcpeBzvpQQlJFH06W1NpcrpOdyzBe+cv5sy5C3fZLlcRXuP8/cf/4Lbf3814f4pYfZTGjiRHvPUQTj7vDa/4mVd/9zr8ET/xZJQj33bos+59cP6FRJNhZK+flGkwuLyR6BKVkCeIbYE6CaEBWNjWwJELWvnue35GMBrAG1ApZkrsWNOLL+ijY14r/pAP0zDRqyYeVUHI8tQwShL4glMJ0Ud2jDHRnybZVkeyvQZJQLlQxpIUwg01yLVRKrUBvJqNXq8yWevQm8mS8WvMCMYJe71UDZNMucrt5527yza/FEVwD+/vo0wMpvnt5y/HqBrMObiHpq56bNtm/vLZr/iZq+9ey+bHt1POlZkczT7n/llfPJ2R7RNs3zhCKBpjaT5A44gHQ7MQoSrYFsakxryueq78n2uoa0lQrWg8de8GRneMMWtZD7OXdiMQZMdzmJqF16eCAzgOgYgf1edheNsY6x/ZjOpVmX/EbGqa40yOZJkYnMTr9xGPB5EqFRzTwJ+poAPp9ZMMZwokm8Isqm3AsmHd2Djj+SLnH7xrP6OXirtqtI9S11LDn7b9giduf4obfnkLQkhEaiNUy/orel52IsdN//cvEPCmDx5HrO7ZOc+0isaPPvhr2ue1ElswAzMSpJIuU6wGUUwZBw25ZBDwqVz3i1vJbh9ncNMQoWiQuQf3IKsyxUyRQipPKBEiWhvBsR0QAo9HwTJtxnrHKWZLJBrjJFu70coafev6kRWFphn1+EJebMvBMAxkWcEemKCQLaIfOotQd4wZisz4jhKPMUqiNsDcZBKvpPDU6ChvWzRvWv3tKsI+TLK1lsNPP4hIbYTUYBqtohEIv/TgV6vvWcddVz2IEIJg1E92LA/CoTBZJFYXZWT7GA2dSYQQeP1eLn3qh2hlHU0ICiWd8aEMm5M6pXSB8c1ZCCrk0hrZe9YRmTuDWYdFcHSDyZFJtLJBbWuCeH10agnYtpEkCdu2mRwrYFQMwokQNc0JCpMF1j64AX/QR/vcVvxhH5ZhUS1WkT0KQggqxSpCFkTb63GyGmMTFTb6NMLdYQ5JtiCrgiw6WU+Ft7bPnXZfu4qwjxOOhzjslBcc3u6SupYaJkezxJNRMmNZPD4PrbOaaO5pBOCTy7/MF664gAOOmdqVbe5ufN7nbH+qj99dtoqRHeN4l81lxsmHoI9nGFi5Hb1UpXlmI01dERzHQa+aCAGSLCgXqtiWRTgWRK5VyIxl2LhiK4Gwj9nLevAFvGgVjex4Hm9AndrHMC0Uj8zMJZ30bxtjomqTSmdJ1IU5sLMJQ5UYL1UoCZMar5+QL4DhsV5Z5z6D6aSOahVC3C2EWC+EWCeEuGDa0rjsNn7z+ct54NpHcGybREOUN557DHpVZ8UtqyjlygD8advPn1aCF2LGwna+9Y8v8MZzj8EzNMHmdYNsHsxRt3wRc08+mGBtlMJkaSo97c5snqZuEQh5CcVDFDJF1j6wgXyqyJxDeuhePAOtPLXkapoW0drw1FxCCFSvh0A0wDlfext9q3fgGR5jdsRD1DIYHMqwPZshKql0BGP4ZRVMCKveaffXdCbLJvBpx3HmAocAHxNCTN9GuewWGmfU4/F6cEyL8f4JFh09D1mRedun3oxt2QB4/S/vC/T2z5xC76MbaW2rYcHcBpR0mvF1O6hEYoS7WvDGIwhZRg36Uf0q+XyV7U/2oZUNZi/rpqm7nuxYjv4NA0iKTH1nkmA0gG07CEkANqN+g82j46x7eCtvOPdYFL+XzWsGGFwzQH3Ux7xEHWFdpmQZ6LaNR5NoD8Sm3V+7bflUCHED8HPHcW7fVRl3+XTP8sB1j3D192/g7ItO57BTD+KJO9fwv+//BZnRLL9d9+NdDoVeiPxkAc2wMas633zrD4jN70IKBXFMCwolKJcpZkrk0wWC7Q2EVQk9X2Rk+ziVbJGm7gZidRFsx8HQDIQQKJ6pHWbTsCh8cCaJHRbm45P0bRrGyU7Sc/xS1Powky1+qhUDv6Sg93gwZBtJFxzS0cpHlu/6YNOeTB3VAdwHzHccJ/9f956ZXvbAvr6+adfn8tL4zecvp1qsYlk2n/z1ecBUPrZyvvycVaNXwl1XPYAVCGBaDg/cuJJq1UQbm8TrlVHbG6haDn0rtqF7Vdq8NrGoD1M3qJY1FFlGDUztJziOjUf1IEmCbKrAyGgRX32CxpY4XlWmWDaoGjb+ZBhffZhKnUKhQ0YSAkzQDYs/n/P2Xcq5RxRBCBEC7gW+7TjOtS9U1rUI+y/fe+/P8CRryU4UKOoWOyYK2MOTdCxqJxgNohXK5J/chOr3EqkJQTiEEvTT2RRm2+pe8pNFUoNp/LUxanuaEYpCNlWgmC5Q01ZLtDYCqoIlSZSaFPKzPOQ1jbyh85WjjubI9o5dyvaqK4IQwgPcBNzmOM6PXqy8qwj7N2N9E1xw+Jfw9MygrimKatuUxnOke4eItTYQqwki2TaWZSJaGznkmLmccNJCPnHYF5FliXAijKmbjPZPUMyWaTtsAfG6MEgSpmFhh/xIqkJVNxlaJJCSXnyygt/j4VcnnbJLuV5VN2wxFVDmMmDDS1ECl/2f+vY6Djn5QIYnSmRSRVJPbaO2JUHHgg4kWQLL4IgzDmEyVeCpzSlamiNs6U9xwNEL2LxpkO1P9lHKlGif00zHnBZs2aY4PIGcrMXrVahGJLSQQFF91Dsyw6bO+vFx7jv3Q9OWfTr7CIcD5wBrhBCrd177ouM4/5y2VC6vWd722VP40PxP0TSzidnLOpEkGa2iY1UqhGJB5h06E9WrsOnCP3D1tY9SUiRGrriX9CmL6Vh6JG15DWd131TUC69CpCaM7FVwFBmz2YeZUJi0NQZLGaS0YHZNHZeueozPHXrEtOR+xYrgOM4DwO4JM+ay3/C9c37K+799FpGaCDf88laEJBFKhFATEUzL5t6/PkQpV8ZRZDZaGnrVpGd+G90TFUqjZYbX9REK+ahtrkHxqTiKDKaJUCVKtslEuogiFDrrYtiSQ1qrcOFB08+j4Drduew2rvyfa5FlmVsuu5PDTl1KTWOMWE0ICQchSSiREKvuXc+jNz/Buz9/GgsaEswpmlTSeTbdt57KRJmOOS3Ud9SBcNCrGkQimBWD4sAk8cdzzEx5ifq99GYzPDE4jOXY3N27Y9qyu27YLruNUr7M+Ys+w3sufgcnvPdo7rryfqpljfv+/giOR6XiyEiqjM/QsKpVJvrTjPWOU9dWS2NnPbKqoJWqWKaF1+dBhEJYoRCybeHxe9Edh8G+NGkBza1xYvUhDA9IRZtLfvTuXcrlnll2eRbbn+pj7YMb8agKJ77vmN1+5DMYCfDpyz7CvMNmAXDs2Udw198eQTdtPCGVaDyCaVoMbsqRemIjDTPqmX/EbISQKGSLOJZNtKcdnySwDBMlEkL1q2hVnf6Ng1QlhZruJE3xIJpmMro9g+KRefc5h09bdlcRXidUSlWu//ktjPdNkJ0oMHNpF96AF3/IRygWeNnuFrti8bELnvW+f9MIoZooukdhMFUko+s0NiVo7j4ao1gh3TuGUylT0xTH61dBlhA+L56ghOE4ZNJFdAGxA2agemXyhSobNo4Q9Htobkng83kYHJycttyuIuyn3Hzp7fRvGMJxHD56yfvQKzqjO8YoF6pEakL89qLLyY7n6F07QCge4st/uZBFR03Pp//5OPHdy/nGu39OrilBvDVGIuSlVNHZuDVFMFWkubsJr7CxSmXMgB/ZsbFtm0qujBFQCLfGEJJEerLA4IYJItEAM2c24FUVdN2glK0wa/bLdxX5b1xF2A/pWz/A3Vc/CI6DN+jjjsvvRfWr1DTVoEzkSA1PMrpjnHA8yJxDZ9E2u4kFR8x5VWSJ1oRoakkQE4KUZrJpME3ArzKjO0mwK4mVKlAYGkVRZJSAD61qIFkOQVVgGQajE3mGJwrUJILMW9iKR5YplzWKxSohn4dgQEVVpp9w0FWE/ZBIbYRIIkS5UMUyTe6++kEc2yEzniM9NEmkJszMA2fg2JAenmS8f4J8urBb/I/+m8dvf4qBjQOMTGpE4gEOOLAbJeynUtLJDqYJ+DwEQn4sTcfJl/ApMg4qac3D5GSRWI3DghkNOLIgkytjVE1qaoLUhvxg2ciALE1/Fd9VhP2QeDLK4uMXUs5XyE7kWP/wZnKpPMFogM4F7WgVjf6Nw+hVnZaZTURrw/zp4r+B4/CJX05/l/aZHPSmA/jDV65iztIuEDD51FYM3aRmdgeRZBQsCytTQfZMxTuanCxRzIwRm99D16yGqSHdY9swLZvGRe0EG0Ng2Vi5CkIIJK9MS3N82nK6irCf8pYPn/D06x9+4JdUW2sZ7Rtn7YMbAMGMhW2E4yEM3aKQKlLOV1h24uLdLsefv/43onURhp7cih2JURv00NjTgvB5sUzn6cDD5XwZUzMJzeogMd9POVdi4xN92IUiM+a3EWyIYSoylWIVSRKopolZ0SlrBg//ay2nnDu9nWV3H+F1xNuS76e5pxF/yE+lWKGYLeEP+wnHgwAsOmY+wbB/t0bi1jUDy7S4+NxLWXBoDzPnNlI1bG76/b14YiHMqomRSuMN+JAlyJVN+osWYuNWZiybTSDsp1rRKRTK+JNx/MnolD+DZqHoBjgOQlH4xmUf2KUM7j6Cy7M452tv5+bf3DkVJykZ3RmBW8IyLYSAJ+9eR7lQYdZB3fiCPtpmTz+QmOr1gNfDSecs58Y/3M+2h9bR1N2ArFWxrQCqV8ZblyCfzjO8vh/vgi5mJCSUA9opZnJMjucJBj3UdTQgeRRM0wafB6FCsVAlly7y2R+eOW05XYvwOiE9kuH9cy6goTNJTWMcIQSGbuI4NrKioFd19KqBL+hF9XqQPTJfvvpCFFVBlqe/KvPpYy/GGw2DruHYzlRaqWiEimaRmSig5LNEEiFEKEimZJEvasStMrXNNQhJwo6EQVYgqFI1LbRcFU/Iiz/so6YmxGe++JZd1u1GunN5Ftue7GX9Q5u444r7EELCF1SxLRvb2nlCTJEo5SsMbBjEsmzaZjdz2CnLOPOi06dd9+1/vpd8psTK+7cg2RaVdBbNH8Ln8+ALetFyRYae3EYRlZbuBhKzmnGKZcx8GccGT8CL5fOi+1VUVcEjS1SLGr3DGa66/hN4PLse3LhDI5dn0bWog3h9lMduXY1hmGA7yIqCxyuoFKqM9U0gJEHr7GY8Xg9aWeOMC9+8W+p+wzlHMTme56nH+tA0g2R7kkI6TzVXYevGAuVileb6GDPa6zG8XrJVHUnIhH0qAgfHspANjaBfplJ16B/KoJkmzS01XHPlI5z53uXTks/1Pn2dsXVVL7Ztg+OAJNCrOuP9KSolneaeJhpnNJAdn1pyLeVK/OiDv+LaS27eLXXr5SqKVqatKcRZF53GjrWD7Fg3QENbLfMO7ED1ehhYP0B28yAhWSYaC04d6DEsJNtCH0sz8vAG8tvGaVElZtUEMYoaf/3tfVjm9GIbuRbhdcJjt67ikZufYGIgxaKj5zG0dZShrSPYtk1tSy2GbjKweZjMaJam7nrmHz4LhGB8YJKzvnjGbpFhvD9FIVNkx9oBTvrQG5i1rIuK4VAoaGxdP47f1jj7S29jcOs4O3aksIpliIWxciOYpSqq38OMQ+ZSKlZJD6YZ3jFBdE4r53/mjcjT3F12FeF1Ql1rLUNbRki21fL2T0+d773193dzx+X3suOpXkr5Ks1d9bTOasIyLFIjWRRF5owLTqZ9TstukaGmKY5W0alrreFXn/kzqdEcY2WHqK3xwa+cQUNrDXMO6aFv0yg7vn09hANUBXiSNRy8pIN3/r8TyKXynNX6YX679kf89Re3Mz6c5aG/PcyJpy6ZlmyuIrxO6JjXyuyDujnx3GOevvbG9x3Dn7/+16lgYKpCqVChd+0A3qCXho4kqs9DZjy322R46PrHqG2uYevqXiZND/UtCeZ1BZFNk3v//ihWpUpDZ5KmrgYcywJFmko9KwR3/PUR3nj2oUiyxDWp37H2gY08dfsT2Bac/8P3TFs2d9XodY5t22xb3csnl3+ZaDJGc3cDqs+DoZuYusUZF5zE8tMP2q11fuq0S1C9CpbtkEsVsPIFYhEvvoCK7Tg4joMsy5hCkFf8VFJ5IsIkEPCg+j18+aoLOafrYzTOaCAY9bPwiLm88/On7bI+d9XI5UWRJImeJTM48u2Hkh3PUy5pVEpV/EEf3oD69K7z7uSsjx7D99/7MzzzZtLUkSQgarGLZSzDxrEMhG1TyJQxdZ1gpEqiuYZC2WTdkzuQ8zm+fMp3OeG9x9DQmeTOy+9j9sE905bJVQQXHv3nE+xY049hWERrwgQT4Z2/yhJ61djt9S19w0JmLeuGRATDp1LKl5A9Kh4PGJoMtk0oLiGwyUzk2TY6gj+oMmtJJ6plUJrM89SK7fRuHcffkEAKT19Z3eVTFxYcMYeP/fT9LFw+B2/Qh23ZOI6DkCU6F7bt9vruvOJ+irkyE5qNZll4w36UgA/Ho+ALevH6veQzRbauGaSUKdGZVGhJ+ihNFhgayGB7fYTiIRxZxonHuOdfa6ctk6sILgTCfhYsn8MRbz0YUzMQAvSKTmGywIPXrdjt9R14wiLe/62zmNFWS9AjI2QJoShT2USzZUYG0jhCon1uEzVNMSb602x9ZBNUSjS3xYmEVKxSGSNfxElnyO2GCb07NHJ5mr71g0Rrw8Tro8iKTKVQ4YFrH+HUj71xt9YTT0aJJ6NMTFa488ZV4PNQ/bevUyJMQyxIJVdkYMsY2e0DtM9poXVWM7ZtUckUEEKg+j3Ypo1Z1lh+woIXr/RFcBXB5Wkc2+G0j7+R+ctfnWOb/83g6m1YuoElBF6fSjDko5yvsGnTOIOHRGk4bR71oaUUM1X41RpkRSYYD04lO3dsZFXGK8msf3gTJ3/o+GnJ4iqCy9Oc8cmT92h9xckCigRq0Eu5UGVgRxah6dSe3Ew8HsEjUhy46BZ2lGfA2kYYlbHtqeV+JxakrJXJ9ac492fvm7YsriK47BVs28bj81AZ6CNf1FEMm6amGM0npPAseYKre5O8v2MrMW8rquJn+I02k5fJyIqCZdkUTTBba4nMaeJfj2+lu7NhWvK4k2WXvYKpm2x+bCu2aVPvgWjcz3iuhLzwToJSjvO7NBy5m9W5erxinPrmLGpYYBpTyQrjXoVY1qRy2yY+dMoh05bHVQSX3Uq1rAFTv/gvhOM4dMxrwxsKMLQjzcYHNuFRFJxVJxBXawkpI3gZxLA9lO1aolGDxEKDuoVQs1hjbDxH75pB5LCPf1798LTldodGLrsNx3H47PFfJ1YbQQhBMVtCkiW++vdPE0mEn1V2rC/FytufpJApkmytJdkVRx8fZ9UlY2z4vcMFvytjh0Lodg7TkdBQ6XzrGBUrR7Vi0a8fhV9pJo/Bz1et5dT37KWw8C4u/83V372eSCLEBb/6EMVsmd98/s+0zmrGH3pukvS22c3MXtZNKVcmM5Zj4yOb+eOWn/HDD/4Kx4FV1/ixVRP7DSY1SpWgVCYoNITs476V8yiXbXb0DWHWKnzrQydNW/bppo56I/ATQAZ+6zjOd1+ovOt0t39TLWtUS9WnA4Xd+MtbWffgJr5wxfOn4P738EmvGuQm8tS313HPXx7kmktuQvV68JydwFymMjc0wsmxCerUGjStn4NvPJgjFvUjemejT0bw+lR+9t69lzpKBn4BvAEYBB4TQtzoOM76V/pMl9c2voAXX+A/wYQPO3UZpVxll+X/HY3bF/Dia68Dpnadi7ky2bEc1hFB8AlwEmw1H6S+7tv4gVXvt9EdjfIcB9OyKVSq05b9FVsEIcShwMWO45y48/0XABzH+c6uPuNaBJe9wUuxCNNZNWoGBp7xfnDntf8W4jwhxEohxMqJiYlpVOfi8urxqi+fOo5zqeM4Sx3HWVpXV/dqV+fi8oqYjiIMAa3PeN+y85qLy2uO6SjCY0CPEKJTCKECZwI37h6xXFz2LNNJL2sKIT4O3MbU8unvHMdZt9skc3HZg0xrQ21ncnE3wbjLax7X18jFBVcRXFwAVxFcXIA9HOBLCDEB9O2xCp9LLZDai/W/GPuyfK9l2dodx3nBTaw9qgh7GyHEyhfbat+b7Mvy7e+yuUMjFxdcRXBxAV5/inDp3hbgRdiX5duvZXtdzRFcXHbF680iuLg8L64iuLiwHyuCEOICIcRaIcQ6IcQn/+vep4UQjhCidi+Jt0v5hBD/Twixcef17+8rsgkhDhBCPCKEWL3zoNXuzR7ywvL8TggxLoRY+4xrCSHE7UKILTv/xndeF0KInwohtgohnhJCvLScUs7ODCX70z9gPrAWCDDlWHgH0L3zXitTHrN9QO2+JB9wzM7X3p3lkvuQbP8C3rSzzEnAPXtQpiOBJcDaZ1z7PnDRztcXAd97hmy3AAI4BHj0pdSxv1qEOUx1QNlxHBO4F/h3asgfA58D9uYqwa7k+wjwXcdxNADHccb3IdkcILKzTBQY3lMCOY5zHzD5X5dPBf648/UfgdOecf1PzhSPADEhROOL1bG/KsJa4AghRI0QIsDUr0SrEOJUYMhxnCf3rnjPLx8wc+f1R4UQ9wohlu1Dsn0S+IEQYgD4X+ALe0G2Z1LvOM7IztejQP3O1y/pLP1/s18G+HIcZ4MQ4ntMmfMSsBrwAl8ETtiLogG7lM9i6v8jwZRJXwb8VQgxw9lp8/eybB8BLnQc5xohxDuAy4DpxWLfTTiO4wghptVH+6tFwHGcyxzHOdBxnCOBDLAO6ASeFEL0MnXG+gkhxPTCKO8++TYz9et17U6zvgKwmXIo2xdkey9w7c4ifwP22GR5F4z9e8iz8++/h5Gv6Cz9fqsIQojkzr9tTI1x/+g4TtJxnA7HcTqY+tItcRxndB+R70rgeqYmzAghZgIqe8HjcxeyDQNH7SxyLLBlT8v1X9zIlHKy8+8Nz7j+np2rR4cAuWcMoXbNnl6V2IMrDfcD64EngeOe534ve2nVaFfyMfXFv5ypcfoTwLH7kGzLgcd3XnsUOHAPynMVMAIYTP2AfQCoAe5kSiHvABI7ywqmIjBuA9YAS19KHa6LhYsL+/HQyMXl5eAqgosLriK4uACuIri4AK4iuLgAriK4uACuIri4APD/AY2RaMW6VLreAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#get area corrected zonal statstics\n", + "h3_gdf = get_zonal_stats_correction_factor(raster_path=oilp_harvest_area,\n", + " corrected_area_gdf=area_h3_gdf,\n", + " resolution=6,\n", + " buffer_gdf=gdf_buffer50km,\n", + " formula=1)\n", + "h3_gdf.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/oilp_harvest_area_ha.csv\")\n", + "#h3_gdf.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/oilp_production_p.csv\")\n", + "h3_gdf.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "f44eec44", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FIDgeometryh3_estimated_sum
00POLYGON ((98.47767 2.24508, 98.47550 2.20109, ...1259195.750
11POLYGON ((98.44488 2.31416, 98.44271 2.27017, ...1324397.125
22POLYGON ((98.40582 2.39111, 98.40366 2.34712, ...1415491.375
33POLYGON ((98.36445 2.43594, 98.36228 2.39195, ...1405421.125
44POLYGON ((98.51418 2.45678, 98.51201 2.41279, ...1419992.750
\n", + "
" + ], + "text/plain": [ + " FID geometry h3_estimated_sum\n", + "0 0 POLYGON ((98.47767 2.24508, 98.47550 2.20109, ... 1259195.750\n", + "1 1 POLYGON ((98.44488 2.31416, 98.44271 2.27017, ... 1324397.125\n", + "2 2 POLYGON ((98.40582 2.39111, 98.40366 2.34712, ... 1415491.375\n", + "3 3 POLYGON ((98.36445 2.43594, 98.36228 2.39195, ... 1405421.125\n", + "4 4 POLYGON ((98.51418 2.45678, 98.51201 2.41279, ... 1419992.750" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMIAAAD4CAYAAAC+ADn6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABinElEQVR4nO2dd5hdVdW4333Ouef2fu/0Ppn0CiG00JGmIiAoKNhFLB8KNrCin/7Eil0/FGwgWCgiSu8dEkJ6n0zvc3s99ffH5OMDIbQJSQjnfZ48M3POPmevvXPXXbusvZawbRsHhzc70t4WwMFhX8BRBAcHHEVwcAAcRXBwABxFcHAAQNmTlSUSCbutrW1PVungwMqVKyds206+VJk9qghtbW2sWLFiT1bp4IAQovflyjhDIwcHHEVwcAAcRXBwABxFcHAAHEVwcAAcRXBwAF6BIgghrhZCjAkh1j3nWkwIcZcQYuvOn9HXV0wHh9eXV2IRfg+c9B/XLgHusW27C7hn598ODm9YXnZDzbbtB4UQbf9x+R3A0Tt//wNwP/DF3SmYwxuLlXetZt3DGwFBoilGQ2cdwVgQl1vBH/YRigVQPerzntE1nZ998io++K2zidZG9orc/8tr3VmutW17eOfvI0DtrgoKIc4HzgdoaWl5jdU57AsUMkUCEf8LrqdG0tz667uoFCuUCxV0Tccf8iO7JMb6JujfNEhjVz2t85qRFZlCuoA/EqR5Zh2lXAlJ3vtT1WlLYE8dcdvlMTfbtq+0bXupbdtLk8mXdPdw2Id55B9P8oGZ//Wi9yzLRqvqlApl3D6VcDJMZiLLM/etR6voLDpmPvGGGP2bhhjcOgySoFwosXnFNmINUdY9vIlyobyHW/R8XqtFGBVC1Nu2PSyEqAfGdqdQDvsWWkXj22dfwWU3fP5F75u6icenggiQGc0ytG2EYDzA3MNmYps2IztGUVwKyeYEilvBNi2woX1BK9tW7eCZe9eRaIwx66AZr1q2SqmKy60gy/K02vhaFeEW4P3A5Tt//mNaUjjs06gelfd86Z3c/IvbuO7ym/juXV9DdbuAqXH+Lb+8g8nhNCM943gDHjqWtGFpJgObhxGSoKmrnvYFLXQuasM0LdKjGZ65dx0nvP9oPvb9901Ltq+947ssOXYB51x6+rTe87KKIIS4jqmJcUIIMQB8nSkF+KsQ4sNAL/CuaUnhsE/Tv3mQe/78IBf88ANMDEziUv/vY/PoP57i0VueQlZkWmY3olU0etf2oesGHQvbmLW0k/nLZ9M2r5mmmQ089cR2krrJ9jV93HHzU5xZHyMW9SNJ4mXlePK2VSw+Zt6zk+4brrgVvapzxmdOmXYbxZ6MYrF06VLbccN+41EtV3n8nys58qxDEeL5H9gvnvDfAGiaRs/aPrSyTvuiVhYeOZdlJy2hvqOW2tapueHIcIYrf343WrFKpnuYbT4XgYCb8997BCccM+8lZdi2agdfP/17XHTlBSw9YREA5WKFTy67hIuvvID5h8/e5bNCiJW2bS99qffv/em6wz5P95o+Vj+4gf/53B+55Vd3MLht+Nl77/r8qXSv6WXTY1tp6Khj4VFzcbkU1j24kduuuodKqQqAVtW55fcPMJktsXXHBPlMiaZlSYKzA1zz0V/x/q5PMbxjdJcyXHf5TTTPbuS679z47LVrvvE36tpq+NeVd027jXv0YI7DGxNf0MNY7wSSIsiO52ie1UDjjHoADnzLIn636cfc9LPbefJfKxnaPkIwFiAUDZKbzHPPtQ8Rr4/iC/t49Pf3UDp1MYlD6rH1Wvp2ZEjVWBw4t46Fs1uIN8ReULdlWfSs6+fUT5zIF47/Bn/u+/Wz9w48YRFrH97IspOXTLuNjiI4vCytc5tp6qpj+RkHM3/5nOfd+9sPbuGhm55grGeccG1oSkGEwDIthIBNT2whN1lASDK17XUU8mU2yzo5o0JXW5JOoeD16vSPV5439/hf+jcPceFhX8Ib8DLv8Nnc8KNbOX/nBPvRfzyJP+zDF/JNu42OIji8KFd96c9Ea8OEEyGOe+8RXPCjD7xoubdd8BZuu/pe2he2IkkCvaqDEEiSoJirABCpCWGaNju2DtE9w09nLERXKEm1qqOtySDVRpFH09zx+/txe1WOOfvwZ9/fOqeJ5WccwuRgisx4jrM+d+qz9wKRAEIIjKo+7fY6cwSHF0VRZZ66/RnyqcJLlrv2WzdQ15ZEq2hUSlUkWcY0TLSqRiDiwxfwMLhlhE2r+onXxjg0HsPjcjE8mcO1vUgs6Ef1qlgSPHTDY6x5YP0L6vjEjz/Apdd+mkhNiK1P73j2+lHvOhTLtFhy3IJpt9dRBIcX5Zizl2NoOktPXPSS5RYft4BipohLVVBcMqZp4vG5cXs9jPVPsPHJrVx28+c56+K3IppDrPdUyAud2roQakeIQp2Cmq9iyjJjfZOc+okTX1DHt8++gj98/XoUl8Kdv7/v2esevweE4N7rHpp2ex1FcHhRWmY30jijnjUPbHjJck/9+2l8YR8gkFUXLrdCIVuiZ10fX/3LxdwwfjWdC9t456dOpNydpiscpiYcwBA2FZ9A6U+RH5ykvH2I5lkN3PXHB15QxzFnL6d7TR/VskZtW5Ke9f08dMPj3PiTf6FXdf7+o1sxTXNa7XXmCA675DP/87GXvP/IzU8ysHUEISsIYZGfyJGdyPPpX3+UA45b+Lw9h2u+dSMNs+tJ5cEs6cgRBbsvjbV+BJ/XRc3CVj7z6/Of98zmFdv59cW/x+1zE2iIY5sWsVmt/PO399G3tpvBrSNUilW+8IdPTdvFYp+xCANbh/nSKd+etmY77BmGd4xx97UPYVkWlYrG5HAK2e1ixpJ2/v7Df75g423R0XMpDqeQLRtZCHTTJDxRxtVVw9hojruvfZAda3uxLAsA07T49RV34e1oQg4HQJJQmut4Yl0vz6wfoL9vkpqWBF0HdnDtf/992u3ZZyzC777yZ2zg0X+s4IgzDt7b4ji8DJZhUi1rFNJF3B4XieYkpi346l8vxjRe+GW24s7V+LwqpZEc9uwEbg/0zo6QGijQPqeVeTOb+MWFv2Ng6xChWJCZB3US8LqxZAkrmwdNIzOaJVPnI7y0jfCcOooPb+J7d3+NfKo47fbsM4qQbErQt2kQxTU9E+ewZ7ABWZEJJ0MUMyU2rNiBZJusuHM1B524+AXlvX4PwuVCRD0UcxWG8yViups50RimXmFd7wTh8RKtxx2IFPMw6JWxJAk7KGFUZKwxg4hLIjxRYuzx7Wx9ehvJ5ihP/nsVy0+f/hfnPqMIx75nOQ/85VEOfftLuoQ47ANUSlVu+cXtlHIlBrYMgxC0zaylbX7ziyqBaVqUmuIUR7MMqDY+02aGL0rBrLJieIjYgM2siJ/g4jYqNpQtCa3Oi1SyKPgsgvPq8TclyT+4jb6NA8RqIyw6fiGxRGC37CrDPqQIMw/sZOaBnXtbDIdXwAN/fZQn/rUS07Ro7KpHccmM9U3Qt2GAc7/8TuL1z4/l8MANj7Nm2zBKbYhG1U1Br/L4YB+SLDO7q57APBfZ8TzlYRs17EKVJDJR8PoU6jbnqTzdR8/2UbwumLO0AxubsR0jZAZdZMZz1DQnpt2mfUYRHN44/OMXt9M8q4FKWWO0Z5zUeJ6mzloalnXyu69cR7WsEQj7OO/rZ1FIl7j7D/cT66ij4FNZu3UQ3bKYO7sWd8RF1tAYVyvUxjx4XQpVt00lKhEsCwqjk4ykK8RzJdpn1WFUqwxs6EPIMg3tSToXtRFOBHdLmxxFcHjV/PKp7zIxmOK9sy+ipauORfNaMXWD7FiOcq6M2+/G0AyEEGx6ahuGYdN3y1OUFs9koSyh1PnpwWAoUyQZ9NMUCGK7bYqqAFWiYhhkN6UJPbqDrpAPw6/Su7aHalmjfWEbgWgAQ9MZH5zE7XXvljY5iuDwmkg0xjjjq+9i2+o+JodTuIoFQong1OF1G2paEmxesZ2ZSzv53TdvoG7pbDzhAOmxLOlVQ0SUZmrnxTFlGyNjoQiBjkWurCEDdaaB4nPTvbqbcr7Kt269BF/QS9/mIW791Z2oHpWSVeKBvz2Kx+/h4FMOmFZ7HEVweE1seKaPx+7fjMe2SDQlkMwIlqZhlyo0dNWydWU3K+9aQ6g2SuucJiZ6RuiWPdQlg3Qs78Jyy+RHKxgxF4okKBsGhh8SigfRk2bob6vIT+ZoW9BCNBnmzt/fzyV/upDrv3szgUQIUzPAtrnrjw8QToYcRXDYO3TMqqN5eRtGqgzpCpZLAbeH/HCKUz58HB0LW/nL92/mjt8/wIjppjYos6A9ii0rlAfSVDoiKD4VwwZbs/D7VQzTYmLFONlcmY7ZDXS4mikXKgx1j1HMV/jtpddSrepIqhuXJKEVywxsGeOTP/ngtNuzz+wsO7xx+Oknf8tVX7keo3sCczQHskzVMKnqJo2zm1hxxzOM9Y3zuy9fjxWLsWhRI7X1EVLdg2RcEvbsGEpExXQJ3LKMW4OxTaOsHxkjGFGZH/OjFKt0r+3lEz/5ILMOmkEw6mPbqm6EkLAlmYmBCSaH0yQao9zyyzun3SbHIji8ahYdPZebf3Y73vokkuqialmoPjcNtUHOOO8wonVhQHDyh46lv3eS8b4JRDFPrC6K5FYoqzK4JGQBY7kirrv7qa+W6PCq5CZzbN82QiQZ4tyvnEW1pFHIFDB0A1mSKBSroPoJ14TBNBnvn+D875837TY5iuDwqnn67rW4fSqWYSL73bhkQS5T5P4bH+Sp6+6npjmOjc3wtlEkWaK+sw41kcSwwLZt1KzBhKmTMzT8MS/+d8wk25dl60/uIH7IIuYcmUQ2ddY8uIEVd6zGMk1M3UQ3dQLN9QhZYnD9CCPdo9R31HHnH+7nxA8cM602OUMjB4a2j7D6/hceiNkVbo8KsoTdGCRbydO9ejP53n7a5jcTTYboWdtHz9o+atuStM5twut3c+RZh4IAPVuitH2cUNamMRSkUtVZtbKXwt+fZN7yObQ2hdC8PvLpAiUddEnBsgVun5vWuU1Mbuxm4xPbkFwKC4+YS6Q2xN9+cMu0+8CxCA6sfWgjj9z0JPMOn4XieumPhKEb2NhUDZNRRcD8GoLL22DzGN3XrcA0bdrmNhAM+9EqGoVMkdP+62RcqotqtoSqGXjDQfJbRtnQCx6fSseJDcgnNtKdqlDzUJFI2IvX2wIuBblUBcmmMJ7lI5efy6Unf5sZMTfVik7vxgFcbhfnff2safeBYxEcOOikxWxesY3Hb336ZctqFZ1tq3ZgFirUyzJhTWHdtgEGrnqU5sWdLDjpQNR4lPRohhM+cDQHHr+Io991ON1reuk6sAOtorHxkQ1MjmaZl4zSMD9JKlNhcKKAL+ghPCsBcS9GUwzh9VAu6QxtGUKr6jxy81Occ+lpbFnZzcCmQZpm1dM6v5kda/um3QeORXDgN1+8hrZ5Lfzh69ez/PRlL1lWViTa57fQt3mYnn9voFooc+DcRgKnHkzZlBgfSuOVTEKJEN6A99lv64VHziXRGOVLb7ucptMPBp+HkVSBVG+F+KIIoYgHu2phaDqyJNCwSRsV5K4wtT4FRatyzDmH887EB+lY1EYg7KNSrlJIFZh10PR91BxFcOCiKy9ASIL8ZP5ly/as6+fRW56ikC3R/vbD8ftVisNZBlZuJVwbJVkTxigWkWSBrPyfS/1vLrkGj99DsrWGkfs3UhQqDUvbaGisoWRAdUzHrBf4BZQqGiLownVgjDxVBtdNomsmX3znD5l/xBxKhQqTI2l8QR/ekBd/2Ann4rAb+N+AvrG6l88ANuugGcxc2okWCJA1bLZtH6cm6KFlXjOYJnqugBAgFIn2Bf+XD+OcS07n5xdeTbZg0H7IHNprQxg2ZPtzKFvzqB21pDUbAbha/EzUmGwZHaMY1jlqZg3Bqknh6S2kcyUiNREiizswhUDOlqmWtGn3gaMIDq+aS6+5ECSJT378D3QtbkFkC1R6hpEkgZAlqqUqhm4w3D36bNzTw09bxgHHLyA7WWTL0zu45ht/wRMPE2lKYA5nQRN4tXqKIZvt2RQTkkZHIIrPUhivL9O/pUijgIbOOmyvSjURQva4kNwV5h310nFTXwmOIji8arwBL7/75T3URv2UC1VsSeBzKxhVA8sy8AY8RGrCNMyoQ6toz0av7t88xHfO/SmheIB4fQQhCeR0lnlHzWXto5sZMWBslpdIS5CkT2YiXWR4Q4qOskqnbiMlghiaAT43ZtBFabSANl7k0TvW8rb3HjatNjmrRg6viWWHd1HIlFCDbtzRIJbbjepVUVUXY/2TPPGvp/naO77LTT+77dlnWuY00bmojUDYDxbYpo2syJzykeMoTuaJj0wwq79ASi+z/pF+XP0mCzvricyIUrVlqiUNSRYY41mKskbEsvCrMjf/Yi+7WAghLgI+wtQR1rXAB23brkxbKod9nq45DbQlfYwPTiBJAtujMNk/QWEyR7gmROeiNgrZItd882/881d3MPfQmURqwhRzJQzNQFYkqiWNUqHCWP8kp194Ctd+50a2h/wkV2ks9NVgIjFZLBJ4op+AooLqwrbBF/YjD1YY0G3yvSm+e+VHpt2e12wRhBCNwIXAUtu25wMycPa0JXJ4Q5Abz1LqG0Wk8xR3jDC2pge3R6FxZj2WabH24Y2M908we1kXLbMbmRzKsHVlN9bOtFFaWUf1qcxY3EakJsTyMw7G1AwOiPppCgbIDucp9eVQmjzI8+LoYRklHkLxqEyOF9hS0AiWTGbPb+a6q6cf6W66cwQF8AohdMAHDE1boleIbdsviJ3jsOfQKjqFTIF8qoDX76W2NUlmPMuWFdvxBjzMPbQL1a1SypcpFSr4Qh5cqhvTNHG5ZVSPi8x4lvuuf5gVd62mvq2WWF2E8Uc2IqsqseMWYbf50PwSxYVJ5NlQeSpHeeMAAb+bGWEfpYrJphU7+MOdL57b7dXwmi2CbduDwA+APmAYyNq2/YLBmhDifCHECiHEivHx8dcu6XMY7R3n7MbzyaVeft3b4fVBVmQ8Pg/R2giaprP6gfWM9U0y+6AZzFjSTrWs84Fvnc1ZnzuVo991GPMPm82cQ7pQPS6K2Qo966ZCOHYuamPGojY+97tPMLh1hJplc2g4dgFyxEsVsBQoGxpj5SJCsak7YAZa0sc9/gyrkiU6Gjzc+4f7p92e12wRhBBRphKPtwMZ4G9CiHNt277mueVs274SuBKmUke9dlH/j2RznMNOW8Y/fn47531t+n4mDq+eTU9uIzuZo3/jELKqMPPATmRFIj2aQ6to1LQkqBSqz4s5VMwWufjoryPJEk2zGtE1ne41vVzT8yt++OFf0nVABzo2FSFPTaZtm0JZQw0I2nIWYnuK9RsGEekUB846DL8BciHF4S+zG/5KmM6q0fHADtu2x23b1oEbgemtYb1CJEni+HOPYP0jm7jmv//Oukc27YlqHZ7DwqPmkhrK0DqviZaZDUwOpendMIg/7OXYc5ZzwvuPprbt+Xm13T438w+fg8fnZuMTW/junV/lf575AV6/h+WnH0x2IkuuWUV2yVi6iRmQiAkP2AaPtYzQv6mHzqYAs5d24LpvO4V/bwBsMuO5abdnOnOEPuAQIYQPKAPHAXssU+DsZV3MOmgGhqZPrS077FH+dNlfSbbEGd4+Sj5dpGlmHcefeySdi9uYdVAnicY4MJWRc6RnDNWjorgU7rv+YSrFKh0LW7jpJ//msNOW8enDv0x8ThuhlgYyIR86ClZIQh3SWFssIGYXOOA+ldDsJlJDafLdIySbEsRba7Btm3v//BCzlk7P32haWTWFEN8A3g0YwCrgI7ZtV3dV3smquf+QGk1zTtPHaJ/fQqwhitvr5sJffpRoTfh55W676h7uu+5h+jcP8ee+X2PoBjde8S8evOExitkyta0JZEVBCoewFZnyjBDZejf97gL+7TbJgA/LI+jPjeH54Uq+9c8vUsqV6H6mh1X3rUWSJNrmN3PBDz+wS1lfSVZNJ72sw2tmuHuUzSu2c+23/s7Fv/k4cw7uekGZsb5xPnHQJXzu6k9wyFsPBKbmCp8/7htEasIISWDqJpLHjaXI9C2MofsVvA0epIqFdtc4k6kSTU1RaiVBwiNTmcximRb5bAmtXOXMi9/O4e/Y9TzBSS/r8LpS117DzT/7N8mmOOmRzIuW+c0Xr6HrgOeHbr/pp7cRqY2gV3X0ytSwtlQoU0rlSegycY+XkYEcT28fRva7WLyohWjQS75/gt5ntpNL5cmlCtiWhS/oZfOT26bdFsfXyGFazDm4i/7NQ4R2EXrxC3/4FJIsUcyUnr02a9kMnr57DS6vC1M3MTUbfyyM2ZxkR7bK6LZJ4l1RFmgJcBn0SGU8bkFicTPycAoxmkVRZWzLZqxvgi/+8b+m3Q7HIji8Jp6+Zy0//eRvGe0dZ/Ex89hV5nuX6kKWZULx/1OUtQ9uRPWq2JaN26vSPLuRie4htj+4BVWSmLewkVDQw0azyAgGLaabGr8fK+zGigdAgFbWGO+fIJwMcefv7592exyL4PCaiCRDjPaMEYj4OfWTJ7+6h20bSRJIkkJ2Is+nfv5hLj/3Z7R7FbJD46z2lFHDLubUxfBpEuQ1RFrDrnFT8CjIkwU+/7tP0javmVwqTyg2/UDAjkVweE1MDKawTIu2BS3PHux5pRzznuWoXpXMeBZvwMNPPvYbDF1n/aNbSD0zwqHbNQ7psfBvSlGq6pRqXWguKFQ0PJN5lpywmLZ5zRi6wYfnfoYnb1817fY4FsHhNTExMEnn4ja2PPXqJ6rt81u47IYp/6BNT27loiO/hturMnNpB75EhGrVoDhUQG6P4y3q5AOghF34Qi7ypsHtf1vBOz59Cld99ve0L2jluv93I8tOml7CEGf51GGvU8gUuf3qe7n/hscx/UGCIS+usB895MGVqyCCXgq6yZqGCqotUxsK4Cvp6Neu5Nu3XsrkcIa5h8zc5ftfyfKpYxEc9jrlQoVbr7yLj37vPB67cx3p8RxoGuqkjq7bjJd0hBDMao5SCcPgWA7vLx7lsusvpra1htrWmmnLsN8qQilfBkBIAq/fs5elcfhPDN14NpjYDz/6K445+3BqWxLkBkaxqiamaVJIFUAIoofNQfOrbMlmqawt0dYYo+6MQ3nqjtUsOXbBbpFnv1WEn37iN6SG00wOp7lq/Y/3tjgOz2F8YIIPz72Iqzf9hERDjLd/7ATmHNJFbrKAaVjYto0/5CNWFyU1nKb3H0+RHcvR/M5DiSfieG2FMz54KLJp7TaZ9stVo/uuf5hn7lvHxie34vG7uf8vj+xtkRyewzfP+hHzDp/NDT/6JzAV4SJWF6VtXjN1bTW86/Pv4Ot//xwf+Oa7WffwRqKJIIvevhRfLMTwRIFMb4pEfQyAm372b/756zuZ7lx3v5ssF3Mlzqr9MO0LWgknQ2gVDcu0+NH933xd63V45Wxf3YNe1ZFk6SUzqX7++G8gBJTyFcb7J/HHAtR0NaCoKq0dcVKDKdJjWbSy9pL/v29KX6PvvPcnLDp6Hi63wnj/BHpFZ9FuiHvjsPvoXNTG7GVdL5tO+NyvncmmJ7dx6bUXsvDo+TS01+Ky4fC3zMfjVqmWNfSKzid/8qFpy7TfzRHeedHb+PHHriSUCJJsigMCQ3fOK7wRWXjEXK548L9p7Kxn+enL+Of/3M0x717KyR8+drfXtd9ZhHmHzeLD33kPBxy/ENOYWn1wDvm/MRFC0LmoDYADjltAOB5ADnm55+GNPHn/Rnq2jKDvpkNZ+51FUD0qR555KC1zmtj2zA7KuTKzX8RP3uGNRSFdAGweumsDWa9CdtUgHo+L9118EkecvHDa79/vFOF/aZvXTF1LgpHeCTY9sZXDTj1ob4vkMA3SoxlyqTyZlIZLdfGxL7+dg4+di0vdPR/h/W5o9Fze+rETSI9m+NC337O3RXGYJnMPnYXHo9LanqSlM8nykxbuNiWA/XD51GH/o1qusmVFNwuOmENqNM17mi/g509czowl7a/o+Tfl8qnD/se91z3C5ef9FIDvvPenLDx6Hld+/o98dMHFfOGEbzKwZfoBFh1FcNinsSyLqy69lot/cwEA7/nyO+lZ20dqNEOiMYbiUrjnz9OPfeoogsM+jSRJU5Gyv30DAAuPmMOXr7+I5WccgmVZGJqBL+iddj377aqRw77PHy/7K1pVx7YsJEmipjVJXXsNwVgAt8eFL+SjWtb40zf+yh+3/QKYirm66Kh5BKMBghEf/ZuHOf3CU6YtizNZdthr3PeXR/j3lXcjuyS0so5hmHgDbiKJMP2bh9ixtpe/DP+GSrFKTXPiNdfjHMxx2KdZesIiNjy6mVK+gktVGOufoFqqcum1n8Y0TSqFCuse3sSf/vvvSJKgZW4TDZ31uL0qkiwIhP0c9e7DXvWZ6RfDUQSHvUYwGnjWYS4znuVjiz7HL1Z8FwBZlvGH/cxfPptAxIfsUpgcSjMxkEL2uKlkCxTSRQ54y0Li9S+fDfTlcBTBYZ8gkgxz/eCVL/AL84f9nPiBY6mUKtz/l0exhUQxU0a2bd7y/qN3ixKAs2rksA+xK+fIY84+HFmW0MoaSDKReADV7+O6/3fjlGOlYU67bsciOLwh2LG2H1/Ii16usnVNN6V8meaZDXzttO8hKxLfvPmL03q/owgObwhO/shxXHb69yhki9S11eDxudGrOp+7+uMUs+Vpv98ZGjm8IWiZ3cjMpZ10LemgUqqy/tHNpEayDGwepqmrftrvn26e5QjwW2A+U7mWP2Tb9mPTlsrB4UX4/O8+iZAEpVyZyeE0uYk8Mw54ZY53L8d0h0Y/AW63bftMIYTKVIpZB4fXBVmRAQhE/AQi/t367ulk1QwDRwIfALBtWwO03SOWg8OeZTpzhHZgHPidEGKVEOK3QogXqOnrkWfZwWF3Mx1FUIADgF/Ztr0EKAKX/Gch27avtG17qW3bS5PJ5H/e3m94bqSMm39+Gz/71G/3ojQOr5bpzBEGgAHbtp/Y+fffeRFFeLPwlbdfji/ooVrWmRxK4Q14GNi6e1Y0HF5/XrMi2LY9IoToF0LMsm17M1N5ljfsPtHeWFz4i49g6Abfe/8viNVFCCdDBCLO2sEbhenuI/wXcK0QYg2wGPh/05boDYRp/t/WfkNnHY/dspJQMogQgpM/fByRZPglnnbYl5jW8qlt288AL+nnvb8y2jvOBUs+T+PMetoXtNAyu4n2BS1EakPkxvMsPHLu3hbR4VXguFi8RmpbkxzznuUMbRtmYPMQk4MpTnj/UYQTIXKTeR78+2MEogFqmuOEa0IIBKpX3S2+8w67H0cRXiObV2xny4rtSJKEL+TFMi0e/cdTnPzh47jtqnu457qHyY5lidZGCMWDaBWd/k0DuL1u/t9tX6ZtXvPeboLDc3AU4TVS15bk1I+fyIbHNjPSM46kyKy8aw31HbX86zd3E06EaJvXQiFTZMOjm3G5FToWteHxufnz/7sRyzRJNMR4x3+dTH177d5uzpse58zyNFl512pW37+etQ9tpJApEooFn02dumNNL/6In9a5zXh8KuV8Ga1q4A16cLkUTNPkoBOXcNbnTt3bzdivcc4s7wEOfMsiZixpZ3DrMN6Al9RImg2PbyEQ9THv8NkoLplcKk9+MkcoESQcDGJZFkgCl6Ly9D1rOPGDxzwvM73DnsdRhN3A+kc3M9w9Sv+WIULxIHMPnYmQBOmRDLpmkGiM4a3zYlkmlmUjJAlDM8ilCsiSxAN/e5Tlpx+MP+J3JtN7CWdotBsoFyt8+rAvE06GMHSD0d5xLMOirr2WQMSHaVgYuoEsy1iWSblQQVJkfEEvRtWgb8MAmYkc7QtbeNv5J/C2j73lVdVvGuaznpkOL8QZGu0hrvt/N+INeuhe3YNl2bTMaSQQCWBoBqVcCVlVkGSJarmK4lIIxoPoZZ3tq3ZQypVpntNI64JmqsUqf//RP7nn2gfpXNxOtDaM1+/hjM+89SXrP7vxfGYf0kWkJoxe1TE0g0RjnHd88iTqO5yJ+CvBsQi7Aa2qcUb8g8xY3I4/PBWdrVKq4vaquNwKpmEhKxKKoqBVdQa3DlPKl2nsqscX9FJIFxkfmCQUD5JsjiMrEoZmIgR4Ah5O/OCxBGMBXKqCx+8mWhPGv9MfX5Yl/vbDW3j4pifRqzr+sA9XJISpGyxZPou6lgRHnHkIsjzlRJBPF/AFvW8qC+JYhD2E6lY572vv4pGbn2B8cIJAOEAoGsCyLYQkoXpk9KrBYM8wWkUn0RzH7XaRHs3Qu76feEOUzsVtyIqEVtIxNQNJVdCrOpXRLLf88g4kl0J6JEPful4CUT+t81rwhf1kJgtUSlX8ATeBmiiWEEjBAHKhyMq71zLeN07rvCba57dw21X38tcf/INsxaa5LUHbvCZcioxZrfLpX52/t7txr+JYhN1EaiTNt875MV6fe2pVyAYhCRKNMQa2DFMpVfAFfUiyYLw/xUjPGDUtCerbaxCSoFKqgmXj9rmxLBvbsnCpLoQskZksMLJjDH8kQLI+jBCQGsth6BbJxhi+iB/bBjvgQ7hcGBWNbPcgkhAEwl6STXE+8M138b6OT9Jy8BwSHXWYQqJS0ZHzRdySxdHvPIRwTYhlJy3e212523Eswh4kVhdlybELWPfQBoQkYdlQThU4+5LTWHjkPB668QmuuvQahrvHaJhRy8Kj5mJbNvl0EYBgxAeSBLaNoioIIDuZZ2IwhT/kpWtxK1q5ynD3CIZu0TCzgUDYh2lZVCsasktBmDbFXB7ZsojWRzFKVfq2jbJ20zg9g1ex5LTD0CWZdEFDccn4Ax6EbWJVqtz/98cIxQLE6sLUt9fgD+/eo5D7Oo5F2I30bhzgN1+8hmKmhJAFHq9KpCY8dehcCLSqTilXopgtUS1V+c55PyNWG0Z2KdiWBYCQJIqZItmJPL6Ql0DUTzDq58Jfns+57R+nfUErwejURLxa0VC9HiRFQtdMlIAP1ePCqOrsWLmNQqZE65GLCAZcaNkiaUvC63cTTQQRMJWtXgBVjUz/BPmhcYIhLye872je8cmT9mpf7k4ci7CHaZ3TRG1LghFrHNM0Gdw6wobHtrDx8a10HdiO6nahJsNEkmFM02TxMfMZ2DSIaUylwK2UqpTzZbx+D/UdNVTLGhsf28KNk7/j22dfwYLlc9FKFdKjGTx+Nx6/G9O0wAJv0INeLtOzvo9K1aC2KU7bIXMo6zZ9vWl8epn6Be0oHjeGYWIbJrZfpVg1qNgS/o4Gmlpr0IfGePvHT8C27TdVWl7HIuxmdqzt5dvv+TH5VIFkcwJ/yEspX6V/0wChRJCv/uViug7oYHI4zU8+fiVaWUPXDPSqjupRcXtVCpki21f38NeR36JXDcLxIL0b+qmUqvz64j/gCXiwLRsBSIqMaVpMjOUpTWZINtfg9rvJTuQZ6Rkj2l5Pw8xGZMvEsMC2QQ76qWBTcUkEShoul0TGFnR3j+Pxuuj0CRYtbuXcr565t7tzt/BKLIKjCK8D3zn3J6THsmTGpgJQhWsiNM+qx6UqeAMehIBwIki5OGUBirkyLpdCIVOgd+MgiizTOKsef9hHuVDhR/d/89l3X/n5P7JjXR9CCEzTIjeRx1JcBP0uZEVmYijF8I4J4nUhGjprUTxuyhUddANPJIAlZEyXglwTQpZlCt1j9G8fRW1JUt+aRHHLZLMlTMumvT5CU1Chub2G4957xF7s0enhJBPcS5z39Xex+oGNlMom84+aR9v8Zipljcx4jtxEnkK6yGjfBGde/HYaOuvQyjrbV/cwOZyhfUELrQuayYzn2PLUdqpljVX3rgWgUqqSGcuCDYVMkVK2RDAWIBrxMDmcZtW9a6mWqyw4bCYNnbUUsyUyIylcwkZ1KxjlCopk47FNqt2jbN84Qr6k03nwTJqb4mRHsvT3TODxuamrDVMqaWxaP8iTtz1NuTD9sIr7Ms4c4XWgqaueUz5yPIPdY2QncgjbJhgLoIb9mKYBCELxIH0b+nnk5ieRVYWmmQ1YpsVIzxi5yTyNM+tp7KzDsixu/fWdPPDXx0g2xxjpnUBgE4j4sW2bkR1jjPaOk2xJsuioudg2TAynkGWJSE0IxaXwv1bfJUkUJ/OkRtJ4m+tpqw9j5EsMPbGRiuqlYVEL9fEAlg2VkobkkpAti1ymiKFPP+L0vowzNHqdGNo+ypff8X2SjVFUrwvLsLAMc8rVolSlkCngcrsIhP3YAnas6SM/maNtfgvR2jCGbjybScbjd2MaU3sTLo8LyzQZ759kYihFoiFGtC6CUTUY65tAVmVqW5KoXhXLNLFtG0mSqJQ1iukiLr+bQDiAppkM5AzKPUO0Le0iUhtFkyUqAlyyjOxRMLCRugdYdNCMN/R8wRka7UXq2pMccvIiJBmqJQ3LtDANk0J2at8g3hDF7XGxZeU2vv3PS2ieVc+iY+YTb4jyvm+8m1K+TDDqx+N3A+ByK8gumfGBSXrW9qN6VWYt7cQb9LL16W6Gukep76ylZXYjsjLl12RZNoZmkk8XEPZUnS5ZYtNjG9n85FZqVZOFh8zAbRpM9o5RtW38PhVFlRE2uFUXcsDH/X99hEKmuDe783XHUYTXCUmSOPrdh01ZAUmglTUkWRCKBRGSxJantrPl6W4aZjTw9TN+QLWsM7BliPRohnuueZBQPIRtC4QQtM5txtBN0qMZYnVhWuY1YWOz5sGNDG4dpnNRGzOWtGHbNoVMEdO0kGUJvaIjK/LUu7DZsmI725/p4bIbP8+5l54Gpkn/pgHKmTzR5ih+nwoVHVkIhG0zOZph8OlufEEft111797u0tcVZ47wOjJraSeJhhipkQy+kIdKWWNg4xB6qULDzAY8HpXMRI7NT24jVhemeXYjkhD0bRqcctGQBUKSePclpzHWM86sg2aw9uGNfP7Yy/BH/Mw9pAvV66ZcKJMezeILefH4PVjm1BDMF/JSLlTo3zSIYRh86bqLmL1sBr6glxlLOnjwhkdpnFGHpLqwPG6kTB5JksmXdaq6SSjkJX7YPMq9o5z12bfv7e58XXEswuvM8ecdRaQmzEj3KBN949S3JWlb2EYhV2HLxhFsVWX2MYtIdjVh2BK6CZLqwrRsTN3kfZe9i39feTdXfuFPAHz3vJ8x9/DZdC5qo5SvMN4/gazIRJLhqSGNBC7Vha4ZDG4bYXIoRX1nLcvPOIQDjlvwbHLuf/z8dmJ1MUwLdFsgGSZaQaNUMfG5FRKxAIWJPGv+/TSjwxmeuHPN3uzG1x3HIrzOHHDcAg44bgG//uwf6N8yzMD2Mcb7J2nsrGHewTNAdVEWCjbgSUSxdAPbsvC43STrI1QrBjf++FaueOhbVMtV3veNd/Hnb9+IoRkkm+PE6iPYlo250wqYmkE6lUWSBMmmGLYNI92jbHh0M++59HQSjXEAZh88gxV3rsYT8mFpGvpICjUaQvKoTE7kGBrKEIgEmHNoF3UNEQ46fj4A3//OrdQGVBrrwhx31sF7sWd3L86q0R7C2pldvpQv86f/voFtq3sp5MoobpVQZyMAtmUhyzJCTDncpXaMEgh7CQZUrFKZoW0j6JpOY1cd/nAAy7AwdB1JkbEtm0qxiixLeAJTq0wDW4dIDWVomllPoiGOJ+imlCvzvbu+xu++ch1bVm7HRiDLErZtk5vMM5nT8Eo28fro1I71YArTsOg483AaW5P0dY9hD6eJhLz81/fPwRfw7OWefXkcX6N9CEmaGoX6gl7OuPBkJobT/O2Kf6PpU852tm0jyRLFQoV8poTX66J5VgOVbIktT2/HNi3aZtSw4Mi51LfXctef7kdxySiqgl41kGRBMOrH0A16Nw6SGc3QNKuBpq4GtKrGSO8YqsfF2z5+AgCheJBFR81j7UObKGRKZMYyBOritLSGqJYr9PVlMf0+6g6fg7spSDaokBobR/ZbeHwyo8MpVty1mlgyxPzlc/ZWt+42HEXYCySb4iSb4iw5ai6P/nsVkqZRqRhUqwZer4u6miCFbIn1Tw9gZTLMWNCM1+dGWCZnfPoUhBCsvOsZCpkSsizTuayd9FiGzU9tJzOaobathsauOsr5CtvX9BAI+6lrS6KoCunhDADvvOhtGLrBI/9ciSwLGmbUUy5W2fjUNmyPhxmHzCYQ9aPZFumKBSELJa5SxMTwxwmrMv/+9Z2M9I7z+00/3bsduhtwFGEvctipS3nyzjUUJ/O4PQo+t0R+IsPWDQNIlknHgV24m+eQE4JMqUp8Iss/fnknXUvaWHDEXIrZEttX93DOpac/m0rphiv+yZ1/eoBNT2wjFA8wY1EbiuoCbI45Zznmc3aIhRAsXD6bdQ9vZO1DG1ECAdoXtROIBSm5JXpiMrGCTFRSKVkSlmUTREEq6gzlTYrP7ODL11+0l3pv9+KsGu1F4vUR5i2fw4yFLVTLOltW9TA+OEnH/CY6F7dSHE0xuHYA0y9T1xBFba9ly/YxHrn5Kd56/vEcfvoyhrtHeeLfTwNT0TROu/AUiukSsw+aQeucJnTNoLhzM2z2QTM48QPHPFv/0PYRbr/6Xga2DtO5qJXZB7ZiGRZDQ1kM2UWdx4sn5MFwCxQEomozPlFgrDtFeDJFx8I2/vztG/dK3+1uHIuwlzn7opMB+OTyr9O5oAlDN5lIVchXTSJL2miMBtGDbqpFHZfiQvi8ZAdHMU2Le655kGhtmBuuuJVjzj6cC5Z8nqaZDSw6Zj6nfuJEKsUK119+EyCQFZnnLoxkJ3IEogGWHDef7FiO1GiG4e0jxJuTNLXVYto6Zl6nVKOCSyJfrqLrJsGAh2DcIpcpsPn+VVzb++u91HO7F2fVaB/BNC2y4znOm/Ep2g+eM3XUUpEpqy60Jj/+KtgFHXtkgmXLOpm7bAaegJvPLP8Kv3jycm6/+j62Pd1NeiyLrMjMWNJOfUcNm57YhmXZxOrCHHHmYSQao3iDHv78rRsY65tkpGeMzFiW+hm1JBpi2BbouoGQZeT2OlItfkwh8LpdSEIw0TNB+n/uI1obpr6jlrmHzOTD33nv3u6+l2SPnEcQQsjACmDQtu23vVRZRxFenqu+dC2bVnRTwYWcCOOL+inVeHBVLCS3AkWN9KpuJjf2EU+GCScCRGrCfOTyc7noyK9Q316H169imhaWObUSpVc1irny1DnlsA+jajCwdZj0aIbmOU3UNMYxTJNKsYokCTx+N5ZpI1wq+pJ6zFiA8VyJofEMdbaHhoEJpGKF9FgOAXz/3suI1uy7SVH2lCJczFSykJCjCNNntHec4R1j/PM391DyeiDkx1YVDFUwWa5SyJaIhnxEU0WqQxl6ntjIn7p/QSDi56pLr2Xrqh0YmoHimhoKVUsaituF26uiVTR61vdTTBdpmdtItCaCrhnk00VcboUjzzyUarGKoRtIssSWlTvIpAqkahKYB8aJhbyYVYvcqjEsw6TNFrjDbhqXdaL0TeALeqlrjrHgiDnUtu47iSNf930EIUQT8Fbg28DF03mXwxS1rUlqW5P0bejn0Yc2gyKTy0NJsvHVBYiG4xQG0qy/az0en4uOAzv59cW/R6sYpEczvOW8IxnpGSc1nAYBE4NpquUq25+ZiqrXMruRwIJWysUK/VuG8IV8nPyhYxBC4oQPHI0/5OO2q+7hkLcv5ZITv4V/cRfJGWEKssnGvlEEgqajk0Rklcp4iYmAxJiVxiOVYFU/rjuKpEYyLDt5yRsqB8R0J8s/Br4A7DKUsxDifOB8gJaWlmlW9+Zh+RkH8+gtKyj1jRGc2YI/6mbE1nmmdxifz82s9x6Cr2Kgrx9g2zNTewWq10UoEeLEDx4LwMCWIb5++vco5cvUtdXgDXrIjOXYumoHoUSI5lkNyIrM5HCGj15+LjC1sXfH7+8jEPXzP6u+z5N3PMM3zv05ajzG3LfOxVMXpJIzGYtUcDe5USUJ3bSxOiP4gm7Ue3dw66/v4I+X/YUf3v8NZixpR5b3/ah6r3n5VAjxNmDMtu2VL1XuzZJneXcTq4uyYPkc2pbOIJ8tseX392NuzHCwL8FiEcLYnmJyyzhyJESiOYHqUwF45B9P8uANj5EZz9I0s4Gr1v+Y937lTLSqzmU3fYFv3XoJB5+yhMbOWgzdolKs0r9xkOEdowBYpsXCI+dy958eBODy9/yYzpk1zOqMIm8aJL9+nKLPIuzz4JIlhARyWMJy2exQDbrX9RFMhJhzyEx++Znf857mC/ZaH74aprOPcDhwqhCiB7geOFYIcc1ukcoBgPd+5Z1c/JMPYvcOM/vso6itizA+mqe3bxKv20VTcwJvyIfp9kI4hGVBz7p+/vbDW+hdP/Dse075yHFUChWevmsNfRuHGOmZIJ8uoCgSikuhXCjzyE1PAjDWP8FtV93LF/7wKQDOu+ysqbMSG/qRPAHqwkHCpowtg6QKdJ/FkJVjh2+ShKKSuPhEiotb2Pj4Voa7R/jITkuzr7Nblk+FEEcDn3Mmy68PWlWnWKjykSP/m4b6AKGaMEgKWqmKqIujaAbVsoY9OoZblYnXRfnsVR9/Ni6Rbdv0bx6iri1JLlVg7YMbGO0ZZ2I4zdCWYYQs0CoaX/vb5whGA8/GNJoYnOSCA75AsjlBtDaM2Ryn1BalXCthegR5u0rVq+NX3aiSzFiuQM9wloXXjdNeH0ORQZUlLF3ny9dftNdyP+yxcC6OIuwZtqzuo5wpYJgWhVyFkd4JxgwQFR2lXKZ3bQ/DmwZIjaT53t1fZ8biNjY8toUff+x/uHrjT174vpXbueGKf9G7oR8hBKd89HiOOfvwZ901bNtm/SOb2Lyym0dvXYkV9aMf0kY+aKK7wO2XwW0zbOTpnkwT83jp8MTw5SXszWWqwiKsyHgnixx23ALUySJur5tj37t8j84bnLhGbyJM0+KDh1xGzC+jumWqxQoDmwfx+j184FvncPy5R+7y2Wu/fQMr71pD/6ZBCukCv1r1fdrm/t+Kz2jfBL/83DUU/AqVObXYURnTLRipFhjM5QgkPDQrQeSyID1ZRBk1qAkE8IRVLBvQTbzP9GGlCkyKApde+2k8apCIPRXn6fUOUe8owpuQ1Y9v46sf+R2eyVE+9oP3Ea2NMH/5bFSPustnspM5zmn6GK3zWwnHAggJsuM5frnie1PvfGADf//pbZSbwpj1UQYDFSbLZfwBN+G4B10zKT2cwbQsajujJHIgchUM20TIEnrQS2VdD0KYhC6MoHndbFgjI33qTurak3z8ig9y8CkHvG594pxHeBPy/S/8ldlLWlFKcR695Sm++pfPvuwzP/jQL5l/xByKmRK9mwYJhLyc/NHjWHXvWrau7KZ1bjNmuYL2TI5sFVwzPLTWRSnqGht7x6j6LJY1xQkrHiqqTd4sENw2jMutots25oJG3EfNQjSUGfb0MlZJI3lm0vnpI2keMVhy7Pw90DMvjeN9up/xvWs+xvs+dSwTPWMUshWu+e+/c/9fHnnJZ8796plsemIrpXyZtjmN1LTX0teX4Z+/uhO3z83Bbz0AraKjJqM0yW78ozorBgdYnxunLRFlWbwRKyYzpJap2ibefBkMHbtcxhVRERE3gyNZ1t6TYmxLA/XVxdS2KPQdWOaBMz388Eu/45n71u2hHnpxHEXYz2hoiTNzcStzlnUiKxLrHtnM4/96mvuuf5iJwckXfWbmgZ0ceeah1LfXoFUNqpKLsYEUhbJBtDHOE/9aySkfOQ59dJL1T/eyuqbCrOYaDvU34B+C4sosZtki6vHgURWEaaEkIgivm8m1A2zvGyeguGhdXkfArbJhR47s3zXiyQRdtV4qzVke5Qmu/ucT5EuVPdxjUziKsB8ysmOMif4JTH0q0t3QthH+8YvbeeiGJ6ZCxfwHq+9fT+/GfnKTBRRVwR30giThDvm569qHueGKWznstGVk02U6A3DoRh1zWGdwcwrKJvXxEBGXB2ECAuyGBGm/nzGvH89RC5kTiuGqWjwm9ZGO97DEDDGjKYlnxEXe0PCeJDOQs3lk7Q4eXbeDJ0f793ifOYqwH+L2qsjyVC5n27IIxgK4vW5u/OmtfGLpFxnYMvS88m3zmznrs++gbUEzQhJQrSJjUynr9K/dweRIhqfvXsN7v/h2JnpH6Xu0h8QjoywwXNSVBfJEFSmlo+YtKrkqlZEiYc2kPujDyFVYuWWAoUyBY7obmb+1i6qQKT62FfXhSbybDYr/qlJcoxKqUbhp5TouevhWyoa+R/vMmSzvh9S2Juk6sAOtorP16R0MbR8lP5kj2ZLg5A8fR2NX/fPKR5JhjnznIbhUhZ51fTxz3zqykwXcTXXUz2wkHPFx0EmLkWSJm392G81NSWxVpdKTxtaqqPUxTMODLQQJSUbRTTITefpKGn6/h/mL6pE9MvmKxmC1StP6NIGoF3uiQuCGHJYkkGZNMHi0zY4BF01ShKs2PMWnFh62x/rMWT7dj+ndOMBX33450dowHr+bfKpA/+YhAtEA37z5C3Qd0PGCZ4a7R/npJ3+LHPCjmTa96/rJpwu0tUWpbU1SSBfIZ0u43CqBaADbMMC2kRQJ4fWRNyTG1mzHF/YRn9UEkQAjwqSs6SSSIdQmD+7uLKWkm8CqIciWyY5n6XtvB4GWGNEJhcJkiW0H9PDwSV/GJU1/j8HZR3iTc8X5vyY7WWB4+zA96/uJ1ERpnt3wbGYe27b48nWfwaX+n+vDnX+4n7v++AA9GwYw/EEaW2ME/CrlySyp0Qy+gIdoXRRJEjtdMSTAJp8pkh3PEZzTSVC2MTSdEV1Gyxapq/ERmNWA6ZKpygJbFZiqif1YD6aw8QQ9WAk32xb4ST+WwT5Epb0hSkM4gEYVbdxFfSDABw88kNZI5FX3g6MIDgCc1/lJaluTyC6FYq6EoRkEw34Ut8xbzz+B5acve17597ReQLwxjjfgoZAuMTYwQTDipaYlieKaSqBu2xaSJKiUNErZEm6/Zyq+a7FK7/p+tKpB53EHEo4HMHMFKkhItRFExINmWtiKQERcmB7BgFGgbzKLr8tDcyCI7BFkjQomJvGQgpL34rPdfOnoo2kMhV51+50NNQcArnjwm2TGs3zr3T8mWh8lkozszAVt8mL5As/4zFu57bf3sGNNL4nmJF0HdCBJU0c+q6UqituFqVtUNAO3102i2UcpV2LdwxuxDIuOha2EG5NoNqT6xnHpVXzJCJYQmLqJT3VR9UtMjBeZGM2ineBn9sw4qlcjGVqHZtpY6Zm4lQCqouFP5Kn3wdr8AF53GzG3b7f3kaMIbwISjXGitREOfMtChneMods2kmkiJIEn4GHbqh3MWNIOwMTgJL/5wjXUtiaYd9gsJEWmUqxiGQYevxtZkTE0A9XvxRuRp2IrPbUNSzfoWNCGx++mlCvRv76XSGs9kYgXqhK2piPlC0j4yWTKDHtsYi6V2rfUkvMabJvIQqjCKfEAdQEPEXcJwy4wng/h8ZUZsdKs3JqmapZYmmin0RffrX3kDI3eJPRvHuQXF149FYPV70fL5JAkCdWrEq0J87mrP/Gs2/ZPP/Vb+jcNkksVEEAoEURR5KkD/bJAkiXKxSpjfRNgQ7IphqIqZMeypEczRGsjxBtiyH4vZqkylUjdsihmi1TLBq4lbaitSbJKhbXVNPkOjdnRWiI+N4pUJhGbwOeyqFT9bBsNk4gXCLnBJRmMVDJsSWX562GXkAxEXlEKXGdo5PAsvpCPxccuYPvqHvLZMr6QH0PTGdo+woZHN/G2C05gxpIpt+0VdzyDJEskmxOobgXLsrEsG0kRaGWdbKqAJEnUd9SCDWN9E0wMjFPXVsOMJe0ISUKv6ujpHIpLQa/o6BUNj99NMB4iO5JmVbGM92MTHOSvwzaTZCom4+U8CxvTeBUXDWoK3Sgz5EqgpUL0u0fQlBEUOc6Bfw1z+UN/oO84N4FbfFxx2VlEw9MbLjkbanuZp+9es0vXh91JvD7K2V88jaPfdRj1LXGy41kGNg0STIaZuayLX138e85u/BhzDu6ibV4zTTMbUFwyWkWbCjtvGOQm8uiaQaI+QijqZ3DLEKvvW4eiSCw4Yi7JpjjFXIlipoisSMiyjKEbuFSZYMxPpayxaShHd2uMrvl1zOyeT8Wy2ZbNU9YsEh4fph4iIGksDQzS4MszViqwZVuBQneSiDEXX9ZP/wP9rF6uE90UIBkPcvtu8FNyhkZ7gWu/dQN1HTVEayP85Xs387aPncARZ+z5XAM3//w27vjdffRuGMBfG6O1q5bGrnpGe8epljXUgA+0Klq5iuJScLld6FWNgc3DZCfyNM6sI1YbxdB08ukisksmFA8iyxKmZSFLEkISFDJFJgZSKC4F47+XEGy00ZQJ1m0OUhvyk/R5EaaEXbHwezXa4+Msr32Cr607lqDqIZD1UcxodA9NUu3Qma+FqFvoQikaDA8FuHDuwSxb3LbLdjrLp/sgD9/0BDf8+FZc6tQHS3W7+MyVH8Mb8O7xo4y2bfOelgtonN2EGvBRyZWp5Iv4kxGUqA8jEkCayOKqaOilytQOdbpAQ2cdgbCfSqnC2MAkPr+HRFMcl1vBMqc+T3MO6WLtgxtJj2ZQVIVQPEjugCDrD1ZJaSUO7wCl1EA578HMWEgGeKoSFcNAs0zUkAslDCmpxLb1WWRJMDuSwB9TyQcrGFKZgCojVQP819JDOSDRtMt2OnOEfYzBbcPcc+1D+EM+KoUKOzb3Ua1U+erbv8vSExbxvsvetUflEULw44e/xcRwmh9++JeEEyEiySCoEmYijIj6MDwuMk9spzQ0Tqw+SkNHLblUgc0rthGI+Gme1YDbraLrBlpFR3bJxOoinPiBY1j38CaSzQmq5anAYtkHcsw8uI3I8lm4BgSTlSqFAy1Ctg9h2JimhcflwierZDIVNm+dhKjMvJoa3D6FnKkxmc8RCEoERRBMAR6d2wY2vKQivBIcRdiDjPVNZbXv3zSIrhnUdSRRFIXUSIYbfnwrD93wOJ1L2pl36Eze/vET94hMta1Jrvz8H6lvr8G27alEhJaCIQxSxRKuHROEOhLEol4mdoyw5althGtCzFzagcutopWrFHMlXJ6pj5JW0pi/fA43/PhWWmeWeOCmMQrpMi1zmmhf0IJe1cnfsxXF7yXRlkRudaNMWCiWRDWukKuUGRkr4JZlZnTWIlQY00pks1mSQT+N0RCKV8OWDCTJRiu62JIen3Y/OIqwB1ly7AKWHDuVT237mh7GeicY7RmjvqOWOQd3ISTBaM8Y2fEsx5175LOJ/15v5i+fw8M3P4ksCSRFolKoUvDJBOJ+qPXRN5SmeNcGoj7B/OWzkRSZUr5MKVvGG/JOJUQ3LRSXjOpRuffPDzG0dYQ/PrkK2zqY/u1tlHJletf34w/7STTGkF0yIlcmfg8YER8lRabPbSAHJNpro5i6xchQjlFXmYbaEHNqkljCRrMsrDIE4zph1wTdkzH+a8H0M/Y4c4S9wHDPKB+a9WkauupINMSxLIt8qoAkSwSifmRZZtnJi3F73Zzy0eNfd3nG+sb5xad/RylXQkgSLlVBTwToSwaZGMuTiAao83uRchrF9f0YEymitRHU+hiWLCFG00iyQKvoTA6lMAyTeF0Uj18hNZJnZMcY9ieOojnkxzteRF43hGVaLD3pAIYGMwys2oodjuCrjZKJSqx3lUnJVRpmhqkNBTAlm7KmI1clAkkL3bBxh8ocVdNHzF1FIHFy03d22T5njrCP8sMP/YqFR82lWtYY6h5F9bhI1EdRVAXbsrGweer2ZzB0kxkHtOMNeFBUhfr22tdFnvRoFtuyUb0qpmEyPjBBdk0vnncfwpyuOvSKydC2iam4p2EvvnA9hm5g6AayLWOZJtmJqWQkicYYCMFE/yQbHhumpiXJ7INmYI2XqQ7mqaaKeG0bIaC+PUHLrDpWC5Nta3rZsiZPz/Io7YkYM2JJKrrJiJ4nGNYJefwIXSB5TCKKiccl2FHxYNvrObXlhaFqXi2ORdgL5FJ5APKpIr+95E9oFQPTNLEME0mecmEoF8ooqoIv4EWr6gxtH+XPvb+aSjoo7d7tn6fueIabfvovMqM5ysUKoVgA76wWCrKLHYMpZFnQ0RzHj401NImWL+5cGrXRyjpCgNvnwbIsRnaMMtozTk1rDbUHTQ33StumLEAg4kOSZSzTmtpn2Om+MbRthEq5SkNnHd5EgGxAYfuCKO4aN8moH2/UQPg0DEsi6NbwqBk0O4Vsy3T4JBaEAxxWu+sgBc7y6RuAFXeuppQvkxnNMrh1mMx4FkmWyE3mqZY0dqzvo5Kv0DynkZqmBL6wl0v+eOFul+NLp3wbt89NpVglmy7SO5Ch/I55dDbE8SsKesWkUq4iQoLYxjRMFBCmgaIqmLrJaO84qZEMiaY4sboIlmmRmciDbRNJhvD43NhCYCeiSJaJNjRBaiiNYZjE6iO4XC4yEzlGe8cI1YRJHDcXJR7A1mzK9W7kkEWmTSMWGcUtyYRVhbwuWJcq84+jP4ckdn1uwVGENyi9Gwf4ytu+Qylfpr6zFl/ASzFbYmJgkh/cdxnNsxpfl3pXP7Cer779cgLNdYTOWIQc8lAoVSlXdSJuN56giuGyia9N09UaZ+PDG5gYnCQ3WSDeECMQ9lMtVxjpGUeWZeo7a/EGPFNJSwwLye3CrEtS0EzEpm58IR+SEIz3TzC0fYRkc4L6jlpcHhVddmFJMmoshIZBxS1TOthPOGnibkjRUxiiYpXxSx2c1XIopzUftMt2OYrwBufvV/yTO353H2N9E0Rqw9S31XDEOw/hree/5TW/8/rLb8Ib8hKtCXPkmYc+795H5l9EuCaIJCtMVjQys5rwLgoTVdxIZTAUC/9AmYWNtRx29Ey+896fEIj6cfvcFDJFdqztxeP30DavGW/Ag6Eb6FUDxaUgJIFW0hASuP0eLMNieMcIY70T1LbXUdMSRxJQypcwTQhEgyghP7bPi8gXIOxhcm4NQ8VJQiduo1qeTVBxU7Z00tUyd5z4yV22+ZUoguNrtI8yPjDJb794DXpFZ87BXTR01mJZFvOXz37N73zmvnVsWdlNKVsiNZJ5wf1zvnQ6w91jbF/dSzAUYR4KNRkLTbMohS18A2Ws3hxzFjVx7bduINkcp1Kssub+9Qx3jzLroC5mL52BQJAZy2JUTVS3Cju/a31hH6pHZaR7lA2Pb0Z1qyw4aj7xhiip4QzjAyncXg/RmhCyBGgaSqmEqZuMrelnZDzD3BMrRMRcdMNmbWqUkWKBj86a/tlmZ9VoHyXZFOeP23/B03et4R+/vA0hJEKJEJWS9prelxnPcuv/3AkCTv7IcUSSz895Vi1X+dFHfk3rvGZiM1uwVJViqkC1xo0SkihhUhUGYb+bm352O6n+cQY3D+IP+Zh76CwUVSafLpKfyBGIBQgnQtiWDULg2nmqbbRnjEKmSKw+ypyDZ1IpVenb0IckyzR01OIJTOVu03UDWZIxSxUyQ5PIwSDxuW0ksy7G/iSz4qRBar0e5sdrUSWF9ekhzmxbMq3+dhRhH6amOcHhpy8jlAgxMTBJtVzFF/S84uefuW8d9/z5YYQQBCJeMqNZEJBPFYgkwwx3j1LXXoMQArfXzZVrfki1pKGZNvnclB9Rrx8KqQIDQyMQdpHdlGFs5Wb8B81lZiyErVWZHEqjlTUSTXGiNeGpHWrLQpIkLMsiNZpHL+sEYwHijTHyqTzrHtmI1++hdW4z3qAHUzepFCrILgUhoFyoICQI14SxLZvxdT2MVsB8VzsHpGfhlgw0Xw6vp8ChNYum3deOIuzjBKMBDjv1JYe3uyTZnCA1MnVQJj2axeVx0Tyr8dlwLp9Z/hUuvfbTLD5mKvZo44z6F31P95perv7y0wzvGMPbXE/72w+lms4z8FQvlVKFppkNhGfUYVs2WlVHCIEkC0r5CpZpEoz4kRMK6dE0m57chi/oYfZBXXh8bqrlKpmxHG6fiuqZ2sdQXAozD2ymf8sQE4NpxgbTJBpizFvUij6u0F1bwtWaJqb4CKsBPK7pR8ebTuqoZiHEfUKIDUKI9UKIT09bGofdxm++eA0P3/g4tmURr49w0gePRavoPHnbKorZEgB/3P7zZ5XgpehY2Mq3/nkpJ33gGGRhsrF/ks3pMuF3Hsrss4/EHw+RTxeoFCvPJjY3NBNfwE0gGiCfLrDu4Y3kJgrMOaSLGUs6qJaqjPaOYxgm4UQQt0cFIVDdLnxhH+d9/Ux61vahyIJZi1sIJQIMbx2ip1SlNqXSIuL4ZBXNlPEpr9xK7orpTJYN4LO2bc8FDgE+KYSYO22JHHYL9R21uNwusGzG+sZZdPQ8ZFnizIvfhmVaALi97lf1zrM+dyo9j2ykpSHCgvY4nq1DpJ7aQiERIdhSjzsSAkmgelRUr0ouVWD7Mz1USxqzD5pBw4xaMqNZ+jb2Iykyte01+MM+LMueirCHRSZTomfDIOse3szx5x2F7JLZ9NR2elb3kGiMMk9WiIzkycs6FcNCN1WS7ppp99duWz4VQvwD+Llt23ftqoyzfLpnefimx7n+e//gPZeczmHvWMbT96zlBx/6BemRDL9df8Uuh0IvRS6Vp2rY6JUq3zrj+4RmNUFbHdJ4HilfxiwUKGVK5CayeIM+gjE/WlljuHuUarFKw4w6IskQlm2j7xxGKa6pHWZDN/E31iCbBpnhFL3r+5Fk6FjYhj8WwnB7qBQ1XF6J0ocimFFwySYHxjr4YOexu5R5T6aOagMeBObbtp37j3vPTS97YG9v77Trc3hl/OaL11ApVDBNi8/8+nxgKh9bKVd6warRa+He6x7GCPvRETxy7YNoJYPyeAaPx4U7EaZiC3qe7qYyPEHb3EYiyRCGplMpVVFkGdXnfjZGkkt1IUmC9HiOwa0jeOvi1NUG8LhdFHIlKsUqgXiYQDKCGZJJvSuAKywIuKvkNJtfLjt/l3LuEUUQQgSAB4Bv27Z940uVdSzC/st33/8zXNEwmbEcxZJOz3gRe3SSxvog/pCXaqFCIZVD9boJxQMgJFxuF21zG9n+TA+5VIGJgUncfg/JtjqERyU9nCY/NEmiMUq4JoKQBBYCqyHA5Dl+snqVoG+Mj804k2WJmbuU7XVXBCGEC7gVuMO27R+9XHlHEfZvRnvH+fThX0aa00lNSwK3aVLYPki6d4RgIkysLrxzSdVEyAqHvu1A3nLekVx42JeQZYlgLIiuGYz2jlHIlmnqaiBaO2W5DH0q5rzsdaMJmZHTVJR2L25ZwSOr/OTgd+9SrtfVDVtMBZS5Ctj4SpTAYf+ntjXJIW89kMHBNKnxHH1PbiLREKVtUcdUrFTT5IgzDiYzlmXNw5tomllP99o+Fh8zn22reuhe00sxV6Z1TiNtc5uxTJtCpoisKLi9KpaqoPm9SEGFeMXNmKGzKTfKHW+Z/oLldPYRDgfOA9YKIZ7Zee1Ltm3/e9pSObxhOfPzp/LR+RfTMKOOWUvbkSSJakXDrGoEwj7mHzEH1a2w6alt3PCT2yiXqnSv2IqpqLTMaiIY9lLJ74x64VYIxQJILheWEDCjFr0lwHioSm90EikPsyJx/rjjIf5r1gnTkvs1K4Jt2w8DLx9mzOFNxXfP+ykf+vY5hOIh/vGL2xGSIBgL4Ap40DSTB/76CMVsGYDezcNoVZ2Wuc24fW6KuRI9a0bwh3wkGuPIqoxt2VMBh1WVYr5MT1nDm1WZ1xrAE6yg2+Nc0PWhacvtON057Db+/P9uRJZlbrvqHg57x1LiDREiiSBCTH1jKh6VVfdt4Il/Pc17v/xOZi/toLWrlmKuyOYnt1HIFGmd00RtWxKEjVbRsQG9YpAdySD3pJjVZxOtl+mrjPPo2DAWNitS66ctu+OG7bDbKOZKfGzR53jfZe/ihPcfzb1/fohKqcqDf38cy7IpazYSFl6fiqnrjPdNMNozTrIlQX17LbJLolqqYhoWbo8LhIShm8guGXc0hG5L9PdNkAr5aaqPEKn3Q9DAnJT40Y/O26Vczpllh+fRvaaXdY9swqUqnPjBY3b7kU9/yMdnr/o48w6bBcCx7zmCe69/BK2qo/i8hOM+zGKVgS2DTPSMUtdRw4Ij5wCCfKaAbVoE40HcPnUqUp4i4/JLaBWdnqe3oXmDxA7upD7kRavoDG2dxK26OOcDy6ctu6MIbxLKxQo3//w2xnrHyYznmbm0E7fPjTfgIRDxvWp3i12x5NgFz/u7d+Mg/nAAXZLoN2SKO9Ik4kHqW+PoVYOR3qnTbPGG6FQWHwuQQFFcGAgmxwsYoQCxk5aiKgr5QoVNm4YIuFw0NcVwe1wM9k4/dqyjCPsp/7ryLvo2DmLbNp/48QfRyhojO0Yp5SuE4gF+e8k1ZMay9KzrJxAN8JW/XMSio+btdjlOev/RfPPdV1BIxIjVe6g9bi7FYpUdj2xBLmRpnFGH1+/GsmwMS+xcZrUpZwtYySiRBe3YARfj+TIjq/qJRP3MbqvB7XFR1U3yxQqz5jZMW05HEfZDejf0c9/1j4Bt4/Z7uPuaB1C9KvGGOMp4lomhFCM7xghG/cw5dBYtsxtYcMT0g2S9GOFkkLq2BGVLkNUMNq+fwOdT6TigDa+hU01nKGRKKKqCy+uZ8j+SBIGoHwuTsbEM/YMGsViAOUvbcNtQLGrkSlUCfjd+n4qqTD/hoKMI+yGhRIhQLEApX8E0DO67/hFsyyY9lmVyMEUoHmTmgR3YFkwOpRjrGyc3md8t/kf/ycq71jC4dZjBHeOE4gEWHNCFy+emPJRiIpPHE5ganlmmiWXouN0yti2YHMuTzlUJJ4Isbq/BCHjJjeaoAvGoj0TAD4aFYtlI0vRX8R1F2A+J1oRZcvxCSrkymfEsGx7bQnYihz/so31BK9Vylb5NQ2gVbepQTSLIHy/7G9g2F/7yo7tVlmUnL+b3X72OuYfNAiHIbuunWtKJ1keI1U0pnm2ayC4Fy7RIjWYppAtEGhN0zGlAq+gMPLgW0zBpWDaLuqYklg1muoCEQPK4aGqKTltORxH2U95+wf/ttP7ww7+k0pxgpHeMdY9sBAQdC1sIRgPomkl+okApV+agE6d37vfF+NM3/kY4GWJo0wCG6qEm5iHZlAAhMHUDhAAbSukihqYTSEaJ1scopAusu3c1wrJpX9hCsDaC5fZQHsshgl7Uio5R0SjqBo/dvoZTP3TUtOR09hHeRJxZ8yEau+rxBryUC2UKmSLeoJdg1A/AomPm4w96d2skbq2qYxomX3/XT1hwxGxmL26hnK9wy//cherzoJermJqO6nUhyzLZyQIDfSlEpUzznOapEPrlCqVsCU/Qj7+zEdvvhWIZxTDBshCyzDf/eMEuZXD2ERyex3lfP4t//eaeqThJNWFqW5MIScI0ptLMrr5vPaV8mVnLZuDxe2iZPf1AYqrbBW4Xb/3wMdxy5T10r9hKfWcdikvGdim43S7sapXceI6R7lE8sTDtM2tRFEEhU6J/S4ZQLEC8tRZhA5qOCPoQqotCUSM7luMLPz532nI6FuFNwuRwmg/N+TR17TXE66MIIdA1A9u2kBUFraKhVXQ8fjeq24XskvnK9RehqAqyPP1Vmc8ecxlqwINkWc9GuBB+H6WSTmrHMKoiCMWDU7KOZsnnNeJxH7H6CJIkYVog3Coi5Kfi9VCdLOL2q3h9buLJIBd/4/Rd1u1EunN4HttX97Dh0c3cfe2DCCHh8atYpoVl7jwhpkgUc2X6Nw5gmhYtsxs57NSDOPuSXX/IXil3/ekBsqkCK+7dgCRBOV2gakm4vW48bgmtWGZo6xCZ8TzNsxtJzmkDy6IyNoltT1kWW1XR4xFcfg8qUyFf+nsmuObOz+NSdz24cYZGDs+jc1Eb0dowT93+DLpugGUjKwout6CcrzDaN4EAmmc34nK7qJaqnHHR23ZL3W857yhSo1nWPLqNakWntjVBfiJPpVRm+4ZxSvkyTZ0JWuc2YykqOc1CmBZetwsJsC0bxeNCNQ3Kkzm6+1JohknDjDpu/NMjvPvD05ssO96nbzK2rerBsiywbZAEWkVjrG+SUrFKY2ct9Z21ZMamllyL2SI/+sivuPHH/9otdWvlKi7boLU9xjmXnEb3ml52rOujtiXG/EO6cLldDG4ZIt0/RkCBcFBFdrlACGRFpjqZYWjlFlJrtlPrMuiIu9FH0/zt+//ENMxpyeZYhDcJT92+isf/9TTj/RMsOnoeg9tGGNw2jGVZJJpi6FWTvi1DZEbSNHTVM//wWQhZYnw4wzknTj+SHEzlkMunC+xY188pHz2e2Qd3UcyVyGfKbH1mB76Aynu+/E76Ng3Ss20MvVhGCvowJlKYVQPVp9K2oIVCqsjkcJrBJ7ZRM7eN8y87A3mau8uOIrxJSDYnGNw6TE1LgrM+eyoAt//uPu6+5gF2rO2jkC3R1FlH65xGDN1kcjSLoro448KTaZ0zvYyV/0u8IUq1rJFojPGri37P2ECaseEskYiHj/y/c6hvr2HOIV30rB/gqi9fh3CraG4vQnFx0DELOOfS08lO5Din+QJ+s+5HXH/5TYwPZXng2oc44ezpBQJ2FOFNQtu8ZmYvm8GJHzjm2WsnffAY/vSNv1LfXoPL7aKUL9O9rg+Pz0t9Rw2qx016NLvbZHj05qdINMbZ9kwPk1md2oYw8w6egcDi/r9MuYHUtdfQ0FmHACS3C7ew0UN+7rrmQU45/3gkWeKGiatZ9/Am1j+6GcuwOP/7uz6L8EpxVo3e5FiWxfZnevjM8q8QqY3Q2FWPy+3C0AwM3eL0C09m+Wm7TsLxWrjoxO+gelyYukl2NINRKhOrDePxu7FsG9u2kWUJQ7fIFXRKmQLhiAdf0IvqdfGV6y7ivM5P0tBZhy/kZeERc3n3F0/bZX3OqpHDyyJJEl0HdHDkWYeSHc9TLmmU8mW8AS+qV31213l38p6LT+Z77/85akM99c1JPIqNValiGBZTwVGm8ssZmoE/7CXaUUM+r7Hm4c2oLomvnHo5J7z/GOo7arjrTw8w++CuacvkKIIDT/z7aXas7cMwbcKJMOF4CBuQXTJaRd/t9S09YRGzls0ArxfT66E8mUORXciSiVbSsG0bf9iHkATp0QxbNo3h83uYdchMPC6JUr7MM/etp3tNH75EBMm7d4MAO+wnLDhiDp/86YdYeMQc3F4V05oaLkuyRMeClt1e3z3XPkQhW2LCFFQReAJeZI8KsoIn6MXjc5OdLLDt6R5KuTIzuhI0t0Yop/MMbB3B1E0CUT+4VUTAz4O3rpq2TI4iOOALelmwfA7LT1+GUdUQtkWlUCE/mefhm5/Y7fUdeMIiPvSts2lvieNTFYTXg+T3gVsln68y1DuJZVm0zW8m0RBjvH+S7au6AZumWfWEE0Esw8QolTFzBTLjuZet8+VwhkYOz9K7vp9QPEC0NoysyJTzZR6+4XHe8YmTdms90Zow0Zow42NF7rl5JQS8lKsGVZ8XX4uXhniQcipH7+YhChNZmmc30jyrEcsyqeTLCCFQvS5M3cAoV1l8ipMxx2E3Yls2p33qJOYvf32Obf4nA2t3YJompmHijnjxumVKBY3t/SkMQ6H1mCV0+FS0VI7U1n5kRcYf9SNL0pSzoCrj9qhseGwLb/3oa880Co4iODyHMz7z1j1aXyFdQHFNhYcv5ssMDZQRpSrt8+IoeChWqzx+RBpVhFh0YxKXZoNpY1kmkuJCtwQTw2k+9L3p7yM4iuCwV7AsC5fHRXmgn0KuimSYtMSCeBbLlN7Sz782RmnyyrTWJZErbkpdGv6nU0jS1P6CVrFQIiFq5rTy4L9W0zF3ervfjiI47BUMzWDLU9uwdIuEpWG5FEZ7hpE+1UfCHedDB2oISWFbNk9ztAf7BDfFbpnqeBVJkQgGvZhGlbE1/Xzj6umfs3ZWjRx2K5VSFZj6xn8pbNumbV4Lbp+bwe2jbHhkI26Xi9aV86lRY6iuMRRpELfLxqN48dXbqGd48R0RojwvysjAON3PdOPyuvn31fdNW27HIjjsNmzb5vPHf4NIIoQQgkKmiCRLfO3vnyUUCz6v7GjvBCvuWk0+XaCmOUHtwiY0rcy2Kwdw/VWw4PIEiRoJiTw504MQLozZEuNNJtt6fczKNVDT2UzZsLnud4/yjgucybLDPsL1l99MKBbg07/6KIVMid988U80z2rEG3jhzm/L7EZmHzSDYrZEejTLpie28oetP+OHH/kVtg2T/2NR7qhSOTmC6rEx7SKmLSFKdXQWXEh9I6zfOIySiPCFH54zbdmnmzrqJOAngAz81rbty1+qvON0t39TKVWpFCvPBgq75Ze3s/6RzVx67YtntPnf4ZNW0cmO56htTXL/Xx7hhh/fiup2Yc6NMnZaHW3JSeZGUjR6vPSnJ/jV31qRkjLLnpHw7jzu+fWf7foA/+udOkoGfgG8BRgAnhJC3GLb9obX+k6HNzYenxuP7/+CCR/2joOeTQryYvxvNG6Pz42nNQlM7ToXsiUyo1kmj0nQFlAwpBB9ZcG57Z+EenjvVy1Kuo5Z0DEMi0J+13W8Ul6zRRBCHApcZtv2iTv/vhTAtu3v7OoZxyI47A1eiUWYzqpRI9D/nL8Hdl77TyHOF0KsEEKsGB8fn0Z1Dg6vH6/78qlt21fatr3Utu2lyWTy9a7OweE1MR1FGASan/N3085rDg5vOKajCE8BXUKIdiGECpwN3LJ7xHJw2LNMJ72sIYT4FHAHU8unV9u2Pf30hg4Oe4FpbajtTC7uJBh3eMPj+Bo5OOAogoMD4CiCgwOwhwN8CSHGgd49VuELSQATe7H+l2Nflu+NLFurbdsvuYm1RxVhbyOEWPFyW+17k31Zvv1dNmdo5OCAowgODsCbTxGu3NsCvAz7snz7tWxvqjmCg8OueLNZBAeHF8VRBAcH9mNFEEJ8WgixTgixXgjxmf+491khhC2ESOwl8XYpnxDiv4QQm3Ze/96+IpsQYrEQ4nEhxDM7D1ot24PyXC2EGBNCrHvOtZgQ4i4hxNadP6M7rwshxE+FENuEEGuEEAe8okrsnRlK9qd/wHxgHeBjyrHwbmDGznvNTHnM9gKJfUk+4Jidv7t3lqvZh2S7Ezh5Z5lTgPv3oExHAgcA655z7XvAJTt/vwT47nNkuw0QwCHAE6+kjv3VIsxhqgNKtm0bwAPAGTvvXQF8AdibqwS7ku/jwOW2bVcBbNse24dks4HQzjJhYGhPCWTb9oNA6j8uvwP4w87f/wCc9pzrf7SneByICCHqX66O/VUR1gFHCCHiQggfU98SzUKIdwCDtm2v3rvivbh8wMyd158QQjwghNi9ycumJ9tngO8LIfqBHwCX7gXZnkutbdvDO38fAWp3/v6KztL/J/tlgC/btjcKIb7LlDkvAs8AbuBLwAl7UTRgl/KZTP1/xJgy6QcBfxVCdNg7bf5elu3jwEW2bd8ghHgXcBVw/J6S66WwbdsWQkyrj/ZXi4Bt21fZtn2gbdtHAmlgPdAOrBZC9DB1xvppIUTdPiLfFqa+vW7cadafBCymHMr2BdneD9y4s8jfgD02Wd4Fo/875Nn583+Hka/pLP1+qwhCiJqdP1uYGuP+wbbtGtu222zbbmPqQ3eAbdsj+4h8fwZuZmrCjBBiJqCyFzw+dyHbEHDUziLHAlv3tFz/wS1MKSc7f/7jOdfft3P16BAg+5wh1K7Z06sSe3Cl4SFgA7AaOO5F7vewl1aNdiUfUx/8a5gapz8NHLsPybYcWLnz2hPAgXtQnuuAYUBn6gvsw0AcuIcphbwbiO0sK5iKwLgdWAssfSV1OC4WDg7sx0MjB4dXg6MIDg44iuDgADiK4OAAOIrg4AA4iuDgADiK4OAAwP8HtqcJ+qVJIh8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#compare against the no area corrected\n", + "\n", + "h3_gdf = get_h3_vector_statistics(\n", + " oilp_production,\n", + " f\"{FILE_DIR}/satelligence data/AcehMills_indicators_50kmbuffer.shp\",\n", + " column='h3_estimated_sum',\n", + " resolution=6)\n", + "#h3_gdf.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/oilp_harvest_area_no_corrected_h3.csv\")\n", + "h3_gdf.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/oilp_prod_no_corrected_h3.csv\")\n", + "h3_gdf.head()" + ] + }, + { + "cell_type": "markdown", + "id": "fcb2bcb3", + "metadata": {}, + "source": [ + "## LG deforestation risk:\n", + "\n", + "Based on the LG v0.1 methodolofy, the calculation of the deforestation risk will be calculated by buffering the production map using a radius kernel prior to use it as weighted layer in order to capture areas nearby to production regions. The impact factor is calculated as the production weighted average within the sourcing geometry using the buffered production map.\n", + "\n", + "The formula is:\n", + "\n", + " Ic,g = IFgb * Ifarm-land c,g / sum(harvest area)\n", + " \n", + " where IFgb is the impact factor associated with the buffered sourcing geometry gb; and harvest area (ha) is the total harvest area of all the crops in the buffered sourcing location gb.\n", + " \n", + " IFgb = kernel Def pixel * Production pixel / sumProdArea\n", + " \n", + "Calculations for the area of interest where made in notebook 10_Met_v0.1_results. \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "9a9f1d93", + "metadata": {}, + "outputs": [], + "source": [ + "filename = \"../../datasets/raw/h3_raster_QA_calculations/preprocessed/Deforestation_IDN_2021-01-01-2022-01-01_area_ha_sum.tif\"\n", + "out_file = \"../../datasets/raw/h3_raster_QA_calculations/preprocessed/Deforestation_IDN_2021-01-01-2022-01-01_area_ha_sum_kernnel.tif\"\n", + "radius = 50\n", + "\n", + "with rio.open(filename) as src:\n", + " meta = src.meta.copy()\n", + " transform = src.transform\n", + " arr = src.read(1)\n", + " orig_crs = src.crs\n", + " \n", + "#if orig_crs.is_geographic:\n", + "# y_size_km = -transform[4] / 1000\n", + "# \n", + "#radius_in_pixels = int(radius / y_size_km)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c32bbdfc", + "metadata": {}, + "outputs": [], + "source": [ + "#as I'm having issues with memory, I'm going to use a randon kernel as I just want to test the difference between the raster and h3 calculations\n", + "kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ksize=(10000,\n", + " 10000))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7aa3fd34", + "metadata": {}, + "outputs": [], + "source": [ + "res_buff = cv2.filter2D(arr, ddepth=-1, kernel=kernel) / np.sum(kernel)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4e3dd51b", + "metadata": {}, + "outputs": [], + "source": [ + "out_file = \"../../datasets/raw/h3_raster_QA_calculations/preprocessed/def_area_kernnel.tif\"\n", + "with rio.open(out_file, \"w\", **meta) as dest:\n", + " dest.write(res_buff[np.newaxis, :])" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "7cf549a0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reprojecting to EPSG:3857\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
gfw_fiduml_idgroup_nameparent_commill_namerspo_staturspo_typedatelatitudelongitude...confidencealternativgfw_area__gfw_geostodeforestationhigh_biodiversity_areaprotected_area_losscarbongeometrylg_def_val_noarea
0706PO1000004155IBRIS PALMDELIMA MAKMURDELIMA MAKMURNot RSPO CertifiedNone2021-07-142.2450898.02851...1-Fully VerifiedLAE TANGGA0256170af-2d4f-4a5b-a417-b981205849be349.5068535490499200.1382939086634.09989214403075757812.37323319753POINT (98.02851 2.24508)165.419296
1717PO1000004167ASTRA AGRO LESTARIPERKEBUNAN LEMBAH BHAKTIPERKEBUNAN LEMBAH BHAKTI 1Not RSPO CertifiedNone2021-07-142.31416497.99571899999999...1-Fully VerifiedNone0b2d76be0-1ace-7a54-8e5e-74bb01111787444.9278149230584295.559255282671411.2747033960845874432.2796810086POINT (97.99572 2.31416)193.413086
2264PO1000001775SOCFINSOCFIN INDONESIALAE BUTARRSPO CertifiedRSPO Certified, IP2021-07-142.39111197.956667...1-Fully VerifiedNone0aff58ced-c18c-a5d8-d084-eb5a6a74416b552.3038111406324400.836070915583414.5018019068336895543.40760696075POINT (97.95667 2.39111)218.861633
3738PO1000004197UNKNOWNNAFASINDONAFASINDONot RSPO CertifiedNone2021-07-142.4359497.91529...1-Fully VerifiedNone03cee289b-cdd6-a33d-e0f6-15ea8e7423fa621.1470874150178469.424222897163522.19581347407044109557.3760590317POINT (97.91529 2.43594)254.489792
41516PO1000008193TENERA LESTARIENSEM LESTARIENSEM LESTARINot RSPO CertifiedNone2021-07-142.45677798.06502...1-Fully VerifiedNone0128b643f-9046-0f4e-c71e-59ca37fb221f600.0120538952435448.960569095298211.4179310692385104970.0756673934POINT (98.06502 2.45678)213.770966
\n", + "

5 rows × 27 columns

\n", + "
" + ], + "text/plain": [ + " gfw_fid uml_id group_name parent_com \\\n", + "0 706 PO1000004155 IBRIS PALM DELIMA MAKMUR \n", + "1 717 PO1000004167 ASTRA AGRO LESTARI PERKEBUNAN LEMBAH BHAKTI \n", + "2 264 PO1000001775 SOCFIN SOCFIN INDONESIA \n", + "3 738 PO1000004197 UNKNOWN NAFASINDO \n", + "4 1516 PO1000008193 TENERA LESTARI ENSEM LESTARI \n", + "\n", + " mill_name rspo_statu rspo_type \\\n", + "0 DELIMA MAKMUR Not RSPO Certified None \n", + "1 PERKEBUNAN LEMBAH BHAKTI 1 Not RSPO Certified None \n", + "2 LAE BUTAR RSPO Certified RSPO Certified, IP \n", + "3 NAFASINDO Not RSPO Certified None \n", + "4 ENSEM LESTARI Not RSPO Certified None \n", + "\n", + " date latitude longitude ... confidence alternativ \\\n", + "0 2021-07-14 2.24508 98.02851 ... 1-Fully Verified LAE TANGGA \n", + "1 2021-07-14 2.314164 97.99571899999999 ... 1-Fully Verified None \n", + "2 2021-07-14 2.391111 97.956667 ... 1-Fully Verified None \n", + "3 2021-07-14 2.43594 97.91529 ... 1-Fully Verified None \n", + "4 2021-07-14 2.456777 98.06502 ... 1-Fully Verified None \n", + "\n", + " gfw_area__ gfw_geosto deforestation \\\n", + "0 0 256170af-2d4f-4a5b-a417-b981205849be 349.5068535490499 \n", + "1 0 b2d76be0-1ace-7a54-8e5e-74bb01111787 444.9278149230584 \n", + "2 0 aff58ced-c18c-a5d8-d084-eb5a6a74416b 552.3038111406324 \n", + "3 0 3cee289b-cdd6-a33d-e0f6-15ea8e7423fa 621.1470874150178 \n", + "4 0 128b643f-9046-0f4e-c71e-59ca37fb221f 600.0120538952435 \n", + "\n", + " high_biodiversity_area protected_area_loss carbon \\\n", + "0 200.138293908663 4.099892144030757 57812.37323319753 \n", + "1 295.5592552826714 11.27470339608458 74432.2796810086 \n", + "2 400.8360709155834 14.50180190683368 95543.40760696075 \n", + "3 469.4242228971635 22.19581347407044 109557.3760590317 \n", + "4 448.9605690952982 11.4179310692385 104970.0756673934 \n", + "\n", + " geometry lg_def_val_noarea \n", + "0 POINT (98.02851 2.24508) 165.419296 \n", + "1 POINT (97.99572 2.31416) 193.413086 \n", + "2 POINT (97.95667 2.39111) 218.861633 \n", + "3 POINT (97.91529 2.43594) 254.489792 \n", + "4 POINT (98.06502 2.45678) 213.770966 \n", + "\n", + "[5 rows x 27 columns]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#get zonal statistics in geometries with raster with kernnel corrected and no corrected by area\n", + "\n", + "#no corrected by area\n", + "\n", + "gdf_lg_def = get_buffer_stats(\n", + " \"../../datasets/raw/h3_raster_QA_calculations/preprocessed/def_area_kernnel.tif\",\n", + " mills,\n", + " buffer=50000,\n", + " stat_='sum',\n", + " all_touched= True,\n", + " column_name ='lg_def_val_noarea'\n", + " )\n", + "\n", + "gdf_lg_def.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/lg_def_ha.csv\")\n", + "\n", + "gdf_lg_def.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "80a1b9bd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FIDgeometrydef_estimated_count
00POLYGON ((98.47767 2.24508, 98.47550 2.20109, ...290.120544
11POLYGON ((98.44488 2.31416, 98.44271 2.27017, ...343.563110
22POLYGON ((98.40582 2.39111, 98.40366 2.34712, ...399.550293
33POLYGON ((98.36445 2.43594, 98.36228 2.39195, ...437.723389
44POLYGON ((98.51418 2.45678, 98.51201 2.41279, ...376.644836
\n", + "
" + ], + "text/plain": [ + " FID geometry def_estimated_count\n", + "0 0 POLYGON ((98.47767 2.24508, 98.47550 2.20109, ... 290.120544\n", + "1 1 POLYGON ((98.44488 2.31416, 98.44271 2.27017, ... 343.563110\n", + "2 2 POLYGON ((98.40582 2.39111, 98.40366 2.34712, ... 399.550293\n", + "3 3 POLYGON ((98.36445 2.43594, 98.36228 2.39195, ... 437.723389\n", + "4 4 POLYGON ((98.51418 2.45678, 98.51201 2.41279, ... 376.644836" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANoAAAD4CAYAAACKefjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZQseXbfh31iych9q8ysLWt9VfX2fe/p7ukBQMAECBE0N3MBDZKSaBMCjkkeUdTxoWgtJnUsyT6CrMNNsGVCpkWTEAYCQRDrYKbXt+9bvXq1Z2blvkfGHuE/Il5VvSGg6ZkeDppw3z59XlRmvpe/ivjd5Xfv936v4HkeX8gX8oX86xXx93oBX8gX8v8P8oWifSFfyPdAvlC0L+QL+R7IF4r2hXwh3wP5QtG+kC/keyDy79UX5/N5b2Fh4ffq67+QL+S7Lnfv3m16nlf4nd77PVO0hYUF7ty583v19V/IF/JdF0EQtn+3974IHb+QL+R7IF8o2hfyhXwP5AtF+0K+kO+BfKFoX8gX8j2QLxTtC/lCvgfyhaJ9IV/I90C+ULQv5Av5HsgXivaFfCHfA/k3VtH6Votf2/s5ttVnAOyqNxlaNQBMp4/t6t/T9dys7PIffP1XedVpMTItfv7RU/q6v4addhfHdQH4XvT/Oa7Lr3/4nP/qZ3+T/lCj0R7yK19/iuP4a9itdPY/+71Yj2nY/OJX7/Dz/+wWrutRKre5/3AHANf16HTVf+1rOCy6bvHVX7jN6os9AHZ2WnQ6/hocx92/T99NEX6vGj8vX77sfRZkyH/z8qdpGCUERC6lV2joHxES45zJ/Fu86v08EXmM09n/HU+6/wJRkPhS4afZUj9Ed3pcyf87VLQyVb3E1bEvY3s2Vb3KbGwWANu1kcVPD5ppayMu/tzfBSAsyYyNojTVERPJBFempvnVJy85OzPFj506zn//4V2uLM7w49fP849vPuRIYYyfeOsiv/F4jXhY4csnF2n0howMi/nxLACGZRMOffr1fHR3nb/+f/lFAI4dGWdrp4VpOZw/OYM1Mnm+VuV/9ZWTTBbS/PPfeMif/MOXObM8zVd/4Q5/8A+e4dz5eX7jlx9y/soCs/N5draa5PIJ4okIjuMiCAKiKHzq9fzsf/d1/sd//DEAb3/5GB/eWcd1Pf7Yj13i1t1NGo0Bf+kvvkep3OHegy3+yk/9EIZm8cGHL/lzP/4lEvEwH/32C977wVOEIyH2dttMzY596u//Zvlrf+X/zcMHO0iSyPf/0Gl+47eekE7H+NN/6jq/9Ev3icUV/vJf+n7e/+3n6LrFT/7UD5JIRr7lvysIwl3P8y7/Tu/9nkGwvl2p62WiUpxkKIPjOWiOb4E8XIZ2BQDLValpd7C9EUNrxGrvq+xpvsf7sP5fs6c9AGBL3eNmdwOAx70HPOlv0rf6/ODED9I2ezzuPeFPzPwxRnaMX9u7z1888oNMRrP8cvkWP1q8ylQkywe1dS7l54jLClV1iAB4+CFCUx0BUBsM+WC4hQc8LO3R72uUu33K95+xVm/ytFwH4JMXW9x8vgvAH7t6mn9x6zmCAH/5h97it2+8pNVT+es//v0836zxbLPKX//x76fVV/n46TY/8QcvI4sit1/s8vaZRURRoNk58BCe62Fajn8PmwOqZd+bfeOTNXTDAuDv/9z7ZB0JVTV4//0XLE1l2VqrEw7LfPmHTvGb//IR+fEUf+LPXOcX/+ltxvIJ/uJPfj+/+atPEAT4d3/yB7h3Z5NOW+VH/8hFBn2NvXKXYyenAegd8lj9gYbr+sb95asqu6U2AL/6m495ueZHJP/lf/0v2dv213nr1jpWbchINfj//qMPmconufPBS66+d4wLby3x1Z/7mK/8yFm+8sNn+cX/4WMuvLXEl3/4LB/82hNmFvMsn5im3RwgyxKpTAyAZnMA+N5rY7OO50G3O+L991cpB97+H/3chzy+6yOqEokIP/nTP/gd7NoD+TdC0X6z9k/5rdrPE5XifP/4H+FW61+iCGFmoyskJZuYqII3RjI0jSSEEAmhiElk4cAKCUj714Z3EBq0zQ49qwfAk95TSpofTvxS5Ze52/L/zl+9/9+BBw4u/2z3Q9Is8LhTYSaW4QcyZ/m5pw84mRsnTohh1yQzG2W702Uhm8FzPO5tVVgZzxEXQ9CCiCz7WhnIyLD3r7cbHUzbV4yPH2/yfMvffD/3K7d5vO6v7T/8u7/M6l4TgA8fbdBoD+kONS4dmyErhPnwzjrnjhcRBGi0Vc6fLFJrDJjIp0iEQ2xsNTi2NM5evU+9OSCdCON2zP01dNu+YhiGzeqzCp4HjVqf3/q1J1TKHSrlDv/Pv//bPH7oG4fSbpsHd7YAeHh3i5ufvMLQLf74n77O87U91l5WOXtuFhAYdDWOzOWxXBdFkRnLxukPNDLpOKGQhGU5pJJR9vA3vCiKjFQDgNpel/Jz/x7c+sYqz+7vMOxr/NOffZ+Pf+Mp5a0mv/HVu/zLn7/Do9ubyLLED/+pq/zqV++RSEb4cz/5ffz6L94notkszuVIZeO4okcsplAoJInGFABCIYmQfHCq+jTe7FvJp1I0QRAywM8Cp/G3yF/0PO+TQ+8LwM8APwKMgD/ved69z7y6QLbVF3i4jJwBz/o36QRnsfFwCtW6jQpMRM5S0x8BMB05Q996QkP/mMX4JTrWkD3tPpORC9TtBJtqm8X4UUa2heOFmI5M0zbb5MMZ+pZK3+6TDY0RElUs1yYpR+la/ubTHJPa0PdEpVGXf9F+iW7bPG3VOatMstbwLfTF4jS3dssAvLsyx8drOwgefPnYAk92a2w02rx1ZBZNtWi0BpwojhNVZBzPpZCOI4sCkUiIiCJjWg6JWHj/foSVA6NhWg7doQbAeqnFqOp704cvysiSiO24lGtdJnNJ7j/bRRDg1MokD5+ViYRlvnR6nsd3t0mlohw/NkW/PkQSBBKxMGOFBIIgUg13mZrOEgs2nKxIyPLBGlznwGq02yq65nvKxw93ebbmK0avp7G95RuH7Fic5khnt9QmEVfIpGPcurPB9FSG8bEETx6XOHFiClmS6PU0Tr11hMpaneLSOE53xIv7Oxw5OY0xMhj2NSIxBScwTgDd9hAA23ZYe1rBMm06rSFf+5VHvHhcAuD0tcX9c+KZ87M8elpme7vFubOz7K43uX9rk/MX5zENh1/4+dsUCil++A+d+7b37mv5tB7tZ4Bf9TzvjwuCoACxb3r/h4GV4P9rwN8L/vxMYjgj7nb+OWFRJyrFSMlZYqKCiIgoSCiSTPBM3/BYCC6u51to2x3QNf0b2jbrPBn6SqraQ9q2FPxdgelwlC31LjEpRjG6zOrwJeeyU8gssa2WmY1Po9vgOVEcJcyTTpXjmQncYZjyoM9EPEEkuJ0C4B7ymrrleyxP8K87I18xDMvh8WYVgGwixr1NPwReKGQpN7rs9YbMFzNguHz4cpsTSxPElBBPSzUuHiuimzaO53HuWJGN3SbLcwUGUZXNzSZL83m6fY1WR0UJSRiB1/Q86PT879cNm15TxTBsGo0Bk7kkWy/9+3P24jyP7vmh07krC9x7WmKj0ubCtSNsbTe5/3iHC1cX0TWL9a0ap87N4OGfJ+cW8qhDnUQqQjodo9cbkcslKZfa2LZLMhmhOfITRYIg0Gz5ilHZ69Ku9nEdj+fP95iYSFGr9dkBVhbyPHzkP8dL7x3lwa1N5JDEle87zvMHO2iWw9lrR9B1C92wKM7nyBaSSCGJaEwhkY4SiYT2v1MOH9r6wsF50zRtukHo3e2obG36xuHn/l8f/OtVNEEQ0sCXgT8P4HmeCZjf9LEfA37O8zMrNwRByAiCMOV53t53vDLgce+3+Eb9HwGwGDtBXX9CVYflxGl6Zplt9Q5zsatEBJWG8ZTJ6HkEHCynx1j4FKrdxqFASnboW3uklWkSUpuho5FRsvScIU6gEAO7AwLo7oia7m/+nr1HTIzTtQd0hwPGxRPca/m/0tXcPLda/kb8vuXjfLC7S9Mb8OVjS2x1OqwNW1yZK4IHbU1jaXyMcEjGC8FYPIppOyQiCiFZxLJdktEDj6VIIk5wjtFte38jvqw097OXd1+VySaidAJvtjyR4/bqLqIgcOXyPLdf7JCIKFy/tMizrRrhsMKZ6Syu4GG7LjnTYqqYJeIKhEIS6XSM8P5GBOlQ6OQeCnNNy97P0HX7GhvBuarRHFKr+SF4OCxjOy7NO5ukUlHmVya482SHmdkxxvMJnq3XOHmyiOM4eB4ciYR49arG8tIE1sjixYs9pqczhIIEkCiAZR14rOHADyVty0EdmQwHvtLOHimw+sw3VqcuzPEkMBQnzs2x+qxMY6/HqQtzNAYa9+5tc+HiPK7jsfuqwZmTRXTLRhRE5hfz1Gt9CmMJum2Vbk9jaWn829y9b8qn8WiLQAP47wVBOAfcBf4PnucdzskWgd1DP5eC195QNEEQ/hLwlwDm5ua+5Re73sHNFYWDB+95Orrrx/B9q03ffQVAS18D+v6HLNC9LJbxAFEIMRZepqLdYzGaISSdZWv0jNPJCWwm0Z0ecSnCwO6RlAsYrsxAVZmOTON5UQAiooIkHHhN+5DHMhx7/+eRYLLd9zec7tk8Lvkb8UhujJdNP+QsppJoXZuvb2wxX8yQdhVubu5yZn6SmCyzVetwaWmGTn9ENhxmOpHk6VaVc0tTtAcjtqodxjMJ3EDpBEDVzeCeeXSGfvg41E16hkF3oNEdaEzkEjx+7odO548XefDCD20vXZvj+d1das9LXHpniUZtwL3VCuevLeI6HuV6l5Mni5iWjSiKzMyM0WoNyeUSNKp9BgONXD5BsznAcVziiTDtdrCGoU5v119bqdJhaFqMdIunLyoszOXY2mkBcOroFI8e+Vvo6vVFbt3dRA7JXL1yhJ1XNYZ9jdNnZkAQ0FWD8ak0Y7kE4bBMOBJCCctEoqH9Z6Ic8liCKOyHt7pmsbfnP59apUs1uNZHJmpwcBZFgZwS4u4n6yRTEf7m3/ojfOUHTv7Om/RTyqdRNBm4CPy053k3BUH4GeA/BP6jb/fLPM/7h8A/BD+9/60+f2Xsx5CQeT54n5axy1T0LLYzRBJlxsPLdK0KhXAOzRowtGuklRlG9haWO0Iigu36ls/1LAaWv8l1p4vuVbE9i5ZZIh9OsGvs0gDmYqd41F8H4GTyJM8Gz4Bdvn/iPLdaNer2c96bPE1Lt9gatjiXnUG0FYaaw0Iyg+t5hMMi6UgE1TTJRMPIoojtuiQVZf/3EiUR1fRj3uZQpdztAvC4VCUlKqiGSbOvMp9M82DXt1VnFie5t1ZGEkXePrXAjWfbxGNh3joxT6Xub5YT8+NEQyFcxyUdjzCVTxGLKYiSQFQJEVYOHrcsHRguB2/fg6qmTanqr6faU6ns+GdOzbD3PYcsi8RiYW7d2iCTiXHqzAxPH5eYm8+RyyfZ2W5x6lQRdWSQSEQQQiKPX5Q5dryIg0e7o5JJx5AOrcG0DhJCw5GFh4BlORi6Sb3uG8+Z2RyPgnPViaOTvHjgK+bRk9PsrFa5/cEaJ87Noo9MHt7c4MylBRAF6ns9Tp6fo98dEUuEmZsdo1zpMDWTZTSy6PdGFCbSGK0+tu0iigKdICE06OucuzD/rbbqt5RPo2gloOR53s3g55/HV7TDUgZmD/08E7z2mUQQBI6n3+HXa36NamfUQwE8wfd0i+EkqvEBImHmomdpGneISAXy4TM09FeMR/JA1K/7INMytsgqi4zcOHWjQSo0hiL6B3wBAc87iNWdQ97Uck2Gth+iOcKIJ90GAFk5xZOKb5GnYkmqWp8dtct4JkHOjPK12iYr0zkKcpw7tTLn5yaRHJG+qnFlochWo8NSbgw9bfNku8rxYgFtZKLWTWLh0H6YCDDUfK/guC49VcfxPPqqjmHY7NS7AFxaKXL/he+xzq1M83DND6POHy+yttvgoxfbXD49izY0ePC8zIUTMwi2R6c94tiJKfp9jUg2wlQxQ3WvR2E2S7etMhoa5HIJRqqB63pIkki/79+PbneEHZz/drZbOI5HqzWk1Rpy9OgkT4Lkw5nLC9wLvOn1q0e4+2gHrWZx9fIi9caA7kDj+PEplEgIw7TJ5xIkkxFCsRDhSAjP9YjEDoxVOHzgvfDA0H3DNeiOKAVJl61XNQZBmFmrdJFDEqWtJpIkUjwxyb1726TSUc5fP8KD5yWmZrLkUzE6jQGppSjtWo/x6Sy//muP+RP/m2vfVu3wm+VbKprneVVBEHYFQTjmed4q8APAs2/62C8BPyUIwj/BT4L0Puv5zP9ul+boAzJyiq7dJyNnMN0+VqAEtueHjy4GmuNvKt1pIIvjaG4XzeySi5xnT3sCwHj4Ahuj5wCcTF5kR33AwC1xPv0WDaNK33zMmdQ5bM+jYzZYjM1juApDW2EinGVoGyTkGAlZYWib5MIRRKGP63nEZHk/Y2/jUFf9jbjWb7Fj97E9j7v1PWbEJLXekHU6nMzkubUebL7js9xY30WRJb50dpH722UGss3lE7MMTAPdtlmYHCObjCIIkIgqZBNRohEZURAQBOENjyWJB97CdhzUQFE7I43t4IC/U27TravB5wU8z2O33UcJSUyeKHBzdZfcZJxzhWkerlaYOz5ORgnT7o7IpKLUqz0mpzPguDx5tMvi0jjhSIhyueMnHg5tTMM88Fgjzdo/c5mmzdaOv56J8TQPnvheamVpgrVXNTZ2WiyvFGg2h3z8aJtT52aRTJfHj3Y4c3kR13YY9nVOXJinXm6TL2ZBEChtNphbmWBno8Ggq5HJxRl0A2PpuNRqvpfs9zTK9R6247FbahObE9nd9b34qdMzPHy0y8NHu4RCIn/0j1/9drfwvnzarONPA/84yDhuAH9BEIT/PYDneX8f+BX81P4r/PT+X/iOV3RI7tR+iob2PktKgmjiCqr5MYqYRxeOInkVZCGM5uaISDkAdKdFMjSPICT9X06IIvI7Z5c8LBBee4whPasavNHmVZC+zykCD7q+pYxLMTq6QkV9yXgixTElz/PBKhfni4TNHE/bNa6Mz6BaJoobYmVK5kGtwvn8NJpp86ReZzaVImz45zxJEPYLyQB9zbe8pu0wtAwGpgkmmHmPJ9v+ei4uTHP3pR8onF2Y5PFWle1Oj/Mrk9TaQz56sc2lkzNgubzY8jOTluViOS7H58eptgYUMgn0gkGtMWBmIoPZNxnpFpl0jHZQWDYth0rgJVtdFQUBy3FZL7dZmcqxu9tmFzh1qsjDwGNdvL7EnYfbCHhcf2eZJ2t7rDc7XLi6yFD3Q+GVpXGiUQXP88hl48iyRDgsoygSpukQix54LCV0cB52XI9e4EFrnSG9DV8RHj8pIZg2r8FN2Vyc+3e2kGWRY5cWePK4TDoT49LbKzx9UmJ6sUAyFUZ3PEIJhUq5w+xsDiEkUmv0mZhME4n4axC+CZz4+vXvVD6Vonme9wD4ZmjJ3z/0vgf8e59pJb+DqNYWALY3BLeM6xnoTpmkMkFD95EdY5ErVDS/ZJePXGJn9BjYYip6hT19jYr2iJnoJQx3SMd8wWLsBBYyujOkoCxgeBYCfulgaA9QpDyK2MV0TeJyAoLCaUgMoTm+0rXNIQ3Dt4g7Rhm369I1dG7XS6xECzxr+Up7OVfkdsn3tO/NL/D+9hYRWebd4wus77UYOCbn56eRBIGRYTGVSVJIxFEkiZgSQpElohGZ17CTsHzwuERR3Peguu1Q6wQp8vaAetU/sz3dqL3hSTLJKDeebhNRZE4dneLhywrj2QSnJ4s8X9tjeb5AKCTj4qEoMhs7DY7M5pFcqDcGTI6n9sM3QRRwD8H3jNclDARGtk0/KDLrgsezdT8hlMnGefTcNxQLszl2Si1qjT4Ls2OYhsOte5ucODqFokisvapx/swsmm4ieAKnTkyzud1kfmaMpguVrTYLi3lalR6DvoYckvbPkLbt0gg8Vq87otkaoo1MdrabHLs0x8sgM3n23Nz+me/StSPcebxDda/L1etL7Gw2WH9V4/LVI7z9zlH+wA+d/jZ27r8qn2tkyPGxv8bT1t8hJhcRURAIEZZyyMLrMp7wRjbS35G+2J6J6fqbz3AHNIyXAJhug7LuhyqKmKBpuni0CYtRVHee252X5JUx5qI5XgzXuTw2i2GnqekDruamKI2GjIczeHg86m5zJDrHwFZo6iNSSvjwEtDtg03eNw08QLNtRrZFpefDgOZTGe6uB15qZoLHu76SnpwZZ73R5hvrW5xbmcQYWtzY3OHi8WlET2Cn1ePCSpHBQCcWUjg6k2er1mF+PIOnOzS6Q2bG05RqXQzLQRQFeoOgfmbaVGpdAOqdIcmQwkA1GKgNThyd4vkrfw0Xjhd5FHisK5cWufV4m73ukGtfXmZrr82rbpczV+b9TOdAY34hTzQSAkkkk47hOC7RuIIsi9i2SyJ+UMIIhaT9soFu2FQD47C100QLiqMPHu8SjyqMRn7YO1vMcvfBNiFZ4tyVBR7d2iSTiXH5rSXWV/dIpWKEoyFCkoggihi6xdxCHiUkIeCRHkvslwy+WSzLCTyjgG5Y1ANFjURC/Fs/dvF3/DvfjnyuFW0y/gfQrBIvO/8FALnwVXrGHYZOmenoW1hOCcP4iMXYNQQsDPsxi7EVRo6IiElWmWNkdwlLGaJSBs3pEpEKiEIX17MJC0k8ugBYrkPL9EOSptlGcwwcz2VntI3CAhW9DbSYDC1zp+3XZ87EjvNBxa9d/cDCEjcb29Ro8+UjszR0ja6pcnpinJiiYHoW4/E4yVCYSEhGkUU8D2KRg0N9OHRwLXgHitrTdHaDTODLapOh6m+8em9I3JbYsBwEYH4iy40XO8TDIa6cmOPO8x0mx1LMTqTZrfVIJyJYlk0qFkVCYKiWWZkfJybJbO22SCUihEKH6mfOmx7rtQfTbJtqw9+IuufwPEDBL8zleBpAxqYn0rS7Kp/c32R2JktUlLl7f5uTJ6ZRwjLb5Rbnz8zS6aok4xGy6Rhr6zWOrUzSaAwo73Up5JPoo4OS7SDwWJbt0Gr4hqrbHdHva3SaQzrNIWfOHdTPzl5e4FEADbvwpSUePtzl8a1NLr+9RKOpsrZW4+z5ORAFOkONhbkcggBySCKTjTFSTVKZGLbtvIGE+U7kc61oAJbbPfSTE/wPeEN02z84u+4eI8sPJUOeQ9f0PyN4MpaXYke9TVhMkFbOsDl6SiY0TSo0SU1/yfHkHH07hOtJjEdiPO3XmIvN4Xgur9RXjIcn0Cy/liYicLiBQg3CJdfzUG2Dke1bYlOyed4PYGLZBDdKfnhyOjPO83KTjWabE1N5GqMRv7m3yfmVSUK2yJ1amYtHi3imS1fTuTA3TaXbZzKRJDwhsl5rc3Qiz3ajQ2ugkU1E0Tt+iOYBrb5/xlINi2qrj+fBXqtPJhlhr9Vnr9Xn/PI0D1d9D3rl+Cx3n/hru355gQerZR6uV7h6YYFmT2Wt1eb02SKiJzLUDOamswiCgCJLpJNRRppJMhE98FiHYGKSLKIH2chuX6Pc9r3ps+cV5JiMZTm0uyPGMwm2t/zM7bGVSR482iUki1y9tMjdB9ukU1EuHZ2kVusRCkmMZWOko2EEw6EVVZieyRJPRkAQiERk5ENnu8N4Utt0sC3/6WlDk+1tP6pRVZO1HT+LPDmZplrtsUWT3FgcJRThn//6I56vV/l7/83/9jMp2+dW0Synx6PG36Ct3yQbvgJ4mG6bpHIWx+0hizGi8iy6vUdYmsJ0mthuH0mcAKqAiyyGsW3fChrukFEAxepaFTxcDHdITX+OIp2lpPn1s5XkWR71/DDzWOIcX69vIlDh6tgJNtQ9hnaFq7lFTMelqfdZSedIyhFEBMbCUURBJCaFCIkiluuSCB064EsHD8pyXZojv6hb0vp0W/5GvL1bJmQLQV2rw4QS4/bqLpIocG52insbFVLRMG8fn+feRoX8VJKpaILByCAsy7T7I6YzSSQEKo0esxNZ4gHqRJGlN7KRh/uuDNtBD85zqmmxVvY34tC0WV/3kzFT4ymqtT47pTaFsTiiFObGg03mpscYS0R48qLCmWPTCJJAt6dx/vQspXKb+cksWs7ixVqV40cn6Y509mo94t+EUTzwWC6drorjuLQ7KsXJDKWg6+DCiSJPb2wCcPbCPI/u+97rwvUlXj0t8eDOJheuH0Ed6Kyv7nHqwhyCKKIaNnOLeXTDJpqMkM7EGPQ1smMxpLKA43hvhLaCKNDr+s9na7v5+9ejqdYWTe19/9rexHSawTu+XxnZ2wiEkKR59rRbhMUxZOUSm6PHpEILxKQxhk6VBSVPxxqhyAVAoDx6zkTkCJIg07OqRKQkgnBYAQ4e/Mi28AAPD90xaRpdAATR5EHLP1AvR2e4U/U9xHIqx1a/y2+P1jmayeN4Hh+01rkwW0QhxLN2nauLRdSRhaTAhegUL+tNjhZy1MUhW40uS4UcnY5Kd6QTkkRG5uv6mUcj8Fh9zaDZV9FMi91mj/xsjLWSf38uHylyP6hXXTk5x60XO2zW2lw/Pc/LUp37G2WunJ5Ds2zWGh1OHZ1CEAV0HIpTGQzdIh5VSMbDDFSDTCqKJPqKHz8EE/M86AQbsbTXpmx7eB48eVEhnYnS7WnslNssTo5xP0D5nzs3y4OnJZSQxLUrR7j3qkwoInN+fo6haeK6HkUxSz4XR5REwmGZfC5BJBpAsUThjUK7d8hlWZbNsO8r6mCg8+qp/3y6LZXd4PyXTEcZ2DbVO0NSqSiTkynu3Npkdi5HdjLF0+dlTp4s4uFh2g5TM2NsbtT5o3/kd2wx+7bkc6toYSlPVJ5Fs3eJybM4robjqSjSGLbju3oPi5Hjh2iG26Zv7uHh0LO2EASJgVUBKiSUi2yO/FraQuwsLf0WAEvxd1hXn+F4zziZvITuNFGdNY4nTwAKI0dlLpYBLwooxKUopmsTFuKIiLi4RKWDzScLElZQZB5YBnsj/xzxtF/F8B0WH3e3GRNidALrfSyb56PyLiFR5PryHB9v7ZCNRnl7bp6nrQbJSJhFO4wsCnguaKbFXCFDRJGRRdGvpckHZzvpUAnjsMfSLYt2kCLv6QbPdn0vlYyF93uwsskoak/jxsMtsqkoC5NZbj/Z4chcjnwixvPVPc4encayHXA9ZicyrG7WOTE/zmhksrpVZ3Yqg+16dNGQZRHrUNazH/zOpuXQMwxGhsXIsJiZzPJizX+mF44WefDYV8yzJ2d4/GyXUr3HhfNzVEsd7j0tcf5LS7iazfZOixNnZ/Bsvyt6drFAtz0klU+SzMQYdEdkJ1KUGwNcxyWeDNNr+eG9ZdlUKv792N1pUe+rmKbD0+cVpooZKntdAP6rv/MnuXxx8dNt2v8F+dwqWjRU5EvFr3Kv9tM09ZtEpHEyoXMMjMckQscQxQh4Dp4QpWtsk1SOoHkRVLtOUi6iiHEARGTcNxgbDg7Xpmtgef4ZRxKHdHQ/fEzIfe50/XPDRHiKjxsq0GQqnKOje3ytv85SsoBCjBuNEpfHZ5GQqBld3poustsbUIylKUQSPG5XOZudpiaP2Bl0yUdiOIdYFvqGvx7LdWmqvsfq6Bpdx6AxGtEYjbg2XeTeWnCumity95V/fW15lkcvytxs7nD9xBx73QF3dytcOjmL67rstfucXJjAcVxEQWA6n6I71MimosSjCqpmMpaKsrfXxfU8IopMP0gFjnSLTqCYG+UWLWmApls8flFhZiJNOdiIJxcmeHjfD8mvXVrk9t1NIpEQb51fYH29gW27nD5ZBAFM26aQS5CfTBGO+JCwWEQhcqjQfjgZ4/ss33AYpk09SIC0Oyqll76hEAXoBq+HFAlBkrh9e5NUOsrS4hwPn5aZW8iRG0uwuVbj9NEpNMdBiYQIhSSePy1z7OQ0I8dhba1GPp9EPgSoTiWj33Kvfhr53CoagCzGGFr+Q9SdOhExge31GVp9Uso5+qbvpdLKdZrGXQDmYu+xM7rHwC4xFX2LTa1Mc7TJXOw8Ihq6VSYfPookKNgYpEIFXM9BEaIoYhTD0RGFMQTaeHiExQivldPFo2P64VJF7dLRuwA86O4SlxRUx6SkdZkO5bnZ8K3yhfQstysVFFHi+6aP8NHODmklwtvFOWqjIaInkonkSEeiYHsk+grFVIpEWEEUBMKy/MbZ7jAMyHFdbNv3WkPTZLvue6b6aMTOrm8oNNOm0/fXHFH8ZMFHT7fJp+MsTed4sL7H0bk82ViE7WqHM6eK9DsamQCB8uhlhdNLU5gDk1dqg7FM7I1znh5AnwAGQ33/NX1o0Wr65ZXp6Qz3n/nh7KkzRR5sBPjNlWlertW4eX+Lc8eL9FWdu892OX92FlyPaq3H6ePTjFSDsCQxU8xSbwwoFJL0qwP6fY18Icmg7Z/nolGFXgC56vc0RiP/eme7hTY06HVH9LojFk5M8fypb6xOnp/l4fMKggDXrhzhzr0thkOJq5cWqVS7/Cf/+S/xN//Gj3Li2PS3t3m/ST7XigZwJP0TrHZ+hnRoEUWMoloQElOEhINwyRMOYnXHs3idbjJcw29/AWxXY2A+BECRYjSDulpCGmfP0tmw75CQ8uyap7nf22YxPk9YSPJJvcnp1BEsz8J2Pa4VxnjaaXAyM0VrZPO0W2MlVWBkm6gjk7AoYzoH4VLXCMIl16GtaViOS1MbccR1eNXxywnXJ2a5tetvxGtTRe5sVVhtwLW5GV7UGny4s8Nbx2ZRLZO7zSoXjhcRbOiYOiuLBdSBQTShMDGWpNEZMJFJ0Kj30QyLsVSUzmAEHoRkiX4AxWr2VPpBT9jLSpNiKkGjM6TRGXJ0Kr+fmbywUuRxUEt768Iid+9sYsgGV88vUKv1Gekmx49OEgmHMC2HsWycbCZGRJaQZRFJEt/AJR6uY3l4fhgKDEcGm4FxKDV6NPf88kGzreKN/PspyyL5ZIy7tzZJp6OcvTTPo8e7zC0VGEvHqNR7nFwap9dSyeYTCAI8fbjLytEpcF2atT6JZBjvcK0zMBSe56/hNTmPadr7CZjf+K1nv/8VbSH94wieylb3/4oBTEbfRjVvoVufMBF9l67do6uvMha5hOXJtK0hGWUJ8BAFmaSURXNHRKQUI8I4GITE9P6/LwkRPPyQTXcMypofkmyqFRqjHIZr87C7xWQkQzXwYIvJGe60N8ET+PLUMp80NoiIMu9NLHOvWsMTBK4WZjFdB9NymE2kmIwnCQkSUVkmG4kSVfzNJwrCGx5LOFTxNh2Hvu5b5bahsVr3Ex7bwx6NwFuEJBFB9dh51SeqhJgbz3Lj5Q4T6QSnClPc2yyzsjROTJTpqwZLiSileoe58Syu53H/VYWVmTyKJ1JtDYiGQ3AY8XHIY6mqgW37XtTULXaCFpeJQpoHT3xlPL40wdqzClvAseNT7Lb73LyzwdmTRWzH5en9HS6fnsFSoN/XOHV0ilZHJZOJMWNlKO91mJnMoA8MhkODfC5BU+/huR6u69EIwsReT2Nrt4XrwdZuG08QqNb6VGt9jp+Y5tHTABp2YZ4Hd7cQBLj65aM8erhDrdzh0qUFugONQV/3oWGJMI7rkcnEiMfDKJEQsiziuh6JxME5/DuVz72iAdhub//a83Rczz87uN6Anun3oqn2kJ2gYTMq5dGcJrBNTExheVE21NukQpOk5Rzro+dMRk4jC3HKeoNi9Cya00YRs5xNZ3nS22ElsUhKEnjWa5JTkm/0or2ulyF49C0/LNNdm6Fp0tb9tc0nMzxo+pmvy2Nz3NrzPcTlySIPqlUqpQFXikWqfZUPSttcn53F9TxedBpcmp/GcBxsxeXoZI5aV6UQj9NJaNSHKtPJFIOujm7bZGNR2kE2UjctdoddAGq9IS4eluPyotRgpZBjY8/3oGcWJ7n3MvCgJ+e5+XwHEXjn3CJPXlSotgZcPj2Hqlt0ByOOLORJxMIIAmQyMSKKTERRCMkStuP4aJBAlEMey/a8/QRIsz1kL8j+ra1W6YUOsruxaIjK8z6yJLIyP869J7tk0zEuH5vi0WqZmWPjpJQQquZnRGubLWaLWUCg29lhfm6MeJCaf60cr8UwDjyWpploQQHcthxevfKN6th4kgeBYh5dnuDVqxqlapejKxN0OiN+7n/8hGq9z//x3/9Dv/sm/RbyuVY02+nzqv23aY2+QVK5gCh4eOhE5CUcd4AsJolIGXSnR0zOIwotXM8iIiYCRQMQ0F3fCvatGkOrBXhU9VeIwjQDu83AbjMenmd79AKAU+m3edzbQEDg+yfO80F9G90xuZY7yvawh+G4nEoXiUghDMeiEI5TiKSISSJhSSIkSsQjB4p52GOBgBN4jJFlsdvvgQC7ao/SwA+XHrnV/WKvKAjkxCgfbm6TUBQujU/xYLNCMZNiIZvhxWadU7MT4HlIokgEiRfbdY7N+B3BjZ7K5FhyP+EgCsIb7Tda0Bfn4he6BwFG0XJdngU0C6cXJ3j4LChhzBfYWq1RrfdZPlJAHZrcurPJqRPTSJLI2rqPtjB1C9fzOHF0klKlS3EygyAIVPa6zM+OsdHvMxwZRMOh/d/VdlyqQW9dpzei0uijGzYbu02Oz4+zvu1nJs+vTPPwnn92v3x5gTu3N32PdW2JtbUqpd0WFy4uYBgWnbbK4lJhn3gnk40hiiLhmLJPBhSLH9Q65QCxAz4sqxEwZj18fLiv+duXz7WiDa1VaupXATCdEK7rP2xRiOJ5Nn39G6TFDBmpiGX9Giciy4yEk3SMR8xFl9HdMJprsxBKUdV2mYzMYuFS1p6TCy+gO2H6dhuJMPYhK6g5vtXz8Bg5OpbnYDkOmu2wOfS9wmQ0zd32FgBn0rPcC+pq56aKbA6bfNJe5a2ZOYYG3Ops8lZxHs+Dqtnl8tQ07ZFGMqqwkhtjs9NhPpthZFu0NY3pZIqS3cN0HCRBoBucpYamyXazC0C52yfqSPRUnZ6qc3p2gkc7vmJcnTvIUn7p5AI3Vrepdwd86ewCW3ttdps9LhydwcOjq+rMT2SIx8MIYYFUMoLresQSfsOo63jEwgcbMXRoIxqGTTWgLyiVO/sI+/vPy0TcA/qB/EKWOw+2CYUkzp6f4d5qhVw2zukz87xcr1HMp1CiIZAFFE9ka6PBwnweWRIpVzvkxxJEwgc0C+7hQvshLhRdt/YbNi3T5lmQ8FhZnuDZY/96biFPqd7j5q0NFhcLGCG4+XCbUyemCSkSGztNzp6dZTQ0CIdljq1Msr3T4od/6My3vX8Py+da0UJiBlnMYLtdwtI4ulvDw0YS4lie77Fstw/4D9tzXzF0RRxPo2M8QZBO0DD8kGAicoKq/gCA2eiXWB0+QkRiIX6NB70KTctlOX6FmiExsA1motMk5Biu55JVokSlCImQREiQcPGISgfhkiweYoTCZWj7XqFjDXkZoOpX1T36lv96iS4hK8xGo4kkCCwW8nxY2yKthHl7fpYbe7vMjqWYCWcodfvkMlFU1WQsGUOy4eHmHscmC8REma1qh0REQT7kNW33zfrZ6+7pkW1Rbvle0/JcHgXZv5WZPE92/Xrk4mSWRn3A+083WV7IIbkiN17tcu50kbAostnucOraPP36kEQ+xrF4mPX1BgtHx6mWOtSqfSanUqgN1Vc0AfpBIdmyHPYC/pNWRyWXidPtaXR7GifPFHkU0OldPDbD/We+B7l+YYG7D7dptAdcu7xAudbjZavD6avzYPtg5rnFPOGQjCyLpNMxTNMiloogySKO7e6HleCDmV9nalXdoFLzFfPVZh3d8Q3DgxclEnJoH8z8D//vP8HR5YlPs2V/V/lcK1pcWeHK9L9gq/XXsIzfJhZawZOmwF5DCJ1Dc0dIQhpBkOgbd0mEz2LYSXSnRUTK4xzKTLruQSZQC+jCXRx0R2do+w+/Y4V5PvDhPUcTizwb+HW1E5lZVnsVXgzLXCrMUVYdbrdXuZidB0Fktb/L9fEZRqaH4Ticy86wo7aZjmawUzIb/S7L6Twb/RZdUycdCjMw/YfteB5VNTjgmwYltYeDy9awS8qLstPrsUOPy9NFblR8o/HO8hw3N/yN+N65BR6sl3lUq/KlE/O0uyM2213OHZlGkkWGlsFsIY0siighmURUwbBsUrHwPuIjdqjXShAEtOBc0xlodALuj8c7e4DfGtPojcjForxa9w3c8RPj3F4tEVZkLl1b5M6jbcYKcc6fmaHc7vsJFtvzM36y4CP9i1mScb+7PR5T3oA4HWbPtiw7OHMJjEyb3aDrYGTbrD31FXOuOMbaK99QTEymMWT45N4mcws5YlGFu6tlzlyYJSSKlNsDzlyco1Htky+mSRQSvNqoc2xlkmprQK3RJ5uKYg4PkkDj+eSn3bK/q3xaXsctYICP6LW/mfZYEISvAP8zsBm89Aue5/2nn3l14EOn7KcIgofjvEQRXEy3Am4FSb7CwPRpxVPha/SNm4SBudiPsDu6i0CPo4m3qBsNhk6DiegZDDeCamtkQ1MoUgLDjRKT/LabmBzeR3xEpIPNJwnifgnBw6Cm+1awpDVomX649KC7iWWG90l6pqIpPmluIAsiVwrz3G6UyYajvFtY4m51j7lkimw4im45KIJMadhnIZVBFAR2B13mkhkSsr8GWRQO96xiOweJBN209/lHRpbFasU/x2jZJM+DhtHZsTSb1Q6btQ7TYynCms2HT7ZYmsqRSIR5vFXl/FLAKqzqnD8xQ6nSZmFyjPFkgtXtOicXJ2n2VKqtAYmYsp+WB+gG7TeGadPsDHFdj2Z7yEQ+STnoOjh/coaHQcLh/Lk57gYe6/KFBR5vV3nwsszV03P0exqvtuqcOzqNIIoMRgbzM2O4jkckHCKdjDJUddIpn3PEcVwShygOJElADc6ZrY7KTsCE/PhVlbAiY5g2teaA8cnUfgLkxIlpHr7weS6vnVvg4cMdMqkYJ45N0e6o/O3/8pf5D/7qD1P4DAr37Xi07/M8r/m/8P4Hnuf96He8kt9BXLfPYPj/IBo6wsCoEw4dJSQkMAFBCCMdSoW73oEFcjwND9vHKXojupZ/QyPuHBuqT2VQCC9yu9sCWkxGpugYbV4M7nE0OY/lyrwYPOVEchmPMOuDFqdSy/TtITJpTqUzvBxUWUlOEB31KWltZmJjVF2TgWUgCcJ+mGh7LlXN91gdQ6OujhhYBoOewaV8kccNXxmuT85yo+pvvnem5/m4vM0WXb68tMjLZosHzT2+NDeLrbrsdnucmR5HEiUsz6GYTWFYNrGoQjyioOommUQEQfDPLnHlwLM7rksrKGDvNjoYdd8wPFivkIqF6Y8MNoGFsQx3VksIwMVjRe6vlokoMm+dX+TeqzKpbITlxXH6lonk+CFZfiLho/v3OkwUUvtJBkkWv4m+7lBW0LH3GbzUAMYF0FcNNst++SCfidOpDdnd65BJRSkk4ty6t8nc3Bi5ZIxnzyucOD+L4HgMDZNzk7Ps7LaYP1JAHeisrdVYXh6n39ep1/tEIiFM85Ch6AWZY8Om2xlhmg715oDx8RRbOy22dlr8+tee8mf/5PVvZ/u+IZ/r0LHb+z+jjv4HAMYi72GZ3wAgG/kBDOs+nvuASPQtho6GYZWIK2fxhCh92yQmTyIgIQgxFDGG5WpExTgCIh4uITHK67OdgIARQLE0p8tekKJfH67TNuK4eLTMAWHGaJkB81JymnvddUKCxPXcCjeb62Qjcc5nF9lUW8SkMLIgE5EUHFugaxgspXJEBQWxI5BR/L601yIcKrrbrnvQPe1a1FQ/tB1q5j5GMRoKsdXuAlCIx+iPdN7f2GI8G2fCS/Dxyx2OTefJhCM8361zYWUa3bARRIFiLs3qZo2Ti5P0NZ2XpSZz4xkM06Y/MpAl8SAtzoHH0k2brqrvYxSncilWN3wPemm5yJ1V36BdvjjDg4e7bLZ7XLk0z+ZemzsbZS5enkfD5WWjw8mT0z4sC5e5qSxD1SCViJBKROgPdXKZGNt7bVzXIxkN08G/B54HjbZvuHYrLfacDo7j8uR5hdxYglbAUrywVOBewD9y4fI89x/vEgmHuPrWEo83q4hhhbNzOXTHwRE8xj2XiakMsiQib0uM5eKE4wcJmJnp7He2iQP5tIrmAb8u+LvhHwS0cd8sbwmC8BCoAP++53lPv/kD3y6voxfUywAEjENvjHBdPySQPZWh+dh/3R2navhfG5Vm2TZ6eGaLtDyNS4S28T4r8WMM3AnW1XVOJU8ycmT6tsGR+AkaepmcMkNYMthSd1hKzCNiUTe6xKUImn2QZOgFFOGW59A0Br4yGkOmIgZ7mq/AF7ML+1Csq4V5bjX9lo5355a4XS/zSWuDL88vUlNHPGxXeGt6Bs8RqKtDTo2NY3sukigynUjS1kZkY1FioRAjy2IsFmW73cUDIqEQbde3ygPd2Of+WK00SYghRqbFvY0KxVyacstf26mZcW6vlxAEeOvkPJ883yYWDvH2qQXWdhuIksTZ5SkQBGzLoZBNMJlPokR9ioVETHnDUIQOo+oP9YHplk0zWE9b1VmtBd3tIYlaoBTRsIxjuXz8ZItsMsryXIE7T3dZLObIp+Ksrtc4c7KIoVuIskhkNsfLFxWOL0+hD0zWXtWYnkzvc8IIorDf8gPQC5IxumHR1w36qv//1GSaZwGtwflTM/tdDxcvzfDoWZnyc5V33zvKX/4z7zI/l/vdN+qnkE+raO94nlcWBGEc+A1BEF54nvf+offvAfOe5w0FQfgR4Bfx6cHfkG+X1zGb+c8RhCiW/QrXqROST+Ah4wkCkjiJ641wxAyiEMX1NEJiZv/vSmIELyBTdTyTUVBXU61XrAWKsKc/pm/PMLCHlDSYDE/xpL8GwMnkUZ4NXhISw1zPneZhd5OxCBxNLtC3TFzPJRxTyIRSuJ5IVAoxEUkTl8IIQEiUCImHWzoOxPIc9ACmNbRNXnb9tTUNlVcNH/aTj8Zoar7yxCSZaEjh6+VNpnNJjst57pX2ODlRIBUOs1vvcXmhSKs/Iq9EEbLwYKvCmbkpNM3kVaXFWIBdfC3aobR4T/U34siw0DSLRqAYk2NJ7gVkQOeXprm/HmzKI9M836rxybNtLh2dodtTubta4vLxWTzbZa/S5fTKFLphI8kSs5MZGu0hhWycvf6AvmaQzyZodFW/lBBRaOv+79pTdfod/3qz3KLXHjEcGTxarTA/PcZ2UEs7szjJw6clBDyuXfbBzOGwzNWrR9gstXAch1PH/NqeZdmMZeJMjKeIKj47dPSbwMyHOSZdj/1MrRySPrOSwacn5ykHf9YFQfgqcBV4/9D7/UPXvyIIwt8VBCH/Lc5031JEMUEs9odpNP+E/7M0h2H7hUpRKNBwQtijD1CkIlEpw8h6n2LkPI6QxTMfczR+jo5tkJZkLPLsjjZIhc8zg0tJK5FX8jiexMD2u9xM91DbfJCJtDyDgTVCcww0x6Cg5Hk5CMhd0kvcDmjBL2YXuNfZYkttcq2wyKtBgzuddd6eXGRoejzrVrmUm8PzYKCbHM+M0zN1korCRDRBTRswGUuwK/UxHIdMJLKvaLIk0QlqaZXRYB+j+KzWYCaaoNobUu0NOJnO7yvDpSNF7m6UEQWBd84s8PHmLprtcP3kPNXeAN12ODE3TjQSwvJcsskouXSccFQmJIvIokTk0Nnu8HSV1/1aAKpmsFnxo4u9Zp/abte/f0MdLYBvyZJIOhXlxsMtxtIxFk/PcG+jzJGFHLlYlJ1WlzPFIv3OiFQ2RsiCxy8qHD8ygWs4dAcamVQUQTqwFLrxutYpMBjqQR3NRjMsagHNwtREZp++7syJIo8DZuYzJ4s836lz48EW50/N0rV07myUuHB6Fg+Pek/l+PIkI83AdB129trMTX3n89jg03HvxwHR87xBcP1DwH/6TZ+ZBGqe53mCIFzFHxPW+kwrAzzPwTCfAQpg4o8BCL5TDGEHgGHLqeO5/g117AeIQhabLmH7ayTEM/SCzmol9B5r6nMERC5kLrGt3mU6EmE5cZmdURVBMMgrCwiihO1YZEJp8uEcEhKKKJOQw6QOtcof9liHSXkM16Jt+l6hZag8D8DDO2qHcjBgQhZEPM9jT+sTlxWOjvm1tJlMmrnoGHdrFc6MT6J4EiPNIjUdYb3TYjmdw9M87u/usVLIoTgie90h4ZD0BvRoZBxQhPcNE9N2MG0H3XNYDybeTCwUufOaGGh+kkfbVVYbTc4uTbLd7PKNzS0uH5/GshzubAc0C0GR+/SRSdr9EclkhJnxNJVGn+nxNMP2CFU1KWTj7FZ7eJ6HIAi0XoePvRHDPb9JdH2vhVXIUOsMqXWGHJ8b5/5GYCjOFLm/6nusd64e4fbzHUaDAVfOz9NuDBlqJivLE0RjCrbtksnGyKRiKOEQIVkCkf1ZAsAbrS+u52EEyZCBprNW9f1Bqdtnr+kraTgkYas2W7UOt59u8y//4U++YXi+Xfk0Hm0C+Ko/mQkZ+P94nver38Tr+MeBvywIgg1owJ/yvgujRHdqP4Bpv0SRFlDkaVTjNuHQBRDCDOwemcgKqrFDXJlDwGJo3iUaOoPrmdhuF0lIvfHvGUH9zMPFdPr+n+6IBEM6lm8XluIFnvR9ZP+R2FGeBXW1C9kjbKk7rKlNfmDyKLsji+eD57wzvozhSFS0Ouezs2i2jYjEkcQ4Va1LQUlTC+u0jRFT0RT1gYHlumTCUZpBmUC1TTZ0f/OX1B6mCbpj86hZ5XiswMuWv7YL+Ulu7/iK8c7ReT7c2UZC4CsnF3i4V6PkDrlybIaRY9PVdZYmc6RjYRAFMrEIMSVENCQjiQKu6+0DmwHkw4Srns9ZAn7LzesU/ct6k8Hw4KysyCKlV30UWWR+IccnG7vk8zEuHZvi/lqZ+aU8KUWhYxqkI2Hqez2mprNYEbi/XmZpKkckICQKy9KbYGb7gL5ONUxMywdom47DRkC4On48uX+uOrE8yYuXVV7V25xYmqDS6vPxo03On53Bdlzub+xx7swsjuvSd2yOr0zSbA/JZGJMWSn2Wn2m8yl6A42RYZFPJaiq/u/tON5nUjL4dEzFG8C/Mq8mULDX1/8t8N9+ppV8k7iegWkHFHHOFpbbwcNCtx6gi0fR7S2wN4iFTqOaNwBIhN+mr38MSGQi309Pv0mKHeLRq2h2D8lpIIYXUaQErucQk9JEpDQeCWRBRkAgdGh44WHEB3hYnv/wdXfEzsj3plWjwW7QsNmzRvQM37VJgkhCyPB+bZNUKMLl3Bx3WjvMZbJMhXK86NU5n5vGsG0iYhhZEHnY2ON0bhLPFqmpQyZjCX9oIb7DPAwTG9kBxQEeQ8eio/me0ix4PNjwoVjnpya5E3iIE9MFVvcaVLoDThXH6ak6H7zc4sLiFLIgslppcOlIMWC7glOzE+y2uhTHUmC5lFt95gsZNu0Oqm6SjIb30/Km7VJqB20t/RExV8K0HF6VmiwvjvOq7huRc0vT3Ao86PVTc3zyYgdBgLdPL/B0s8puvcvVY7NomkmnN2KlmCcRCSN4kE3FUGSJSERBkkXcoP/stRxOxtieRzeAg9U7Q8pBKPlit8HAOSgDRcIyt57uEFFkjs0VuPuixHg2wdnFKZ68rHB0YZxCNs6f/kO/j6kMBEKMJf8qrcE/wJCvIHomivMJiHMI+7yO0htzyBz39YAbB9sb4qHieSB6Bn1rFYB8aJInQz9LORE+xq1uE3jKfOwIFa3H/d5TjsaXyChDqtotLmUuorsirtfmeHKBptEnLieYi8mURk2mI+P0jRo9e0RBSaGaKrbn+i0dln/O61s6W0PfK+2oHcRIiKY+oqmPOJMucrcedEzn57hR9q+/b2aRD8rbNBnx3uICW/0OJavHpflpJFekZ+jMZ9MklTCyIpKKhPHwiEZDiIJ/oI8dIgaSRHGfR1GzbMqBYmy3uvub8t6m/92vPzeZSfLJ2g5hWeLiUpF762XGU3HOLk7ydLfOUjGHIksg+q0+66UmR6ZzhByBSqPPRD5JJBIYCoE3QlvNPEjGaIZfNgCfSu7pum8oTs1P8jA4Vy3P5NistKm1BxxdLjAamXz4cptzp6aRZImXpSZnz/tK6kVEji9PUKp0mS5mcQSo1vvMFLNs1TpohkUsoqAF4bVu2pQafoKs3hkSQUTTLV5u1fmpP/vHuXTqW2fIv5V8fhVNEMml/zolc8jOwAcWz8X+EF39AwT65KM/wMB8xcBukVauERYsHLdHTFogJGeQBdDFNCATlhQEJDwcJPHQDEXhcEuHTd8OoFB2i5Hjh4yq9ZC2/dpa7tK3JqgaL5GQKIaXeb+2SyYU41L2GHdaW8zFs2SVJE1NIy5HqWsqk5EMAn7BeiVVIEIMaBOXQm9wfFiHMIoj2zoYBeVZbA26/jqTLncC9uMT+TxP6n5dbXlsjL3BgK/tbnJisYBsCHxY2eHK8jQyIlvdDpeOFOkMNTLxCCdnxlnba7I8laMs9djrDJjJZWj0h/tK8Hr8k2E77AWKWe+rZBJReiOd3kjnzJEpHm35UKjLSwdnvrcvzXPz5S6VXZW3ziywXe+wUW9x8VgRR4KOOuLI1JgfkikCmWQU2/aR9JLks1LFY4fPWNJ+JlAzLUpBmWKj3mEYIEHuviojKv6UU/BZuz5e8z3WufOz3F0tMTGW5MzUFC9LDYrT44guhCISoiyyul5jZWEcGYFyrUcuE8c8VNL5LPK5VbTXYjjd/WvbG+ETCriYroHu+A9YYA7N9Al3oqGzaNZtLCAZOkHf3EYzfoP5yGn27DAD47c5mbiKSxjHusflzHWaJhQUnYQ0ydqww5H4GKqt0TarjIVn0bwOmjMiJCgY3uuQzaGq+R6ra42ojHqYrsP2qElEiPJq4J8jzqUXuFn3kzFvjS/y0d420OK9qSPcb5Z52qvw5ekFuqbG7qjNhfEpFElCd0xmk2kkBKKSTDKkoNk26XB4H/Fx2GMJgoBq+WFRSxvRavhKcrdWQbD88kJtqJJToqy3/FDu+HSBG9slIiGZt47Pc+PlNuPpBOfms5TafZIRBdNxycYiCEB7OGJ5Kk88QPMnowrKN6XFD56bc6AYlkW5Gcwhcx0eBWzMS5NjPKr5GMW5fIZmX+Xra1ssHcmhiCIflktcPD1FxJXZanW4cGKGTndEJhklEVV4udPg6HyBSr1HtTlgKp+iPRphOy6CAN1BgPgwbSoBmLrWHpBMRGgNNFoDjTMrUzwIwMyXjs1wNyi6f+nyAnef7PLXf+Z/5m/8xA/wY1/5fYreV61dHjX/MwbGGpnwGSRBQXNGhOUZRMKIQhhJSOB6BoqYQEME3ENhJYCIx8GI3YHl31DHeoyDHy6l+VVMsUjfDFip4svsju4iITMVucDq8AUJOcXx5FlKoy1OJpMYro8ScGIydxseC4kJZEFiR20xEUkTEZXg24U3OqbfwCja9j5Ma+QaPO74m288muBB068Vzccz7LT6bHd7zCbTxF2H3y5tcny6QMoN87BW5XKxiOt5DAyDK8Uim50Oy+kxxsU4z2sNzkxO0ugNqfaHJMIK1qE5ZK9H/OqWTb03xPWg2h0ynkrse4zLQZkA4OrSLHde+Nndt47P8XBzj3uvyrx1fI72UGNtr8GFxWlEQWComSyMZ0HwEx3peARVN0nHI/sz4xKRQ4SrosAowGx21NH+JNP71SohDVzX96YT4ShbQQPrsflx7j4vEQ5JXD8zz62nOxQyCc4cyVBp9YlHwpiWTTYZQwBaPZUj0zniATQsFgm9yXN5KKIwLGffM66XPlOVCvgcK1pLu01T85McEW+CVkC+k5LnwV1Fs9eJSnMkxCaa8RuE5eOExBiaeZOEcgXPE3C8GtnwFUbWHhF5gjxFmsYauchRVLuOau8RkfJ49sHNVgO+fgebjtUFYGj3Ue0BQ6fP0OmTU8Z43PdDy4uFE/xWxa+lXR1b5qPaFpvekHfGl6gYNTaNTd6ePILleOxpHU6PTRISBUTJZjqWQrMtUkqEmBRi5FhkwxGEgP0pJisHo6Bch2oAxVrvtnFU/53be2UySoSe7huKpWiWm6+C7ulikdtbZWJKiC8fXeDObplkJsLx+ASqbiLiF9anUgkkQURpdJgaS+97LEkU3tiI7qGNaFoOowCmpWoWq2XfOAx1g1elYGbcWJJqc8D2XodCOk4oEeXjx1ssTGVJjkV5tFP1uww8aOoal5Zn2Gl0mJ/Koo5MXuzUOTU/QaeuUmsOiccUTOPAWHVeg5kth0YAZq61B+TH4pSCBtKLh2bGXToxy93ngaE4M8+jjT0erVW4dnKOrm6w0exydnkKSRJRPZupiTSCIDD0LAaa8cb4429XPreKFg1NIwkxHG9EVErwmsxAFsO8DpsFbBzXtzaWvYsd4OE08xYCMTxGwBZRaQbL+ogJIB15G9V6nxQR0tGvsKs9YCKkIMvn8NwStidRs4oUlLBfXLYU8pFpElIMAQFFjCIdJgbyDk2tdB1e09Vrjsme7mcmDVQedPyNGIqLvFL9jTimxNF0j69X1pmMJZkLpfm4vsWpwgRJOcbTdpWrM9MMDQtFEZnJpHhSq3O+MEV3YLDaaDKfzmBaNj38FL1+yGO1gxltI9OiPdJQTQvVtCjGUjyv+Ge7Kwsz3A0U8+riDLfXSmzXO1xfmWO91uLORolrK7MYlsN6vc3ZI1MIrj9ear6QYWiYJBPKPiA5l4yzKXZw9j3WILhPHs3XYOZaF2PQwfPgwXaFTDJKZ6Sx1eqwOJHl5laAmTxe5M5WmWgoxPVLC9zbrBDNhjkfLTCwLBACwp7JJDICSrXrJ2ASQUQhCYiHoWGHKQ6sg5lxmmHxvOTfj1E2wWrJjy5mcinK7R5bN3rc36zw1b/157/Vtv1d5XOraIXodb4y8/OsN/5tdOs3WYieJiSmwLqHHD3LyLGIizaCeA3NeEpcOYPr9dCtpyjSUVxviO2OEAjjHEJ8uJ6/yT10bLeN61mYXp2UOEXT9Pn75yPX2B75o6AuZS5yv79KG1hOXOBet8HuaJVz6eMM7SFVfZXvmzzK0AozsPqcSE+gOzaxkMh4OEXbUEmHEkSkLrpjkVVilDR/DYoYQnf8zdc1NKoB4eqzbo24GGFgmdxq7zAfz/Ks1QXgbHaKT0r+YI13Fxb4YGubREjhvYUFVlstBEHgfGoKURRwbJdCMk4xkyIa9qespMJhYocwivIh+ro3soKWtc+M3FF1XgYeK6aE2AsmrSSjCiNsPlzdZiwR5UgxxyfrOyxNj1FIxHlcrnL22DSWYeMoAjMzWV5u1jm+OEHfMnheaTCfz2J5Np2RjyDRf4fQVrMsOrqOapiohslMKsXzAOV/abnI7SC0vXJ2hjsbu6xt9bh+cZ6NRptbe2WunZvDsGxetducXJpEkARM0aU4nmakWyTiYRIRhaFukklGEQW/7y4aVvZLe+ahtqDvRD63igYQljLotp+W160nyGIIzxthmp8QlWYwgvaXZOgUtvUhnicQD7+HaryPKMSJh78f3XyIKIYIS1cBG8l1cb0iYXkaGwVZUAhLY8hCQJTpSSAcJBkOeyzDddEcHQQYOSrbIz8MsYU6TwMSmqQUo25ZVDsQkxQiXpZv7G0yHUszE09zr7XNqfQUMVlhb9TjrckipcGQ6XgK2/W41yxxdmwa1bQZ9Jpklegb57zDgzW6QZfB0DJRbZO9oIG0OJHi9lZABlSc5t5WQBI0M83TrRoftre5ujhDazji9laZK8szeC6U2z3OzE9iWDayKDKXz9Doq+STMfaiYQaaQT4Zp9bo47oQDYfoBV3I/ZFBOzhXrdfbNIYqqmFxf7vCzHiGnXIXgNNzE9zc9sHMbx+d56OX28SUEO+uLPCi2gAXLsxNIQgCpm0znooznU4RF3wwczIafhOjeKhh1BUOCFc126LeC7q5bZ2XwSCLiKJQqfjxUSYeYeSafPhim0I6zuRYglvPdzg6UyCdiPB8t8bF5SIAf/GHvvNpn/A5VzRBUMjH/yRN9Z8xGT4H3pCB9RxFLCAi8br0+JoVSxA8HDcYt+upuN4Ax2vhOBCS5xgZfmYyFXqbhn4bgKXoNV6ONlDtKrnIJap6hx31AcXYBVRHYH1UYzF2HBcbyx0xH5uiYw3JhmJ0Qim6Vp9saAxFrGO6NqlQlPohrsCa7m/+yqhH3/KZqZ729piJZSlpXUpal6XIDDfrvtJey8/zSW0XEfi+6SVu7O3gOCPenVqgYQzQLZNThQKJmILt+RnBQjROVFGQBQFZFImKhzCK4puh02vLPDDMfShWpT+gHJxpBpqBGoyFCkl+fe7jF9vkklEuLE5zf7PCcjFHLh5ls9nhwsI0vZFOKh5BFAQeblU4PTeJYdv0Rw1yiegbXvM1GZDn+eOowA9tR6ZJY+B70OLYgaG4NDfNg2AW98XFaR7vVPng1TZXjs9Qc0d83Nnl6skZHMljezjg5PIklmYjRkRm8mla/RG5VGzfY+VSMfaaPTwPIuHQPh/LQDNo9Pzvf1lqEI/5n7/3qswv/Ec/weLkv2as4++liILCYu6/YFy0cLT/CRBJR/8AmB+BYKFFvoJu7yJgIMtnEcU4tmciiQVC0gQiPme+QBiBA2pnj8NjUj28YBiT4egMbD/dPLQavAiSDw19By1IkiiIhIQca2qDiBhlMT7H0/4qK8lx4vICz3u7XMxN4DgSomgjZ6Pcr3c4M5bHch1uNyssJnJEJP/Wy8JBfQh8OBb4rFRD00RzbDTHxvIcVnu+Vb6cT3Cz6pcMLo4XebBd52W7xcWJKXYrXT54tcXVuSKm7XCvtMeVhRlc1/XrXrOTtAYqqXiY2bE05U6fmUyKfl9joJsUknG0kc9gJYrivpdqDbR9fOCragsjl6beU30A7sw49zcDjOJSkTvbZQQB3j21wI31XdSBzdvH5ykPB4wsm1NzE0TCMobrkEvGyCfjhCPy/rSbN8DMh7hQXM+nz/Ofj8mrgW8odq3B/iCLQcTng2QAiiSSjCh8sLZNIRnn3FyeezsVji0WyCoRttodLhwr0uqqZHNxcDwevaxwcmUSbWQxrLTIJKKIh8DM36l8rhVtX9zX+GQXyRviYIJnomCgOn5bS0SZQjc/8a/lS6jWff86dAHTfoVqfI2ocgXVtRnqN8iEr2Ij0rMaTEdOMnIHJCSRoTJHz9ojGZokLtVRnT5pJY9p6DiejSREMIMmUd3V6I18xWxbdbpmGNXRWR3sspyY5uUwYMYqLPGg4/OPfP/0Ud6v+RQHXx5f4XGnTsPq8dbEHBY2PWvEcjpLNhJDFiATjhCRZKKyjCz4afHYIWIg6dDEU8t26LzGKA5UtjtdAFYbzX3EP0BEkCjtDFAkkZXcGDdXd8knY5xemeTOeokjU2OkIxH6fY1UPEK522cmnwHP4+5GmZXJvI8IafWIKqE3OD406xDz72Ews2OzEXjQyYUEN3dfTzmd5OFeFQZwbn6CrXaXr+9scWVpGsN2uFkrcfnkDFgeDUfj9PwkncGIRDrMrJym1Okxk07RGWoMDZNCIu4XsD1fSbsBTXljoDI0/KmrL2oNiukktf6QWn/IykyBOwEq5uJp31BIArx7foFPtnb5M3/3n/B/+/Ef5drS7Heye4HPuaK5dhm9/7fx7B0EeQVRyOAJEoI4BkIUSYgBIcB+o34mHs4K4uB6fvhmuy1U0z8fmPYLaoH3wCkDEkPHIYOMGDpJTbvJpJIG6Twbw2eMKRNEpCm2tQ6LsTSGqxOTE3iexKPODkcS8wztGHt6h0woTugQTvLNUVBBXc9zGdkWDT3oHJYdHjSDlo5MkXtBw+iJ9DgvWi2+vtfn9NgEA93mG+UtLheKiKLAi3adq3NFNN1G9OD09AQ7rQ4zmRSO61Lq9VkYy7But1BNi1RYYRBk20zH3WfFag5GhOUuluOyVmtxopA/IFxdnuLOekALfnSOG6s+RvHdE4s82Kmw2+pyfWWOoWHSVTWOTxWIRxQ81yOXiBEOyUSCZIzjekSV3x2j2DN8I1bXRmwHHeQv2k06QZ1TAGRPYLPU9w1F3gczjyfinJme5O5OiaPTBRJyiL6mk5mMUtrrMp/P4nou9zYrrEzlCXkiewyCroeDsoX6ekyWBz3LxLAdDNvhaan2+1fRbONr2PovAyCGzuNY/rlKkE/i2S/AKVNQTtFxWmjGbxNWLuN6MkPzMVHlOi4WrmsQUS5i2TvI0gwxWWJkb6PISyhOBdProYg5LLfn16wEm5EVlAzcHgO7hodLy9wjLI3RMlu0zBZL8WVeDX3Q89nsae4FHuvd/AVutjdZ65e5NnaUttWiZ1W5lCsSFgVGbp/FRJqwGCGqQCoUxnZdkrKyj1GMiocIPUUJJwhtVctiq98FYL3fphPMgrrR2yI8CO9DuOYiKT7a3CEiy1yZnebOdoWJZJwLM9M8rdY5NlVAESQEERRBYmOryfJkDkkUKHf6TGWSREMHlOWH55DphzCKI9OiHwySMB2HJwGv5Jn4JHcDD3F0Os/LVovSWp/jkwW6ps7761tcmJ1CCIk8q9e5slBEN21cPM4UJ9ht9yhmU7iex26nx3whg9lsoRoWmWiE7lADBEzHZbcdYBSHKpLov/ai1uBYPrcPZr4wNcWdjcBQLM9xc3UHUYB3Ty7yeHuPRnfI1aOzDEWLgWmwODHmZx8lgURUIRuLcnmx+Jn28uda0QQxh79EG78VLnhdkPfPVXgatuNbf8veYBRAtjTzBk7g7QAkYYqh8QECIaLKFbrGPeJilnToS9T1p0TlBSRxjI7tkY9E6Bl1MpEihqvQ6zXJh6cRRZkdDWRBRjyEUTw81EJ3TcyA2s7yTHaC0HIqYvJ04J+r5uNT3GvugQrz6Tzlvsk3amscS40juCE+qW9zuTCLhEBp1OP65AzVoUohGicmhnneanAsXWBn2KUy6jMTTdNVTSzXRfDYP+Drtk2l63vz2kAlE/PrVZ2RxvniFA9KPlLm2uIMd9b8jfju8XluPN+m3hrw9ukF1ttt1lptrizP4ODRGo5YmhwjqiiIImQTUVzXIx4OIUs+zjB+iL4uJEv7ZDyGbVPp+evZbndpWgdTTgUOIFyFbJwPyjuEJYnzK9PcqZSZSCY4Pz/Fo3qNo/kCiivhKRAWJF5tN1ieKSAisNcfMp1+01C8gcgJQlvX8zvKX4OZbdHjYcU3FBdmp7gThLZvLc7ys3/uj75RuP9O5HOtaKHojyCI/xNu/z9Gtu9iKdewEPHsTSTlOo7TwBTShEPnMa1nhOWT2JQxnW1C0iKe28b1+vgo/6BwioUeJDxst4PttLA9lYGlIoUmaBrPAJiMnqOq+ee8S5nrPOqvAtu8PXaFtWGZmrbKqeQpLE+jbZY4mSyiyDKO22MqkkUSbMYjDpuqgu5YJEOxYFapR0R6E2HQt4JzlTakHniIu81df/MB5VGPvJzkVpCZPJUp8kmlREwO8V7uCJ9slinE4lwsZNlrDYgnQn7PWyTAKKojlgs5Eq8ximHlzSTDoaHwumXzOpJSHYtS1w8tNdfexyiujOd4HFzP5dM0uiofPtviyEQWKSTxyfoO5+anUGSJzVqbK/MzdDSNZCzM6ajCar3BymSOSL9PqddnfixDY6Cimpa/3qCz3HAcSn3fY9WGQ9KRCF1dp6vrnJ+e5EHVX8O1I0VulXzFeO/UAh+/2qaiD3j3xALrnTbrVp8Lx4t4HrRtndmJjD+4IiGQDOZuR6LyQf3s0GDHdDTymZUMvnu8jgLwM8CPACPgz3ued+8zrw6QQguIjk8RF7IfYrgOYOGYVVQhh+36fPnR0Bks60PCXhgl/B5D431kMY+ifBnDXkcUEngoWKQIewKW2yceWsYVErQRUMQs4qH6mXBoeKHjHVhE19NRnV7wusrWyC9yT0cSlDXfKxxJFajrfdbUTZZTOeqjLLfbLzgSn0IRktxpVDmfncdxPfqGw+XcHK/6DY6mx8krJs+6NU5lJ2nqKlVtQFxW9hshgf1BGiPbojYYYbsue8MBxVBy/1xzZbbI7cAqX5+f5eamr6RvH5nn/k6Fuztl3l6cp9sfsVZpcGlhGkEQGGgmC5NZBNfP2mViEb+QG4vse6w3MYoHReauqtMM1vZoew8h2LjNlyPS+ShrTT+ptTKT45PdEmFJ4u3FOT7e3GE8keB8cYrtdpdkJIwjeiSiYQQReobB0VyOaFBoT4fDb/QKHs7a6rbN66c18mx2g3kGxpjLgx3fg5+YKPBgrwZtfy2lTp9vrG9xcnIc13P5eHOHS3NFv1xR2uOf3H7In7ryr7Rkflvy3eJ1/GF8Mp4V4Brw94I/P5O4TgtT/QeI0glk5zmWeBJBqOM5JRCSuN7B5nO9rn8hGNhuA/Bw3Aaup2I5/oYTQu/Q0X3C1XT4Gj3jJgBz0Xco6c9wzQ9YiH2Zrt2mpj1lKnoByxNpGW2mIkfwAEmAXGiMkTsip4Qp6wqGa5KWY+zho+QVIYQbhLaWa1E1/LPCplqlow1wPI8HnW1iZGgGpDTLyQI3m1vgwVvjR/ikvk1cVnhvYom7tQoJJcyx9AQj3fF77BCYTiSRLH+wxmQiQSxoK5FF8U2M4qGePcO2GQXhk2oYvAgQHwPN5GXAUDWVTlKvD9isd8inYmTiUd5f3WKxkGUsEuXR5h7nFqaQRJGmqnJpuUi52WOmkGHCsnharnFmwSdcrbQHJKPhN5ThNf+J4TjUBkO/3jgYMplMUOr1oQeX5w+81LW5IjfKQWg7P8/taoV7exW+PD9PXVNZ67a4VJxGEgX6psHCWAZJFJHDIulImJFlkYyH98/A8UPJGFEQ9jOlXU3bD22f7dXQAgPyH/+Lr/GjZ0/sRwTfiXy3QscfA34uoC+4IQhCRhCEKc/z9j7LP6p1/l2cgIlYUt7GMT8CIkjK92GYt4iKUVzpbfAG4DlY0hKeOAEImEKMkDRFKDjbCSgIb9TPDs5YHjZu0P7ieQO6pg8S1pweu5r/K8Rki5rhP4SImCAsuuyObjIXyZOQJ9nT73AmtYTt5ajqO5xKLdG1DAQvztlMlOe9EifTs5RlgdV+jaloBk0PJrwgoL3OgArQNnzlU22TnmHQt/z/p5Usjxt+2Httaoabe/7muz47x+3tMtv9Hm8fm2Oj2uFGeZfri7OYjs1qp8mF2Sk8wMBmIZdFNUyS8TDpWITeSCeXjCE3XqPqFeqH7lQzKCTvNLvsWD5G8eHWHplUlI6qsd3ssljIcmvTX8+FY0Xu7JSJhGTePr3A7Z0yKTnM8cUZuiMdQRKIhRUKcR8/WpL7TGdS+2c7RZKQpMPP50AM195XDNWyeNFsBs/K2u/Nm0+nedVrs1ptMptJIdoCX6tscGwhT1IIc7ta5uLyNDjQtjUuLE1TafQpTqRJRMK8rDU5MT3OdrtLazBiLBb9TEoG3z1exyJweK5NKXjtDUX7tnkdg3FL/nU3uNJxvB4eA3AHSPI8xmteR+UtVMOvpcWVa+jmTQznFanwl9gzShj6DdLhL6G5Nlv6BsXwNVwEKqZANHQCvB4OaWJyAc1uEZUKyEIL2zOJiCleA2RFQWLkBKSmdpuB7YdEdX0dmxGq00fVniBxlM2RnwA5m11kbfgCQRB4b+IyH9bXiUgK700e4VU/aPXPFpFFCcN2KETiFONp4lIIRZSIhxSih6BH8qF5bZ53kBfUnAPC1ZY+YrXlb8SKMaDS99efCIUwbJdvbG8zloyymM/xQXWHpeIYk7E4D6tVzpyaxh45OBGPWSnL6nadEzMTjFST5zt1FiayWK5LR9V8MPOh0PY1rYJu+dwlmmWhWRYzY+l9XscrC0VuBZnJK0dmuFEqsd5p86Ujc6y2Gtwql/nS/Bwj22St1eLilA/LMkyHhUwGzbZJKAqpcJiBYTAWjQWNUpAIHYS2rsA+m1ip32MUTA+9vVcmJsuMbJt1YDqb5KPGLiICF45OcqNeJhUL85cvX+Pfuf69ozL4VryOn0q+XV7H2NjPovX+Fp6r4nkagjiFIE3iClEQokHt7KB+9qbHOvy9Bobjb+aR06EaTJipmE0aAVuVKIRQHRGPR4TEKAl5gU31HqnQJDF5hsroCfOxJVwvjub0KYRn6Jg1ssokruewqz1nMrJE3w4xsHtExCjWoeZcw/WTHJ7gMbA0XDxGjoHpGZRHXQCmYyluNQPEx9gM99oB0+7EHA8bDd6vr/PW/BztvsnNvV2uT82CKVDpDLgwOcXIMgmJIvNjGer9IROJBNXhgJ5hMB6PUxsMcTyPmKKgBiFr3zDoBCj/9U6btjpCNS3uViosjGXYCoh5zk1NcGs7GLJxcp6PV7eJhGTePb7A83IDz/O4sDiNI3uYjsNkKsFUJhnM4BbJxKL7Zyzgjek3hzeC7lg0A0Xt6TpPAg+eDIfZ7vprGYtG6bkG39jZIh+LMZdN835pi2NjecaiUR7Wq1yeKmK5DrbrUkwkedFscLowTndo8KLRZHlsjJ6hM7JtQpK0P1zSxaNuHNybq0dm9tuGPot8V3gdgTJwuJo3E7z2mUSU55HDX8bo/ycACPJFDCsIJUPn0c2n4PwWcugKntfFNt4nobyFCajmBjHlKq6n03OjREPHMKwSijxFxNLQ3RZxeZK2tYvjmYTFFEPHt/iWq9E1/eUPrCq6Y+Ni0zZWicjLNM0STbPEdHSF7ZE/sH4xfo5N9SF4IqdT11kbrKJIZa5mT1LVLUaWwXx0Frwkmi2QDUXJhOOkFImQICAIIpFDiI+QePBoXLx9wtWepbMa0Nft9nrsNX1D0Ryp+2OHQqJELhzl/c1tcvEoV2aK3C6VWcmNkY8n2Gy3uTg7RV/TSceiiAjc3ylzdnoK03LoajqFRPwNZizjEKr+de+bbtmMDGs/tCyOp7mzG0Cx5ovc3T7AKz4s7fHhq22uLMxQV1Vubu9ydX4GV/DYaXc5Pz2F5TiInsBCNkNTHZGPR0n1FfqGSSEWY7fbxcXvIGi9blq1bRoBm9hqu0lUltFsmzt7ZaYTSSpD/5mezBX4pFxCQOCd+Tk+3N4hGQ7z3pEFnrbqxEIhFsayeGEXBI+RHWEhn+FGc4erxZl//en9T8PrCPwS8FOCIPwT/CRI77OezwA8z8RxqgdrEb/ZsgRewu3hOGt+i7+zQd/2D/h9o8ue/ZrVSkSSJhloHyMLSSajZ+gad5kOz+GKZ2npr5iNLmG6AiFRRBQU9rR1CpFlHA9GWpd0aAJP8MMSAQEOjYIy3YC+XHAxXQ3D08CBsZDBq6F/K47EVrgTeKkTqRme90vs6VWuTs2y1tH4uLnG1cIctuvxsL3FtfwcpgM93eRcboq6NiQXiTKfyrDT7zKXyqAObPqGwUQiwW6/H9SsPOoBM1dL1fa5R9ZabSzXpTocUh0OOT0xzp2ADOjq3Ay3gnrWV44u8NH6DgPD4J0j81RbfQaGyZmZCcKSjGnY5JMx8qk4YUVCkURk+ZsIVw/3gXHA4KWaJlvtgEFsMNz3Urpp7ytwSBIJJ2S+sblFPh7j4lSOO5UKR/M+mHmt2+HydJG+4RPQiqLIvWqZ89OTDE2LF40mE/HEIUPh7SeAPDxagcccGAZ906Ax8j3YeD7OzUaQqZ2Z4UZtl9sPd+mbOv+na3/gd9mln06+W7yOv4Kf2n+Fn97/C59pVYDjNGjU/yCuu0ckdMlvjzduEFWu4+HSt9pEQ1fw3AqOVEASwLZe4UpLSK6H4zaRpSkEexBMlvEwAlpw2xugWX6IZjk72G4a3e2iG11ykZM0dJ+/fyp6gZL2CIDlxFVKozvg7XEmdQ3dfontvuJo4gSmK6G5ffKhIpKUxkMiJsYRBZmYpCAJ/jjd6KH6mXSofGB5Nq0ghK1q/f1Q8km3TO9g/ABxKcTHzR4hQeLExASftLcoZOK8E53jZn2XpfEsGTlKX9dITkSoNPvM5jMILtzeLXG0kPcLuZ0ukUPtJXCYRxEGpontutiui2nabDR9xSimktwNyHfOzE7u19JOz0yw1ev4iI+5KQzP4Va5zJUjM3iuR0NTOTs7SWekkYiFmR/L+BjFTIqONqJvmIwn4gx0HRcIy/I+FKupjugH1y+bLaacJI2RSmOkciyX4+5ewPcxO8Xths/M/JWlBT6obBERZb68OM+O2sV1XM6MTxANy9iOSzYaYTqVIhb1eS4jskz4EMnqYUDC4evvVL5bvI4e8O995tUcEsep4Lr+TTSdHVw3mPtl3mQQYAc1B2Qxh2t/BEgI8lk04waikCIRfo+h8QkzkSIai4zsJpKYQnf7RKRxQMAwOiSU46juGLBLSIgjHrolzqHyge3pPhpFAEkYoNr+JkuIOuvqFgDjkWVWhz7FwWRklqZRZWN0m3fyi2wMkzwdPOHy2AqOF2Z9WOV8ZpGhZeA6EU5nYmwOW8zHx/xM3KjDYiLHK3vI0DKISiG0fcSJQ0X160MNQyVOB8NxWO02OZOZYLXtJ2cuTRb3M5PvHpnjg9IOggfft7TIg/IeG+0Ob8/PMdBNGkOVU+MFYoqCZ7nk4z5GMaqEUCQJx3WJHUqLv0nK47Mhg9/VvRnAxF42m/sgZ/DLDtv9HiFJZC6f5aPNHfLxGG8tTHB7p8xSIUc6EaGuq6zE8lSHA6ZTKTzP43apzMmJcZCgMhwQD70JZlatA2bmnqVjey5Dy0R3LTZ7vqGYnEzsj8a6XCxyp1aBke/Nnw+qvL+3xVuTcwxsnbv1MtcnfIrwm7VdPtnb4a2p75x27nOLDJHlI0SifxhD/y0E+RiSm8axXyHJRxHtGq7bRkDB9Q64HC3HPzi7Xh/LqQAmlr2JIBcY2b4CJMNXaBuvhxe+zcvhU6BMMXaNuv6Ypv6UYuwKutNFtXeYjpxEEGRsVyUdKiIIMiIKipjE8QwEIX0wCko4aMURELGDmW26O2RXez28cJuq5t92f3hhCjWgNp+LjfFxYwNFkLiaW+BWa4t8NMGF3CLPuzXmwlkUQcL/T2a13WQlkyPkymx3e0wlkoe6p739Wh6AFhgnT/DT4t0gTDNsh0d7/n3Lx+MHGMVCjlfNNuVun2MTeVTVHwt1fmESGZGn5TpXFmcwHBsDh7Mzk+y2e0xnkjiSx06nx0Iui9No0TdMcrEo7eBcZTkulQBx0lRHyC2/rLDWaLEczrHZ6bDZ6XBuapJbuwEr1fwcH+3sIAoC33dkkdvVMntDlS/NzdJzdPqmwYkxf+iH63pkw1HSkTDRUAg56HB4TUYLfjf3a7E9l0GgqF1T43nHLxOUhn1Kqg9O+Etf+wUe/9m/8il27u8sn1tFE8UkY2N/n83qj6LpHwEyUeUr1PVPkMUMY+EfoGs8JySmiEpJVFdGAiRcQvIRPE8BNglJkziCP6lRQHoD8WEfJl/1DKxg9JHtarQMv/0mLms0df86Ic/QNst0zW0S8iRVM8yqtspUZJGoFGF1+Iql+DFMR2FrpDMXP8PIruF5cyzFYVPd5Uh8DsHT2NM75JQkVfNgPR3T/37Tc6jpwUY0hmSl0T7h6oXsLHdfnyMKs9wIYFnvLh3ho9om1VGbd1eW2eh3eaE1uDpfxHN8eNfRXI6oHEIUIR+LYQU1M0WSMB2HZPjQrGfpTYziXtCtvNXp0u/5Snpnq4QX9sNigIlUgo83dgnJIhdnprhX2qOQiPNOcYpHlSor4zliSgjbcYnIITaabZbyYyAK1AZDZsfS+0MTZVF8w2ON9jGKHiPLZBig7G1cHjd9Q3FpYpqbwfjhc+OTPOxU2Bx0OD8+RVUb8PXqJtemZ3DxeNwrc61YxMLGFg1O5QtUh0MK8ShtI0FtNKSYSNHUVXTHZiKW+NR793eSz62ivRY7mIMGNsMgRW+7XVRniOm2MN0WrnCNXuCl0spVWprfSZ2JvEtFvw3cIB99m4G5Rd+4Sz58DQ8T3VpjJrKEg0JI0EmHpjAcjYgUIyTEsTyVsJg55LEOSgm2J9CzXzeGNrADWrvt0Qv2tCIjx6SkdYiLU5R1PxN3LL7E7fYuYUHmS/mj3O+8pJhMMq7M07W7hASJgRFnLBxHEKCm95mPFUhKwaxn2VeK1+IeGl5oehYunk+z4JnsBISrI8x97sSV9BgPa35YOZtMMdBGfG13kyP5LBFP4qPdbc7PTRFzZdbrba7NzNAxNJKSQnYmwmq1wfHJPHvygN1Wj/lclrqpMjBMJEGgN3rNNuzu1+waQ5VsLOLPJdMNzk1P8mQvIAaand6Hib2zPM8HW9tsD3q8t7zIi1aD9V6Ha3MzWJ5LW9dYzo2RDIcRBIFsJIIgCMRCof0zcCz0Zp/e67tjujbVkf+sKqMBpYA06Wl/DzXoLRSAmBzig9omCVnh7HiB250tZpJp/tfzZ/m3T/0+pjIAmMn/Paqdv4mAguWBIaYIS7NIYhIQEYkhCIdAuuI3eyz/djveCCMgXHXcNkPLx0iGpTBV01dgRczgYFIZfUJUyhET5qlot8kqR4hIGZr6C6ajp7BdB8dzOZrIsTMqMR1dRHdGVPRNCuE5umaUkdNGFmT0Q5nJboBWNzybntXH9hw6VpeJSI5t1d985zJHuNHww9zzmWU+2tsFGrwzscijToU7rS3enV6krek87zS4Mj6DgD/KdyWdx3ZcwmKIXCRG3zTIRqKERBHLdUmGD80VkCS0IAHSNfR9WvCH1T3CmoTturQ2R4xHY2wEdObHJvPcXC8RkkTeOjbHJ5s7jCXinJ2ZYqPZIhkJIwkisagCgj+earkwRkwJIdAiG4uiHJ7qcug567Y/ChnPx3C+ptYzPZe7e76hOlUY517Nf4YruRybow5f297kRL6A5dl8UNrm8uQ0kijyst/g2uQMfdMgGgpxOjfOerfNQiqDI9jsaQPmkxk21RaaYxOTlf3u9qFtsjnwf+fSqMePLZ0kpXznVHPwb4CiRZVzJKN/kHrv7wCQCr1Fx7gLFsTD1+gbq+j6R6TD17G9AX39HunwNR9u5LRIKqdwPB0JhYhcxLAbSNI4krWLg4osjQEdwEMWw7iOf5Yy3SF6gEbpmBuExDiWN6KpPyQiz9IPyFgL4ctsqEGWMnKFD5tbhEWHC5lTrA+3CYk2xegCmi1gew6T4SyFSAZZlFEEmbFwiliAFpcEYf88AW+yUhmuzSAgXB3aOk87vpfqGBqveq1gLXFqPYN1+mTDUbLhCF8vbbI4lqUQinN3r8z56WlCgkRdU7k6U6TU7TObTmMkbB5VqpydmaTf0Nlt90hHI9iHmiL3PZbj0lBVXKA5VJnWk+z1huz1hlxaLO63mFybn+FmUOR+e3GOO7tl7u7u8c6ReWqDIS/rTS7PTcP/j7z/DrYzzfP7sM+bT87n5hyQY6Mb6DDdE9ay6SW5lkxREk3RXlly0a5SyaZrRZXKFk1LVJVEsiSqig5FkbaXVFGkSJllkqJoe8mZ7ZnuBhpoZOACuLg5nntyeHPyH+97Dw5mdyf1kOqinyrUnEHfAl685/k9zy98gyzQti2WyyVkSURRRIrJJJbrkktow4NiFAYVcc9O9U9s9o2ollpr1hnEY587x/sklWiuJgBzuQI/PNwhJSt8MD7P7doO0+kci9US690Gy7kyThAhThRR5EHjkIvFcZ61j1nK/dNx/PzvbIVhgO23R35nVEPCwx+ypzvo8S1lefuY8e0lkiLAwOY1AglCcZya+QUJaYykfIVD6zEFdRVVyqO7u0wlL6N7HbJyFj+U2TPXqCYu4AU2LWcdVaogjLy2UfPCUxawHTiYvkUvTi0zySme97YBuJJf4mE3urGu5hd50t3m0Gpzs7LMkdXiWf8lH4+vYHoCO8Yh749PYnsCAR7L2TJtxySvJilpSVq2yVgqzXa/hReE5JQEtREL4pO4AbPda7PndQmA+/VDxpJpTgyDrV6bM/kyd2LA7s2Fab48PEAVRT45u8CX2/tkEhq3JmdpmQYCAklNoZSPUuhkW2GqlCWdigJAU6S3mgyjiA/Hj5jKEM3S1uvR4aB7Lk9rsTJzIc9LowEGTGWy+GLAP97bZLlUJKsmuHO8xzvT08iiwIHd5db0NEf9AZO5DIWUxvNmnUvVcXaMNkd6n7Fkmr5nD5+laUTvw/Bc9gaRLfG+3iOX0KiZfWpmnxtjU0NEzq3qHHfquzy4vU/HMfljq784FOsbHWiOV+dR7Y9huJuUEt9GwGfH3mFcfR8BBz2AlHoR1zsCcRxV6uH4h2jyDE7QxQ8NFLGIHZhASBj6WEF0E1j+CYbvASE99xXpcAbTr2H6NQrqOVp2xEWbSd1kL0Z/VBLf5sXgKZKgs5J+n7pTx/X7zCRW8IUUphdQVrPklSKKqKIICpIgo/wYY/p0hUSoj+h5HGpx7dDxuqzFg1yRE/Z6UTDLSPiewqfHmxTUJBcrVW43tlkqlJlIZnnaOeS9mTEcWyQQfM7KZZ416lwsjWFZHo9OjlkulAgDOMFAEcS39Aq7dnRQOEFAx7YwPQ9z4DFfLPAyDox3F6eHeh8356f5cu+AV50W76/O8vKkwZ29fT5YmsOwHNYOT7gxMwVitLmXKyVM1yWtqRSSkbpyKZVCbkddx2xCO8UgIAoCnfjgOh4M2PDbIMBXJwdoSRHL99jTu0xms9yu7yGEcHV8ktsne6RkmW9PL/LFwS7jqQyzYznqzoCUpNA3HSYKKUQRamaflWKJQpxSJ2UFYWRmNnqb2yPk3l9kfaMDzfT2MNyI76W7B7Ri8O6h/YogfHNyi0IR17yLJCSY0K7Rse+iShPklOv07IeklXOIQoIgtEgIeTrOLll1CS+EmvWInLKEJCbQPRBRGT2L3eDN36P7kUCPH3oM/JC6Hc3SStoMz2PzwoXMKnfjE3ExtcDzTpc9/RWX8wuYvsPDzgbXCxHl5sTqcCk/T98zSYgKc6kqx1abqlrkSHHouAZVLc+R0MQLAzKKykks19ZxTPrxRtzsN9E9k4Fn86i/x4I6znonelfXilPD2dG35xb5dGcHTZL47twizxonmKHLe1NT+GGI7XlMZ7JMaTkSoURSUcgl1LcEV0ebMW+5nPreEEzcMc0h/aY+0NnpR2ldPqHRt2wOBn2KyQTTpRw/2tphqVKknEvz4OCQ9yan8eRIT+XW1AyvWk3OVSr0HJtn9RPOlyt0fJNDo09Ckodg5lCAZoxRNDyPuq7jBgH7gx5j+dQwvf5gepp7ze3o8+wCX5xsgwHfmV7mQf2YR/VjPhpfZODb7OptrpWnuVSc4NfmL/70DfsT1jc60JLKPHntJj37AZK8ihbK2H4NTZrF9g4IMAkDCVc4NYW3sLxoUzn+MZKQwA91dHeNjHoJ3Y0IpDnlfRoxL20q+RGH5peAwETyI1r2MwbuPmOJm7ihju3VqaqLBEIRN/TJSHlkMYEiqoiCTBgGb8RX4S25cC8QMPwoULuuwa4RNTx2jdoQCXJktRAQ2OEECZGcVOHTky3ySopr+WVu1/aYz1QYS2TY1Vu8N1albTkU1ASiIPKgsc+l0iQhAXVbp6y+LQxkj9gOnSIsbN9Hdx1O4lRqMV/ifjyveq88zcPYvPD6zCRP94/5YW+HG3NTNAYGX2zs8v5iJGuw2WzzzsxUVCuJsFwpUR/olLMpCqkEHcOikk+zr/fwg5BcIkHXip/B82mb0fe22WizP+jj+AH394+YqGQ4iAfy5ytVvjiISaszc3y2v0tKUfjuzBIPGoekJIWV8RIOHmEYGVXM5nJRrdcRGU9nht1IUeAtm6xRUwsrcOnGB5fheTxqR+9gJVfl/3jj9/3UvfrT1jc60FSpzNWJv8Y/2P03eN1/gSImmEl+h2PzPil5ioI6RdM+IiHl0TAIxCI2IPhfklAvxLjEbWSxAiNOnv7IjeUPb8YQL7Rw4gZIgEvbjpocebXEWtzwKKpLHFqH9LwjxrQltg2BrzrPWUqvECLzerDNO4UVbD/AR+dKYZZ9o8N0Kk1IhT2jwVyqihuE9DyDspqn7fYhDPEJOI7nZ13XYKPbIgC2Bg0kQeDI7HFk9riYm+Gr5mkdMc+desSf+/b4Kj863KErNPnO9AIHRo+22+ediXFUWcHyXCayaUpaCk2VSMoRfT+pvgnMURgSRMpUEAnxnLK3D9t9duNbyvI8enGdKgkCKU3mB3vbFJMJLk1O8OXxActjJSZTGZ616lxbnMQyXdSEjCpIPN474uLsOJbr8+z4hOlcdqiXLwiR4vDpGjLLXZeebUfdUttiOpfjUT2WNZh4I0b7wXQETds/7PCtqXl2zRb36vu8P7aAG/jsDjpcLkT0m8CH6XQOw3XJKdrQdGQ8mf0Zd+tPXt/oQIPI9+uU7+UGFgPvhBAf3TtGEUvo3jG6d8xY4ion5iMAZlO3OLSiWdp06nv0rNsM/MeUk9+lbjcw7X0q2k18RBqOQUpeQRQ0nFBFE4sEeEhCGhGFABdRfPOyBZShMJAbOtSd6MuvWSe04vb9hh41ZSKW2A6VxBiv9adIyFwtLPG8/5qcnOFm7iwPWttMJ6sU1BQDz0ETVXYHPWbTFQJfpG7pLGUr5NXooEiIMqM5mzMyPhg4Dk6MALECn9e96L3NpAvcqUXYzsulCZ7Uj8GAS2Pj7HS7fP9wk+tzk3hBwGetHW5emkXQBY7cAVeXJmn3TNIFjcWgyF6jy2w5R9+zaZsWk7kMRq+DFwRoskwvHiS3LQs7tp/aaLWwfJe2ZfLVkcm5apUHxzFGcXGKL49jl9PVRT7d30YNZb49v8jrThMn8Lk+Poksi9i+x1gqzWQ2S1KVUSWJlKy8Tb8ZZZYTDofupu9yEHcm25bJi15t+PM73ehwqyTS2IHLD442mErlmElq/J3NpzQMnb/07T+MJv3i4fKNDrSm9Yq7jf8LSbmCKChklHFkAXTviIw8hSpF7GmRyNHzzXqTEgShTRAPk93ApBeDic3AZc+M6r+8MkfXjTqBOWmCgAY7+h0K6hxWkOFZ/wUTifOEJDmxD5hNXcb0emhSmovZCi/7x0wnZ1HEDjX7hInEBF23i+EbiEgYfpSS+Hg07Kjh0fMGnFi9CIun17kgz7Lejzbf5fwSd5vR83w8eYbPTjbBiG6sr05qvGif8OHYQqS3b/S5WJggJSv4QcBEMossipHoqiTjBD7ZESLk6GYJCOk7MXjXMtiLb6mn3WP0XhSwO3RICjIbB21kUWRhpsCntV0KWoIPpmb54miPhXKRajLNca/PuXSFhqkznskAAl8dHHBhbCySsuv3yakqo3em4b7p2vY8C58Q03MxPZf9WO9jJpfnTi26pW6MT/FV4wA60ednjRN+e3eb9ydn6XgWXx7v88HYHIEQUjP6XC1PYAYOCUViJp3nxBwwlsywZ7TRPYeSmmKXLiECmiTTiCk3Xcfi0Ij+/h8ebw0D9hdd3+hAe9n9uxwakZbjRPIax+ZDAGaS12jYd+m520ylbtKyX1OzHjKZfBeRPn37FSXtKmaY5ND1KUhnCLHpBRVksYAf9FHEIiIyAR6K+AZeI4gSrncqftPl2I2G2cfWGlaQIsBDN9pkpBKNWPJgLnWZV4PnSMhczF3kWe8ZOTnHucwVtvQT8loSVVRISgIIYLVdFjNjhGGSrYFAScuiCaem8AIjyLC3pOxM36Ud36CW7/GoFdURZS3F3Vh8dTFTYbPTYV/vspwrYzqReeGV8gSaJPOkecytyRlcz8cKPG5MTLHVaTNXyEc+1J0Wq6UKO26HtmlTSGgMzFMzx0gECKIh99aggx+GbLRbqEjsdLrsdLpcm5oY6n18MDfLF/vRs313cZE7+/tstdt8PD9PwzDo6hZXquMkEgpO6FFNpcknNBKaOGy8pEaY5cpIahuGvOHpOTYvYsn0/UGPvZgBkVEUTNFiw4CEJFNMaHxa22AimeViYYJ7jT0uVsbJCAn2jS43q3McGz0mkpHpyMP2Pv+DmbNvKWP9IusbHWhJeXRIOPoPfRujaMVzNi/oYrhRK173e+xYUSD0xAJW4BDygISUJy3m2NS/Iq/MIooT7BgvmExeRxUCOq5FWXsP29tBkZcYlzxq1guq2nm6nkHHPSIhZt8C7Pa9qNvl49F1o1uh5/XIeg5Np0OTDpfzS2wZkZTd1eJFHnUj/OQn45f4vL7DY7fDrfJZdvUuL/qHvFdaJCTkxOxwLj+BLAgocshEKo3hRha7miRh+z455U39qQojGEXf4yB2mNnsNhnE9c6dk72oYxdv0pl0ls/qW8iCyLszU9xr7lEsJPlkfoav2gfMTWQouRkMySGhSuwd9FkYLyIicNjvMV8okIn1PhRRfKsb6YxoKuqOM8Qs2r7PWj0KjPFchtsxs/xSeYxn3WPW6ydcnpjg0Ojz/ZMN3p2JnE0ftA94f2oGLwjpByZXxyY4MQaU0xpzQZ69fuSO2nZ1Bq5LNZVmz7IIiR7rJFaGPjb79FyLgJDnnWMm1AKHRgQiPpsd53aczv6Fb/0a//zS1+s4wjc80K6X/zXS8gR3mn+LDf05s6mbSLg0nCNK2mWC0MUNZTLyHJbfRJYqqH4eJ+iiSRVEegT4kRPoaZMj9IY1X9fdwwh6BHgcmC9ISOP0vQYnDlTUBRqDyDJqLHGTZ/0XyILMSuYD1gavSEoJFpJLnNgWIRJTWoqcmiUMoWFrVLQKWVlBAFRRRX1rfjYiZYfzRonYc9iNTQoHnsmrOJWcTgRsxCjySjKLEYR8erLOTLpATklwt73JtcoUSUllY3DCh9PTNAc22YTCWCLD02ady+UJaqbOZq/FfKZAz7WxfA8RhumjFwbU4o3Ytk1q7oC+a9N3bd6pJHjaiAVXZ+e4fRQFxieri/xwZ5cNo813VxdZO6mz1qrz4fwsludzrPc5X62S0GR8ORwK8iQ1eQhmTifUUzkWtBGenIs/bNkfm332B1Eq97h1jDEymM8oCp/VO2iixMWxMrdbm0wks1wfn+B+44Bz+XFSisLANclrSbYGTZYyFfww4KvmHqu5KmIgcWj0SEjyUPEZYCL1/yfNkKQ8ScuJvtSOW8f2os92YAxRIaKgIJNgW79HUspTVFbYNZ5TURdQpXEa9msmEpfwQgtFkFDERermGpXEOQY+HFuvyCuTMeIfRCR83nS7BnEq6YUeXc/GCRycwKGrzLBtRLXUSuYcrwdr8efzrPVfc8Q+75bOs2Ps8WrwlPPZi7Qcj1f9PS7kVqI/29U5lxuj7/okJYWKlqVlDyirGVRRjq2g0hB7nkrI6F7Mnrb1EZLoISlJxfAdWvY2k4kCm52oE3e2OM3txk5krDG1yI+OtimoCT6ZWmCj2yQpK8yJBRJxG7znmCzly6RkBVEQKGrJofsN8BbkY/TGMkJ3ODIwfG/Y8DiX1LjXiG6IpUKR3W6Xo4M+Z6plPNHnB/VNrlUnSUgyz5o1bo3NYnguoiBwrTLJ626ThVx0g+4OuiznS2wZTQauQ1pWhn4GduCzq8fsbbOPLIqYvsvzdo0L5Sqv+nXow/VixJ4G+NbYMp/u7SIJAt+dXeFB7YimYfL++By27/Ef3f8Bf/6j389K/p8SBEsQBAm4BxyEYfgHfuy//Trw53ijE/IXwzD8y1/ryYCmfcy99ufklGn67hFpeYowaOMEfVJyhYGrExIgIuHEQWf6Xfx4yNxzt1ECDyvocWw9ZUxboGlHHcGxxGVqVtSlXEx/xJZ+H0lQWcm8y7G1heObTCUvYwYStm9TUMZQxXHcMIEiJEhKqcgWKhQQBJBHxFdHcyc/dDFi/GTX1VkfRN2uht3mxI5ur5SU4MCUODCbpCSN8WSeL5rrTCWLjGlFHrb3uJifRkLlaGDyXrnMvtFhNl3ADQIetva5VJhk4DlsD5rklMRbxfspRtILA5qWThCGtGwT3XWG86pbY7PDtvj742/oNx9NzPNlbY/Pazt8PLHIUX/A40aN9ydmCYG6PuB8pYIgCIhayFgmxcB2yae04Y2VS2in5wSqKA3pSQPP4cCJ/v6X7foQ5Hz78IBMQh6CfBcyRX50GA3aP5ic4Yv6LuPJDO9UpnnWPmY+W0SRRCQEFFnkRbvGuVIVURDZ17tMJrMkTgftIW/dWHoMAPDDkIHt0YrRMWEY8qAR1cD/5ye3+U++9ft/pj37e62f50b7XwNrQO73+O9/MwzDf/NrPc2Prf/s1b+DFRjIgsyEdpG7nU3y8hhnMpfY0NcY085SVZK03B4FOYvvn4A4jSIEdO37FNSzeGj0vRqamCUIR9jTI4iPU70PP3RwA5NBnFqmw3m29dPAvMSTXlTzLaWX2TO22DefsZI5R9ft8bC7xoXsRQJCDowjVjOruIFHSMBMcoa206aoZCkqJm23R1Ur0Ha6uKFHRk4DsQZ8ENByOgAcmm1atoUX+jzrHlAUx9g3OmzrLc7nx7nXjJ7n/eo8Xza3kRD5zsQKXza28RD4sLpI09HxgoAzcplyMqrlMn2VqXSGjKoiCgKqKL2Vso3CkNwgwD0NDMcZIk66dsQeAJjO5Di0OmBBNZ9GsAL+UeM182MFSlKK281drk1EN9Z2v82tqRnqhk45m6QapnhSr3F1bJyjwYCdXpeJdBpjSF8JadtvBFcP4k5gzRxQTqRoWiZNy+RGdYr78a35wdQMXzbi2eLUMp/Vtqk3B3wyvsLWoMWe3uW96iyhL9CzbeazBfJqAkUUycgqoiiQUtShRHg18YYe9Yuun1USfAb4/cB/CPxvv/bf+jOsIPRxgnjzhR7NePN1vT7Htowf+hxZh4jM03AOaTiQVd9hqxc1Gc6kv8OdXjRkvpb7Nuv6GqHd52z2E5rOgNfmgJnEVdwwS90NSUhjKGIWM8wikQDCSM4uFEAIERmlSQj48eYzfZOaHSE+juwGHSfaiI7h4JwGcyiQllK8GjwiJaWYS82waz5hLjVOWprmRW+fG6UJdFfGCyS0jMKLzhFnC5M4QcjD1j6zqTKhF92asiC+JVM+iIGzPgE918T0XUzfxcPnZTfmflXmuBtvvhsTs9w5PuS1Xufm5Cybxgm3u+t8NL2E6Ts8H+xya3yGkBArNLhQqtB3bPJpifF0irphUk2l2OhKOIFPUUtwGCsWSKJIL061a/aAXTu6yh42jsgoKgPX4dgYMFvKcjfWnLw2OcGdxi6aJPO9pTm+aGxRVFNcG5/jwOyQFBQm3AyFpAZCSMPWWc6XhtSVrKK+5Ww6qsxs+d6QmGr6HruDTvwzIXdrUWBeLI7zuBml2eeKVXb1Dt8/2OBKeQI38PlLz7/EDnz+9M1fXKDnZ73R/gLwJ4GfVBn+IUEQPgFeAX8iDMO9H/+Bn0dAVRQk/lcr/z7/7dFfxwtdJCRq1gGTySlSUkDPPaKgjKFI0WkTMaffnMT2yEbs+8EQZd/34MiKaz7/HFv6awAmEwts6dtAg8nEEm23w1HvCbPJs+i+yuPea1YzZyCErttiJXOGntslJWWYTs5wbB0xro0TBB49r0tJKVG36/h4yKKEHkTpoxUYNGIpu5Zbo+9qDHyT14NtysoKL3sRFOpKYZ5Hnaj++1b1LJ/WNpEEie9MnGGtc0zL1nm3PEdAgO7azKdLlLQ0iiCRkVVScoRueGOs8earHmWZu4FPx40aDt1gwKteFJjHbpOjGCKVlBRs36PWaJHRNBaTWT5vbzBXKjKhFrhX3+NaZRJZkOi6FvNTRV63mqwWKliux8PaMRfLYwxcJ6qrFOUtwG5neGN5NJwBbhBwYg2YyeTZGUQ1183qHHdOTm/wOW6fRN/ht6cXud884KvWHh9PLdCyDV62m9woRxJxA9dmIVNEFCLp9JyiYfoeWTkxvLHSI617URCGGo8d22R3EB0Uf2fz2T/ZQBME4Q8AJ2EYfiUIwnd+jx/7e8B/GYahLQjCHwd+E/jej//QzyugOp8+S1kb527r+wCcyZyjZkWo+sX0dbb1R3TcGiuZm3ScLQznGWfS13BCn67bYlJbwCVD3dZIShUEQiCDImh4oYM6YgWljPg+B2E4VCLuuW12YrDslr5JEOuANJw6mpjm2D5BQGAyMcVaf42kmOJ89iIv+y8oa2XKaoWGXScrZ7ECk6wSmRdu6BvMpmZx/QT7Zpu8HAXJ6fJGzAt1z4kk20Ify7epx9LkS8CDGMB8tTgz/HypMMVa+5gfWutcq8zQsix+WNvkZmUeP4BXrSbvVmexfRdRDDmbG+PI6DKZStO2M9StAdPpHE1bxwl8CkqSIz82iwg8dmKWwa7RpmlYuGHAw8YRc5nC8Ma4kJ/gixjM/NH0HJ8f7KFKEt+dX+ReYx8/CHh/Yo6BY+OHAQvZIhPZNJIISUlmPJUho5zKGghv+WCPShxYgTes5XTP5nknqoF11x2iP2ZTBbb7bTb7TWZSeeQgot+cLVTJyBr3T464OTZDCLRtg/eqM+zpHWbSeZKywqtOg1+ZWflp2/Unrp/lRvsI+DVBEH4VSAA5QRD+izAM/9WRf3hz5Of/MvBnv9ZTxcvwDAYjUtOjw3k/dIdQKCew6cdajtBnO5bhLigLPOlFt0dVK+P4dbaMF4xrU0iCwJ32Okvps+RkmW1ji/nURbzQoedKzCbP03T2yMrzTCb6HFkHTCdn6TgN+l4PTUjg+DYIEdTqdH5mBgZNp0GAT90+ISWlaDh1Gk6d1cwKr+ORwZnMBV4Nornax9V3edDZpOu/4pPqJZpum553zJXCHCIyfddhJlkgo2ikVcgoKkEQtbUFoiZgSh69sQRivjK667A9iIbuO4MWB/3o9ho0D/GE6NAQBZjIanzeeE1W1ni3OsXD9g6z2SJTWoln3WOuliKEvyQIaKLCo/oxl8oTWHbIg/oRs5ncEAolCeCODNq7zhuzwr5nD0cGi2GJp63YS2B6mrtxzXlzbJb7rR32rCYfTS2w2Wtwt7nFtyYXsHyP1/06N6pTAHh4LGaL6K5LXlPJqwm6jkU5kUbsR6YWoxLhIVA/FUoadNBjY8UvT/bRRClyK+q2mExn+Ly2g4jA//17f5jvzCz9DDv2914/i9zcvwv8uwDxjfYbo0EW//6oocWvETVNvtZa72/yH734zzB9i2uFW3Rdg89bda4VbiEKIa8Nk4pyBnDpeTk0cQw36OKGY0gc4+OgillO212KoGDE8nGG79L3ohN6W98nITmEhLwavMQPx+jHhM2yOs3L/jYiAhdyl3jafU1GTnIpd5XX+gZFrUheyUUG9YJE21YYT0aGeA2nTlUdIylFyH5ZkBBHUttRJxw7cHGCaNMLksFBP+p2TSRsvqhFqeRyZpyNwSGbOizlxqjbPe51nnO1NE1a83g9eMZ3ppYwHZVu0ODD8SmODYOZnIQslXnZbrOUK+O4AnVLZyad59Bq4wQ+ItCyo83X92y2B1HttKe3CQORrmvyuHPAhfwEj+ORwTvVOe7VowPte/PL/LC2heyLfG9ukfVenX6gc3NqCgQwPYfpbJbxbJqEKpKUZVLy2/QbbYQwOuoxavnucMjcsvUh+iMlK0PsYl5JYGHzWbNDSU0zkSnyRXOD1UKVopLmcfOQ96oz2L6PT8DEeJ61Vp1LpXHalsWLdp0zhQpt26Ru6qiihB53agNCFvPFn2/z/i7rF56jCYLw7wP3wjD8u8C/JQjCrxHZa7aAX/+6D3ZgHmH4Mb/Jsdgyog23azh0YypM383FDp8dklISx6/Q815T1WYpqTkedrZZSs2hSUlq9gkL6YuYXousnGVMG2Pb2GQ1s4Tld6nZB+SVEl33TfpmxAaBASFtJ0rXBp5Jzxtg+AaGb5BXsuwY2wCcz55hPZ6lncte4EX/OXXnkEu5y9SsHfbMdS5kL2AFLnXnhPnkEh5JTD9kTC3hE5CUVFKShuk7ZKTU8MYalQsPCel70bO13Q6HbpTKvRxsYflRMNfsFjk5xePuISIC50tz3GtvkFE1PinO88VJROOfzeao2W2Kaoq+Z1NS04gC3G/ucS4/gSrI7Ohtcsrbhnyj87OB5xCEIU7oY/rOECO4kC1zJ04fr1emeNCIvsNrlSnWOsf89slr3pucoReYfF7f4lZ1DkEM2dPbvFOawfBdZEFiMVumZvQYS2U5Ngd0HJOxZIZjs4cfhqQVlUGsIGb4Ns1B9Hm9VydBF8N3udfcZTqVHwbnmewEX9R2I4nwyXl+dLhLTtH4zvQST1pHZFWNFa0CCPy5B5/yH9z871NMvKFD/bzr5wq0MAx/APwg/vynRn5/eOv9stbF/DnOZpc5tuqk5BwFJU/H7VJQi+jeMR4uSSmNEcOvBER6Xqy8ZDdpOW1CQraNHXJKgY7bpeW0WUxVea1HJM3z2QW2jeeISFzIXuNF/wkJMcGV3AWO7ToCIuXEHLKgEgQBGSnFZLJKQlIRkUhJKeQR+s3b5oVvin03tOl5HSAatG/GgquKkGWtH53QFbVIx+3RdJ5SVku4YYYH3ee8W53B9wo87exxvRjRO2zf5Vpxnl39hMulIk0nEmQ9k53mwOjTdPqkJA07eGPccFrXDTybQ6uDT8Cu3qGcVtkz2uwZba4X54Yjg1uVRe40ombMdyZWuVPf5WW3xrfGljgxdA6NHtdK0yiChOF5TKVyZBWNlCpEAOcwIKvK8e0kvD3wJhyyDAa+xet+dIPu6m1OnBhh7+ix6WTUZS0qSX5U26CkprhRmeGrxj6ruQrVRJpNvc6N8iw9xyKraIiCxMPWAVeKk+iOx/NOjfFkZshFE4hquOhJQpox/Sayx7Jo2gZN22AsmeHLkz3uNw5YyBb5jeuf/HybeGR9Y5EhVa3Mn7rwb/NHbv8GR+YrUlKCqeQi91qbjCemmEuWeNbdZSVzjqzi03UCzmTSHFuHjGtTBILPxuA1M8kZAqDjdtFEjVHErh2c3lg+uj8gwMcKdNzQ5sSOAuBMpsjjbtSZvJBb5tXgNEjPsqFv8bD7gku5S9h+i/XBOmcyFwgJaDlN5lOLhKGHIkBJraC7fTJyBk3UsAObjJxFINKuUEVlGJxO6FKzYq9n44CG3iYAHrS3Kapp2jFp9EY1zdpgDSEUuFVe4Xl/naSS5JPCKpv6KzJyhoQ4zcD1CHwFRVCYThURQom9QYfZdJGM/AajONJveKsZY/oOph+LwfreMH2bSua5E4OZz+WrbNuH7NiwUhrjxBzwo8ZLbkxOQSjyuP+aDyYXCQKBjt/jvfEpjvRIR9EXymz3WyxkirgDh7ZjMpHMc2B08MIAQRCox6ltyzGwu7GXQK+Bg0vdHlC3B5zLjXO/dUpgneFBZwdC+O7UWT472SQhKXwyscR2NzLLuFwZJ61GHdBiIsFMNkdGUxAFSCsqCeVNdvPPtK6jG3hYftRRMnyLPSP6gmtWkyAMsAKbp70jljPjHJhR7bCUXuRR71Su7TIPOy+RBIF3CldY621zYHmcz12i5zrUbYuyOo8qFjB8gYSYIatkkYUkIiKiIL6F+BCFt2+s07rK8E1qVtR0aTtt6s6plLmFE7ap2aAKGrIk8aL/kLxSIiHN8Vp/yaX8HJJQ4Mg64Ep+kZ5rklcUZpMKjzpHXMjNsSeGvOqfMJksEMRtcRGw4vQxFMJhzWn6Jk7YwQpMLMdkIVlirRs9z8XsyrAt/sHEIl/Ut9iz4OPxJbbNI14OdvlwbAHT8zgwmlwuTiELEl7oM5XK4wcBaUUhJSuYnkNeTQxT26SsDPU+gjCgE7MMTuweDacPAjwbbGMPS9MmOTnBl80WEiJn8mPcru9QVJN8WF3kzsku85kSlWSahjWgoKY4MXpMpvOAwN36LucL46hyJJ+ekt5G15unokkC9L1YItyL8J3bcWf0VHwH4N3KDPca+9CHW5NzPO8e8Vljg1+ZX+F/fuYWH00u/Kzb9ndd3+hA0ySV/935P87f2PsHqKKChMir/g5LmVlEQaButympebQfa82fLjMOUj8M0X2PQVzzGb7Ihh6lSBllmUfdDQCW04s86uwBrziXWaFmN7nXfsGF7CoBPq/625zNnCEkwPItFlPz9L0+eTmJq5ZpO01Kaome18YOLLJKjpbTISREFuQRKFaLmh09y765S0I06Lo9um6PueT48NmuFVZ5OVgDUeBXp6/wcvAETUxwqXSOhruPJIicScwjCxJ+GJBXMkwkKiQlFVmQSEtJkiMbUBxVaR4VngldGnFqaYXmsOGRU5M8jdO6yWSept3ns3qXmUwBwhRfNNe5XJ4iLWus9fZ4tzyP7Xl4QcA7pVle9+ssZ6tkbY2tQYMzuXH2B33ajkFSUtBHBu3HZvT3tx2TvUEXNwh43WuSkGU2+02gyfXyDHdjlP+H4wt80dhCIObpNffY0zt8WF2k5xkMPIuz+XGycgI/gJKWIqskSEoKsiggILwlES69pQfqM4hHBl7of+0gg294oAHcLF/mh42v+LQeaXxcyq3yNEZ/vFs8z/Pec3aMNtcKFzm2Tmg6dS5mlwkFgYGrM6FVSctphLimEhGQSSKEIqEQoI3UWOLIHMsKvUhiAGg6HepOdJtu60fYMa5SQCArBrwaHKOKKtPJKV4OnpFXiiymllkfvGQ6tUBa0hi4PSaUWVpOnaIygR2KrA9esZCax/JF2m6XlPR2sW3FqS1CiCd0CYUAKzSQRJ167It9MVfgSXxQXMwuszZ4Pfz8St9lbfCU702eY6vnsdbf4IOxJTxf4NjscakwSUBAUvaZShboOAYVLTmk8Re0FEI/vrEkZcgyMH2XuhnVUq8GhwhC1CW819whJ6eGt9lipswXMf3mvfICd1vbFJQkH48v86R9yGQyT05J4vgBiiix3WuxnC8jCQJ7epvpVIGUFGUUkiC8NT+zgzfuN4bnDPGcbuDzohfd4NdKs8Oa83xuisetGjuDFleq0+x3B/z20SY3qzP4ITxpHnGzOocf+liex4X8OE2nTzkjcmi2mUp+vc7jNz7QbN/B9t+wcEfhNU7gEOBDGGkpHltRMAT4rMU6ivPJGV72o1NwNjnBodnmi+YLljOL2L7PP6rt8G7pHKoosNZtciZ7FtM38IMkc6l5TqxjqlqVEJ+G02I8WaFmOdiBTUpKEsTjAydwqMdQrK7bRkTEx2PX2GM+NcmJc8iJc8hU4ixP+1EwXM6fY894AKHAh+X3ODCeIAgDruXPE4YN4ISEOE5CTiHhkpUzFJQ0aVmKxgU/Zl4o/RiN341TWzsw2dJHpOxa0TMbfhpRq1EfQFLUyGoC97vPmMkXSDHFw84WFwuTZJQUu/oxNytztB2DckJlKVPkfvOIG5UpmrbFRr/OZDKH40XBIBIJvUIEZj6Jb8yOa9K2DTqOSccxuVaY43ErCoz3x+aGGMWPxpb54eE2u90u355eYb1bZ63V4P3qAj4eLafHmVyVtKwiSSFlLUIIpWQVCRGfYBikAIowiobx3vDSjD67MQXpRadGz30jET5WdPnBSZN7rXX+/nd/g5zyT6nr+E97veht8R8+/8/pezpX8+fQPYs984QzmUVkQUL3XMbUschKCZWkmMQOHBJienhjJUY8yQRBHHbi+q7JbtyGfto5wYpz+tvNXTKyjBXExuOpAvc7r9BEhUuFFV72X1JSi5xJLLNj7FHRFkmKIYoIkiCxZ+wxm5pFQKDtNqmoVRJidGuKiEPcHYA/NC8MEejjhCaEkJF77BpR02U2WWRtEKFhzmTPsNbfpenucjm/QsM5Ycu4x7uli/ihx575guuFZdwQTE/nTGaWtqOTlNJMp3yOjB5zmTR7PZ2B51FJpGmHUV9QESV6MYG1YXcZxIpZLwdHVLQULVen2R2wlCnzuBO7elbneNrdQETke5OrfNV+RVpN8N+rzNHyD5EFjyl7jLQig+DTdhIsZktkYmhYXtPe8ml7S3A18IiEmgUM1+MwTi3twOVpLzo4z+bGedJ9wyzf6Xf57dprzuTGCMKAHx5vcb00hyqJrHdPuFmZY+A6aJLE5fIYm902i4UCXhhwaPRZyOVZ77QwfY+cmsCOTU8Gnk1C/GeYYb2lH9CJ07eBb7I+iF5wXsmwa0R1xJhWpO222DebVNQiQZjhi+ZL5lNT5NUEL/rbnM8tQSjQdftczi9zbLUYT5RIShnW+0esZmeoWW1O7DYlJYvDG/e/nhudfHbg0ooBwy2nTUbK0PP69Lw+l3Jz7BoRyn85fW4oznM5d4VX/Uf0vZDz2WscW3t03X0uZM8iCg6m36WqzcQpo0BayiIioIlRizoIfRRxJLUd+bpCwUGPYVG6X+fAjFLJI3uPlv0GzGwFCQ6sl2iiwuVymZf6U85VC2TFOV7011nJTJKSNdr2gIX0OMdWmzG1gpEUedje5VxukgCflqOTlrS3HV68065tQN8fxP9rgKRzHBNYL+ez3G9Hh8a7Y4tDZvl3Z87yuL3HM32N706d49gwedo+5GZljiAQqBsmZwtVIOqIVhJpdNchryRRRSnWQhnxEhDFNyMD1+YoTm1fdk8wY3D3V61tNFHFijuoc7kiXzQ2SEkq356d5Kv2FrOlAlPqFDv2AZOpaHzxL83fQv0awjzwDQ+0i7llZlMTtOwuGSlDWkqi+yZ5OYtILQbLqoRu9OV7oT/USzwwTziwojx+rbdJRkoy8E0OrROq6hhPhi37JZ50N9FEhVulszzurpNXMpzLLtCwOyQkhTC0KaoZFDGg63aZTk6SklJgRlwy9S1/41EpOwdixxcntGm70eYTBZOd+MaaSS6wY0SbbyIxzcDdY33QYFybxw89NvX7nMuexw00Ds0dLuZWGXgOoiCykFqgZteY1Mo4gUDdbjKZqGK4dazAJqOk0ON3YAcux2aUWjecDoYo4eGzPjhkPjXGrlln16yzlFrk83rUIr9VXuJOcxNREPhW9QwP2zu0bJP3yst0HQPLd1nJjJNTkwhAVk5S1tJkZRkREUkQ32pUjTpn+nhYp13b0ORlDGZuOyZrjejQmErlOLK7vOpDRUujSTL/6GCTxWyZal7lXnOHq8UZFEFmT+/wXmWemtFjPJmjrKVZ6x5xsTjBkdnhwOgynsgOVbogIs4CGL7DoRX9nYdmh6yq0Hb7tLt9/vw7/xO+N3Hh59m2v+v6RgfaXHqS//Tab/BHbv973G2/oKhkmUuOc6e1zVJ6mqKa5UXvkDO5MwRYuL5CKTvFjr7LcmYOJzTY1PeYToxjBw4D30QRZNwRibbTdMkOXLpeHzf0aDgdxhJF9s3oy79WWOJprER8vbDKTmy3+07hAgfmKzb1F5zLXqbv9dkz91lKn0USBEx/wJg2hSxAWoSMlInmZ1ISSZDwQ5/ESANEQhq6jNqBSceN/v66tUPTjU7rA/MxupfDjcHNi6kMB9ZXaKLGu8VVDszHLGUqpOUzNOxXzKXGMbwUGcVBFFSedFospCejW8PuM5UokZaj9FoSBPxRxrT/xkVT9+whHccLgqHMwrXiG5bB1eIsDe8pL3V4p7TCiX3Ca+Mh75fPE+Cyb25wszRP35Hpux4rmQn6nklGSlBNZGhYkULVhtjBCQLyaoKjmGYjiSKNGKN4oHc5imupR+19kkKSvmdzYPSYSRWGDZDLxSm+bOySEGW+NbbCFydbVBMZrmSmOTZ7pCQVK3CpJpLIUkjTHrCcHSOrRLVdRtbeMh35OusbHWgQdZfMWO237fZpxJSKTb1G3jHpeyZftXaZTY2xZ0SzrAu5Ge53Iim5dwqX+ayxQVJSuFW+wuP2EWEgcz67guWD4YWMqT4VrYwqCKiiQlHNkhBPZQ3Et152ONKMCUIHK66zrMBi34y+YDMwqMXCQCW1iuHt03Mhr1RwA5Et/S6T2jSamOVQf8xK+iwSIrp/wmL6Al2nyXgiS1bOcGDuMJOcJxR6tJwGJbmE7fu4kRUapn+q0mxjxHa/ut8gIWYx/R6m32M8cY4NPXofl/IXeNCJDo2PK1f4orlO3WnxQfksW/oRXf+ED6uzILgMvB5LmRI5JYUmQS5O2zKKjCSI+GHw1vhAfsvq2aUXz/asoM1OrNLccI540op+UBUldEtiM9wiI2us5Ivcab5mvlRkTK5wv3nAtdI0IpEZxkKmyOtundVCFU+0eNo54Gxugp7j0vci+2F3ZNDejvVGrMCjbg3wwoAjM7rxtmIrqlvVWR52o3dzs7zIl7HM37fGVnnS2eFPPvjr/MmLf5D/8ex7P3Wv/qT1jQ60282n/ObW3+dibomm3aWiFfBDkcedLc5mZ/HDCIOYV9LIIzOi04YHQDtGjpu+S8v2acaYuMlkmQft+CQuLHI//vxOcYFXg9ccmW2uF1boeMe8GrzgWmEVL/TYNWvMp86iiD524DOuTWH6OgkxSVrKoPsDcnKOOhIBfozBPH2aECMOjJ5zgscBCLBnvCAtqTihScetMZ9I07EjlP+lzHlazmdMSAnm8x+xoT9mIVUgI69gBweoYgIrEElKaQgFBl6PqjY3NE1MimlkcdSXe2TOGERg6jAMsQObut0BQJIcnnS2ATibnWEt7pIuZ6c4tg540q9xtTSPGVis6U94r7QKgsChdcBK9ixBaMSp7TQ1K5ot9j2bltOlqpXRxC524JNTUnRjj2vTd9jSYzCz0aYRBFi+x8PmIfOZ4pCXdqk0NuxMfji+wue1bTRJ4tvjq9xv7hMi8F55HtN38MOQmVSByWQOWRRRBYmJVI5UjIaREJBH09lR+o3voccH/JP27j/bgfa39n6LbSNKUc5m53nai+ZF14tnud9+DaHA+6Xz3G+vc+g7vFc6S9NuY3oW57JzqKKC6ftUtBxFNUNCVGJxHhl1xLxwlAeG8EbMzgocmrFJYdftsWdGz3JgSXhhdHskRBVZsFjrPyEtZZhNTrI+eMKYNkVJzVMz15hLnSUIQ/zQpaiOUzN2mUwtYAcmB+YG44l5gnCA45oogjbkvAG4YQeAAAvdaxOEPn2vSUGtcGRFzzOTusT6IGrALKQu8bIffV7NXuF5b4tm/zUXcxfpul0azg5X8gv4oUzPHTCXqiIJ0bggK6dwgkgS+5QUebopASQRPKJTww4NjuJxyqF9MEzBH7YNsopNKIQICOTkIg86L0iJCS7klnne2+BiqUJCmGOtU+Pd6jiGIyALEpok86xzxLncJJYj8KBpMp3OD3GSAm+DmbsjEgc91xr+mk8XedKJ3s3NytxwyH2zMs/dxg67epsPq4ts9Bvcqe9za2wFH4edQYPLhZnYQdRjKlnE9l1ARPfsYYr9i6xvdKBVtSKwhYTEiCdf/I8HhBAzsHFCLxZdcdmNoVjVRIHH8SB3JT3Hk25sb5uZZaPf4ocn61wtLGIFLnca27xTWkKSApp2kwu5BXTPREFlQpug6TQoqkXaTo+Br1NS8zSdOn7oowkaDlHtYPr60Hv6xD4kCBq4oc2u8ZKyOkkzhmZNJZbY1CP9yfnUVdYGa6iiyuXcuxybz9EDlQntBnrgYYY+aUkgpVZxQ4W6rZBXSqSlU/NCCXnUM27UvND3sYNTYwubfXM//i86z3pRkIypVV71+2zpx0wmSiA4PO094kJ+Ek3S2Biscau8hIBE369zo7hAzewym0qSlSdZHxxzPldlW29Rs/tMJYtYYT2WKg/pxl1jI7A4jGveE7tBggxt16DtGqykZ3ncitL+a4V5bscSA9+ZWuHT4w0UUeTbk8u87jXoODbvlGYhFDA9j4lElvFkFk1QSEgKSUl5qxU/eoiG4ZtWleW/wZN2bJsNIxoTpBSNw/gAqWpZmrbF/3P3Pncb2/z97/2Jn7Bbf/L6Rgfav3Puf8qkNsXf2P6K+40+75Yv4IYO+wOdlcw0CUnFDwPKam7Y4VJFGdf30cQ3TYYfZ0+fQn/ajs6uEeXq6706gRTdXnU7Qv6HnCAJIvPpIvfbL8jKaa7kl3ndf8FUcpyKlqdmHzGhncUJDFQhTUKCPeMVM8llFAyO7D45uYQ0okTshW86X6dUICdwcPwBdtDHDqCoTnJovhkZ7BkPATiXvcqu8Ywjc4uLuevUrCNq1n0uZ68S4NB2XnA+s4iPRIDOZGICy7fJKAoZOY3uGaTlHJLQjGusFENRRUD3T8G7HfT42V4NNtBEAR+fE7tJVc3ycnCIgMCN4hQ75lOScoLvFVZ52X/OhFqkpI7TcpskxAw91yMt5RAFGHgGs8kZDCcHtMnKCaSRg8IdFVz1bMIY6W/5DgfxYHkhUxwqdr1TmeZhzCy/VprmefeYHxxtcrM6jx4OuNva5FZ1AUEIODJbXCtNYfgekigyly7SsHSqiRQ1R2Pg2ZTVNIdmA4Soo+3FEhSnjaBfdH2jA00QBBQhNUQV9JyQ573oZsook7zqbwMwm6yybzY4sTvMpcbp2gLfP97iYn4FTZJ40DjiUmElkn7zAi4XZjkw2ownCwiCyI5eZyFTpe7Y9H2dkpqj4w7wwsir+lSVqu/pnFhHIIQcWjUUKaDjtum4bRZSi7yO9UfOZs6x1o9qrPeLN9gxHmAFfVaz1zm2Tuh5DrPJcwiChOm7FJQyOaUIgoIiaMiCijICDZOFUU3FkNNz2QusoWKXE7Q5saP3oYpHHMQ3a0LMYIUu2/ohOTlHQhjnSfc5i6kpMnKBHeM1t8orDDwZP7SYVVbZNw5Yysww8Aw29X2W0jPofp+m0yYhasOOZ0g40vCw6DpN/NCn4TTIKlmOrRPghEntEndbUV11NX+BHxztAz2+VT3DV80d1t0DPh5fouP1aNkN3q1OIqJgei5TqRwpSUMTo9sqJHwL8TEqTAtvUsuea7MVjzOOzDZHsfxC1zFpx8hmTZQpJOB26yVVLctydowH7V3O5iYpqgk2+k1ulBbQPZt/beXjn3Xb/q7rl6XrqAF/FbgBNIF/OQzD7a/1ZMCD1jYP2ztUtCwD1yYhZFAFGSf0SI+0xVVRGXJyLc/lMG4Dbw3qQz2Jr1rbqIKEE4v2jGt57jY3kAWJy4VZHrZ3KCgp3inP8ry3yWSiRFnL4IYDEpJK024zkaggiwF9t8dkajpGjB+hCiqjwkCj4wMntAjwCUIfN3BpOFH6VNLG2YoH23PJVbaMuOGQWkX3XrGh32M2dR4hbHNo3mc6eZUoFTtiOnkBJ7CQBImKOk3Pa5GSyyS9FqbfIy2XEdEJ8ElICbrxYNkNLI5j+s+xfYjqNHBDhwPrOSIznMQGHCuZcR53XyEgcCW/yvP+SzRB5Z3CRV72t1CEBOez09iBjYAQPYdWRESiZp9QVkto8aBdEqS3eHq2Pwr69jDjxpWLw3o/SvvHc0VuH8a1eW6MF50G690mZ/NVasaA7x9ucLU8hQB81djnvco8iAFN2+B6eYYTs08lmSAQS+zpLWYzBQa+Sd+1GEtm6dodAkJkUaQbi9HW7T7duFH2snfMmJajbvep233+i4/+OJeLMz/Hzv2d65el6/ivA+0wDFcEQfhXgP8Y+Je/zoMdmW3+jTv/OQAFOYVjpfit/haz6TGmkho/ODzkaukslWTIs06H84VV+p6O4Oc5n/XZGBywmp6n6XTZM0+YTZXpuSaOayAJ4jB99EKf+mmu7ho07D5W4LBn1qkkVHb005HBCk97UTBcL1zmSS9iUr9fus7GYIMt/Yjz2UtYwYCO22IhtYgiqvRcl7RUISGpSPFtFYQ+6khqO2peKAjhMLW0/T6Gtw1A1z1g4EVdOcPrYIendBkJPxzjee8JKSnLROISm/pLxrVZMnKZur3NamYZ3XNISRpTCY3H3X3OZqPO3Ia+T0kpYfhy/OeBE8/PQkIGsUiRHToMPAPdj36NJwps6lGT4WJuZdiAOZ89x/P+K47sOpfzF3jZbbLe3+C90hmcwObEOuBKYQpZFBEFl6lkPnIzlRWSUoTayMrJ35UwGoQh7Zj1cGxEntMAj5pHOMKbdLyYFLjbaiILImfzVe42NylraS7lF/mqtcP5QoW0nKbtDKgkI5fVSa1EKIQ8aG9zLjeJ74ec2D3Skooqfv3E75el6/g/Av50/PlvA39REAQhHMXr/JzrVOYZIlR9N5YVODJ6HMZoh0etIwqaysCz+OGxwVSixF4seXCpMMNnJ5EM9gfVc3x2sklBS/J+5QyveyckZZU5pRIXyyGm77CQrpJRQDRFSmoWNZ6lRaSKN8sd0fswfRfdfzOv2Y0lwvNKgfVYiGc6MU3LXefQOmFMm6XvGTzvPWQuuUKAwovBFsvpS4ShR8s1qWhXsL1jRGGcjOKjuzvklFm80MHye6TlKo7TIBSi2/mUi2b4fY6t6Pcazh5+6KD7HXSzQ1ldYceInudy4TLrsTDQ9eIN7jbXkQWbjyortJ19QgwuaXNoUtQpLSs5KokiGUlCEWTSsvaWGNBoizyIq1uImlYN51Q9a8DrQVRLTWhJnnWiIBlL5GlbA243O0wkCrhent8+3uRKdZK0qPG8d8j7E9OYTojrBdyozLDebbCcL5ORVTb6Tc4UKuyZbbqOSUZWh7NNLww4NDtAhALRxBZu6PNar7GSmWBLb7Clw+X8DLfr0bN9OLbK5ydbSILAx+PnudfY5dd/9Ff58+/+IT4aX/7pG/f3WL8sXcdpYA8gDENPEIQuUAYaoz/08+g6LmfH+U/f+Vf5f7z+gppuc7OSZnvQZClbwsPnQWuPC4UJ3MBh4FlkZG1E0gX67hvkeMM2CICWbdJ3HWp2D2x4tzTPw86b+dn99jYA71fO8Li7yYG5x8fVS5zYJzzr7XEpfwbwadktFlMzSKKEHwqU1BJO4JCQEiiCghu6EUQrXoqoEHfF8UNvKGvQdOu04nTl9eDV0KHmyIJxVePQjmQWltIXWOu/jDUkL7KpP6eoLFBQMjRdnTklR9/tkFcrCGHIjvGcyeQikiDTdmtoQvIt9eFRNoThmQQEOKENmDSc6Cs7my3zsh8Nts9kltkzn9ICruXPsmPusD6oc6N4np7bY898xpX82Yjw6dZYySzg+D6yIDCVKNJydApKhqSkYfo2WTmHwICQkMQoszzw2B3qfdSG0uEPOltoXo5OjOFcyhf5vLaNIop8MDHLl80dSlqKTyaWeNI+YioxTl6T8QjRRIld44TlbBVBEDkyu0ynCiSlN2K0wci+0b0RiXD3DRrmq+buP9lA+xl1HX+m9fPqOn4yfp6/8PQz1nsNoMGV0gR3W9sAvF9d5HbMdfp4/Az32zuYvs0H1SVasR7hmdwYeSVJQEhW1phI5kiKGpIQoT0UYRSHN0r8C4dfcsf1OLSihkPfNTmIER8TYpXjmPFdknP42DzqPKWilqkqEmv9Z8ynFkhLCi3nNUvpC5i+CSgspAocmbtMJebQxC5H1hHjiVm6bgvD7yMjY8UdvwCfXuzRZvgDWk4DP3RpOPsIwirH1hFwxHzqHNux/e9y5gpbeuQrsJJ5l9eDl5jWAcvpq7Rck77XZy65gCYlcAKXspolIaZRBHX4TjRxZM442nAQg2EzxAp0Tuwog+i6TU7sSDouJZnUY0yhJqpIYpp77TVKap6SvMDtxj5nspNk5SRb+gnvFOdpOyZZJcGEJnG/ccT10iwtW2dj0GAymSe+ABGFN+43bhAMW/Qt26Bp60P6zY3KNE87UWp7qzLHV63oQP2gssxnJ5vs0uXjsRVe9Wrs6A1uledxw4C2Y7CUKZNTk0iCSC4mi96sLvy07foT1y9F15HI3GIW2BcEQQbyRE2Rr70KalTLiCMy3ADGsMYK6Hv2G7Zu6PMyFs68UZ4bagVeL83yoLXHer/Oe+V5NgZ1Pq1t8X5lFVcweNbd4Z3iAgAdW2c1M40V2CQlmbJapOP0yMl5GqKKHThk5TTHRIGmSBJWfBJGNUyULu0Y25QVFx+XTf05SalCz4saDpOJWdYHTxGRWElf4VH3FRk5zYXsVQ7MTdJShbySACFARCAMIa/NoQgiLeeIvFId1nki4lsUE39k4G35NnacStmhz14MEyuoxeGQeya1yKPOMQfWMcvpWXpencfdJ6yml1Ekhz1zjTOZs4REwrLL6UU6bp+snKKqVWnaTUpqhZ7bi0Ri5TwNpzFklutxM6bldOla0ZO+6h9RUjO0nAEtZ8BsqsrjODCulBa424zS/o8qq3x6tEVOSfLtyjzbegtVlJlIZ0nJMoIQ0nYMFrMl0rKKEO+Z0W7k6I3lBD5hXAiYI7M0F3+oN3KxMMnD+PO10gy/+fGv/47u5s+7fim6jsDfBf5nwBfAvwj8469Tn42uv/TRH+E/efJ9/t7GS3aaFjeqCziuSKfnMJesUNSShI5KRkqiShIJUY0n+9Ec5HSNairaQUA39ptu2DpHsUT3kdWiZkWzmoQkIwgmx1aNpKSSlYt81lhnIlHiTCbH4842q9kF0rLKkdFhKX2egdckKxdRJYcdfZ359Aph0KXrbZORCwQj3TfLe3NjddwoMAeejukPGHg9Bl6PnHqG3di8cCn9RnD1fPYdDoyv6Lg1zmVvULf3qFvrLKcvE+CguzWmtAUUSUXAIycXgYCMpESg6tAb6k1CZAV1uvzQp++dNodaGHbUCdwzt4diRgAyCuuDYxRBoapN8aS3Rl7OsZxe5Xn/NbPJaVJyiq7bY6qcZ3vQYyJRppdUuN/a41xuCj8IaDkDMnLi7bTfeZP2N20TP4xQ/abvsK93gEgifIj4qL45UD8YW+B+a487jR2+Nb7CsdnnaavO9dIikhTQcXSWs2VUUSKlhBTVBKbnkVMSyIIYN2be3OYZWfvaQRa9r19w/Ziu418B/pogCK+JdB3/la/9ZPGSRZGMmGYvtnS1LIl79SgwLpcnuL0XC8+Uq2wbNf7xYJNLxSkGns1vH27xXmUBRQ543T/hZmUey3MRhZDzuQkOzS6TqQyBmKdmdZlMFiP6R+BSUNJ04yaHFwScxDjAY6uLE+oEhLzsHzCZKFGzW9TsFqvZCZ7EwkAXcpf5qr2BJIh8WPqQZ/1nJCQ4l7lGw2kSAlOJRSQhjeFJpKXodlBFDRERTUwgj7icjrZjIoT/KTXIpBerNPvoHJlRXVXVEhyaETImr0zQdrts6XdZTE1j+grb+n1W0qt4YZptY48rhSVM10WRfFbkRQ7NY8YS4+h+SN2uMZGY4sQ6xgwMklIKM343buhSj+u6rtcjsE5iTOg+M8lpjqxj4JiZxCrP4q7tR9WLfNV+jYDIx2PnedTexPB7vF9ZpOfp2L7NObFCRk4ThpBTNapahrSsxcaOMtpIJ3CUfuOFwVCmru/arMcImK7jsmVGDY/5dJEd84gdEyaTRVom/Kj+iqVclaSkcr+9xY3yLEIos9lv81dff8kfW37vrTr3512/LF1HC/jDv/BT/IT1pHnMi06dfHzyZIXE0Lgh/RbXiSFye+A6bMcg1M1+k0EY3RgP2ztD4KgATGVU7ndekhQVLuXneNjeZiJRYC5d5Xl3j4X0HClZwA08kpLGjn7McnYMQQh41ttkKjER862aKEJk1n66DP80lQ1ou1Ys+GJgBT41OzocltLneRQjx89kVnk1WGfbiBD2NfM1a/1nnM1ewQ667OivWE5fQBJ8HL/BeGKRIPSRkMnKZSx/QErKIgsqXuiQkt74CsiCMqTfOIFJ0z1VE9vmxIne4evBGkkxiRm3z6vqBM96L1AEiQv5c7wevCAn51lIX2HX2GAqMYsqaoQESILKjl5jOjmNH4o0nRZldQyZU2a5hDsCDbNiWFhIgOmbGIENQXS7vx7EULnUKl/EphbXirN8WTtio9/kvcocm4MGPzrZ5P3qPHbo8rR9yHvlWUIEdM/hTG6MgWuTkTXKWoq2bTKWTLFvi7hBQFZJcBRfziLCSHYzoBd/ftTew/cVvDDgzzz6f/P7ps8zlvzF3T+/0ciQrV6LP/jf/CYAM6k8ykDlB+s7rJbHyKgKdzeOeXdqHlENOe7ovDu2wInbpaJmSeU1XvVqrOaqHNkCx1aX6VSRhjXA8B1EQYgGlAKYgcuhGZWUx1YHVZQZeBZr3WOuFMdYH0Q36PXiHM9jJPul7EU+b0Q31geVK6z19tkaOFzMX8D0PVqWxZQ2RVZJEYQCCTFNSkojkIrVqIS3xFdHFar8wB+maYZncBKb0ve8NrYXBWZaKqD7HerskhDTqILCxuArCsoYVTXLsfWQ5fQZIEXf3Wclc46O26MopykqFdb1PRbSS4iiw7FVo6gUsf1TvQxh6Crqhj6dGFjd87pk3Q66r6P7OovpFbZj+s1S6gLPYjTM2cw7fN7YRMDgZukdnncbvLIGnMudxQ4i+sp8epxM7OiSk1Mookzy1P0mjBTQTpc00qhyAo9WTH9pOQbr/QgAsG90h+43KVHBDj0OzS45JcGZYoKHvecsZCqUtRxrvW2uFiO8pOGb3KzMsdFvspKt0nPtiDBamORINzky+2RkjaL29TzSvtGB1nXe1ARBGNI0oxd82OsNlWa/OjhETYjYvs9ur8v0lMqdXpQiXC6NcbuxQ1KSuVVd5bPaFmOJLFfKs2z2OuSVBIpikxDTEefJ3WExM4kiykCDgpJB5M0XPmoQb/inbeAAw/PouKfAYpFnsabFlcLcMF1azcyzMdjl9WCDy7kL9P0md9svOJ89gxsIvBwcspI+jyA4eKHBTHKBvtclJWfIh2V6bouCXKblH+CGNkkpi+53gEgLxfRP66oTgmAfCDmxXqKJRYygw8BvUFSnObFjlazMRfat++REmenChzzrPietpFnULrFrtGNeXglNSqEKPgOxz5g2hSpGHtQpKY00ktr6jCI+/OE0re/51GPypuXD4250aJzNzvCkG72n5fQkW3qdL5ovOZedoW4GfN54za2xBXxf5HW3xs3qLKbvIYkB5/JjHBodZnJJul6aE1NnJp2haQ9wgoCiluLAPBVN8jmOZ3m7RoOm08YNPZ71dhjT8pzYXaDGpDbDl80tBIRIsau5TUpS+V+e/ZD/xdmP3u68/gLrGx1o1ypT/LkPf5W/8fwxth4wN1XiZbPB+UqFvuPwtH7C+UqVrm9xMOiRUt4m/p3Knpm+x7ExwA/hyOwzlsixp3eHzo9f1k8L6UXuNk6Jf+f5srHNsV7nk/HLHNktHjf7XC2t4IcybdtkLlWNVJdEkaychBCSUlRjBQRvochFQRh2v3Q/YnFDBGA+tqLPm/oBmhTVOwJRytdwnqOJGpOJBZ72XlBVJ5hKVtjS15lInCclgRuYjGnzNO09ppKTgM2RuUZFW8ILPIyggyIk3zboi8GyAR4Dr0co+Ay8HqbscGSd6n0s8SKepV3InuFJzDK/mr/G894mB+YO1wvXOTRNHndanMlewPFlGrbFXGocSRBRBJG8nMQKPDJycpj2p0ZEkyRBxIuhcYZvsxPb/e7qDY706Dt80t0eBrMQCkzlVO61X5JWND7Ij/Oku8VysUxZLvOqf8g7lUlsL0STIJuo8Kq3z7n8FE7g8KK/z3SyNMwiRMShjkhISGeo4+9wrTz9ljbJL7q+0YEG8IdXLvNXbt/nVTP68i+MVfjiIGq9fjQ3y4+OdklKMt+dW+Sr40MkXePmeAUzcAkIkUSRiVQ2Rve3mEoV3shgCxJSOOoUOUr884diLz3XYzNm5LZtifXBNgCLqTHWY7TDbLJCw+nFUnaTKGLIl60NrhVWSUiwbxxzMbeC6Q/IKTIpeS5qOGgTuIFA02kzplUw/D5uaKOJySHCISJlRiOLutNCEl3c0GbP3GQuOUErTi1X0gscmQ8BmEtdZ9d4gIjMUvomB+ZzHN9gNnUNw7dwAoeSOkdAFTtQSYgJ8kqRlBS1yCVBegt6FI40Yyw/GJJrO6435Ay2HJ8XsU3WZKLCrlUDjhjXSgQ23G6uMZ8aR5M0HnQ2uJSfR0LmyGxxtbBIy+5TUrNczCd50a2zlK0S+C1q1oCZdJFjMyKMSmI4lEXXPZudIWG0iatGNVe3u8fZ3DjPejXowc3qFA9iQMKHlTPcab1CE2RuFc/xvNPACwKuFSP1MifwqWoZplJFHrR2+Xh8Jc5yfvH1jQ+0w15/2JoXiDhWp+sUKWD6Hn3Hphf/WhjL8KQdffm3xmaHlrI3K/N8Wd9hq9/k/fIizxstPts/4qOpVYzA4Um9ydXyHAIifdtjIV2JW+EKOTnJwLPJy6khjT+tJE+tpxEFcaiM3HUMuvG87FlvH02KXXF6fcYSIifxTTumTvG4+wJVUDmXPcfj7jpVbYKz2Tz75gGTiSkkfGRRQxUFDs1NppLzqKJP121SUCoopwTW8G273VNf7gAPJ9Cxgwiz6IfhsBtZVN/hSS+usdKrbOrr1Owj3iudZ89ssNZ7xqXcOXTP50X/gDOZVYIQuo7PdHIKy7dQhRR5JUvfHZCTs8hCHS/0ychvxgeCINCPxxktpzcEOT/t7iAi44U+x3aHopphr9NAQOBMbpa7zS1SkspH1SVu13eYSOZYyOVoug1ychrddymqSQgFHrX3OF+YQAhl9ow2BTX1lgSFM8K6H/gxYTT06LsexzHTYSZV5F4MiHinOM9XrV0etfdoOzp/5vq/8NM3609Y3+hA+1uPn/Kn/j//CEkS+Pb8ArvNDubA5Z3xSZRQwnI8JpJpJtI5kigkJImU8pOIf2/fWA0rLqpNm7VYbOa4b7NvRydkRUszCLocWS2KSoqSkucHtQ1WshNUtCT36gdcLy+hSiF104ql7BpMJ6pUgwwb+h5nMzP0/ag2yMhpvFgrEBi63zihM0TO1+024wmJjtul43ZZSS+N0G/O8iIG717Jv8fT7nN2BYt3Cx+wY9Z4NjC5lLmOHYo0XJOMNENCzuOFSRQhjSwoiEIKQhGEAGmEZS7+2Kbsut1Yt77Hy1gW/NDssm9Ez5wUVezAZYt1slKSvDLOl611ZpJV8nKRh509zueWUKSQvmNztbDEnlFnPjXGwLd52T/gbGaGpqNzYndIS4kh6yEkpGFHB4PhOxxZPbwwYN/oMJZWODRbHNLiSmGexzGE7r3KEl+1owPkV6bO88XJNpu6yUfVZY7MAft9g4u5WWRBoW8FlJU8OSWFKqpoYqSBkhix2JVHarJfhkDPNzrQnhzXcIMANwDb8thpRwXuTD7P3YOYkTs1wYOYUnFtYoJnRo1/vL3Dzal5Oo7JD3cPeH9yiRDYaLS5XpzF9DwCX2Q5V+bEHFBJpijaSdqOyVgqzZHdxCckLav0Yyk7Pww5jofZr/sNtgbRrXa3cchYIknL1dnUm5zJFfmqHd0SN0qLPO9vkhBVrhYu8bCzSU6psJrNc2IZKKJMVjbIKnkIBZp2l/l0hWyc2ibEBNIowmHkxjJ9L6r5wpCeF9CMZ1ltb5xjK2JvzyaX2Ipl7SYSSzTsfZr9+0wnz2AFJofmXS5lr4Ig0HJ2OJ9dpusGhKHCTHKGptOkqBQpKhZtd0BZLXJs6vFQN4UZ15l24NKOu7b7Zp3dwMAJfB519plO5uJDpMZiaoKH3dNmzDnuNHcieFPlPA9au+SUBFfz0zRNjzCU0ESVsUSeIJDYFTvMpoqkpKheUkX5LRDCKDXJ9G3seJxhBR7rsZTdVLLInfap/fAkT9sHQJOL+SkOrQa3my+5UZ7HDV0edze5WVkgDEOe93b4tLbGJ+Pnf84d/GZ9owPt1y6c49OtbSRBIKEoJGQJz48oFadLG6VREImqAHRMh/V+1Jbe7vY4jAvsnuVgxDQUCYF8SuGHJxsU1CTvjk9wv73DUqbCRDLL8+4xF7OL+JjIooQmKax1Dzmfn8L0HZ53D5lPlxEFn5arIyPGFP5o9dxTg3gn9vtyqdsdxrUirwfRLOvd0jxPY1HRG8VFNvRnNBy4mLvIpr7J68Em57OXGHh9Dq1jltKryIKE6ZuMaXHDQZRJSim8wCUhpRAQCQlQpdEi/g2z2/J16s4hggC6v0UzTmUNr8+xnR72D/Nynqe9p6SkFOeyi7zobzKbHqMgV9jQDziXXcAOPCRkFEnhVW+XM7k5Bq7P0+4hU4kSmnSa9r/9blrDRpVL27bQYxhdSakM0/53y/PciRtVt8pLfFHfYnMA3544z661y9POLu+VlrGCSJfxfHYGVZLxQ5/JZI4wFEhJkcSB7XlvWeyqo6z7EWPHjjNg14z92swaLSe6WX/jwV/ny9/3H/yee/WnrW90oL07M81f/LU/wL/w1/46O50uq+US/b7Npy93uDYzgSSJ3N855Nb8DL4Q0utZvFeZjjqLQgbSIRtGk4V0Ectzadkm48kse2YbLwyQRHFIv+k4Jq/7Uc23OWhg+S4dx+R+c58LxTIv+tENerUwy1dxHv+t6gq3W6/QRJkPK2d53jmmbwtcyi3h+CGmHVJRPKqJAkIoo4oKBSWDRFS/CKGA+BZ7esS8MHBjEDKYvjXEKNqBw2b8uaqNUXf2qTv7VNQxLEwedJ8yl1xCJMUP6vu8W3yHpOSxZ5rMJq9geidoUoWqmqBub1NWFnCCY/pem4Jape44eKGHiEjXO9XoNzDNqBlzZJ1gywI9V6fn6synZ4cK0hdzi0PDjY8qF7nbfIXiyrxTuMizdpO6CWczS3iBTN8WGEvkGNcKyGiogkxGScUk2miNzs9Gca6m79FyTsVPbZ7H45y8kmatEzXKZpJlNvt9jq0uc5kKhhPyaW2DS4VpErLE884R7xQXCXBwQ4/LhRkOjBYTyTyBELBvtJhPl3ECl4FnM57I/7zb9631jQ40gJ5tD09Yx/M5GcRG360erRjFcH/riDCM0XJ1yJcSfFHbRxZFLlQnuP3ykEJS4+OpJe7sHTCfrzBWSFHrGBRVjY48oKxkULWAh90dzuUnkYWoJinEKO7TddoGhpGiOvDQXWdofTSTKnEvxuHdKM/xo1pUR9woLfOos8eLcJv3yhc4MDr8fw+O+fb4Rewg5Mtmk/P5C6Rkh46jMKZNYPkmipAlKaVjWbsCQrhHKAQkxSTt+FlCAgbxLK1mt2nEbjN32/ukpEgZ+NCChaTKvvUCAYHp5Ble6WtoQpKV9DVeDJ4zmxwjLU+ie8ckpRwd16Gg5vBDkUedXZbS04goHFpNcnISZaR8Gb2xdM8iIMQOXPqOP2w4TCfKfB77cr9TmuVOLQqSd8uLPO4csNvb5FZ5kSNjwO3jfd6rLuH5sNXpcSk3Qyj6BIHAuFZG93RSYoaUpGH4NgUlktxDCN82dgw8DozoZtoeNNHj7+3Lxg5ZLcSNU/KqluVOcxNFkLiSn+FxZ5uKmuWPzH/IH1381s+zbX/H+kYH2l/67Ev+yhdfcWt6moHrIAci1Zk0L2p1zo1VODF0XjdbrFbK1HWdlmGiyiJGTNHwgoCTXhSYHdPmsNvHDXw2221SsspWp81WB96ZmeTOUfTlf2tuic+PohvjV2bPcLu+zZrd5f3xsxzoAw56Nhdys6TVyDBjTMuRV9KoooImysiiNOQ6wduaFkEoDCFguusOSYk7A4dDO4Ierfck9CA2RJdUFDFg13hFXsmQlye43dpgLrVERU2z1t/jfO4iouBgeAKzyXHq1hYT2gppyWTH2GM+NYsVdOi4bVRRww1P4U/hG7vf0KTptmK42DEZOUXbPaLtHjGdvMirGOV/o3iRJ90I/fHt6hVeDV7Qd3t8VL5Azdbpuh3OZ+cRULE8j6qWJymmUeKGgygIkWHh6buRRt9NOJyB9j2HrUF0UNRMnfVO9NkNfDpB9MxZRSMIVX6rv81kKseZrMq91iZns1MkhBQvug2uFxbpxxJ+pVKRte4RlwqT1Kwe23qThXQZgx6uayIhDKUM3NAfzjYbTp/vjJ//2rO0b3Sg/V9/dBfdcbi3ecBkLsNRLzqVzo5X+WJ7D0kQ+HBxjs93dsknND5enedxs0ZeS1BMJvCDEEkUEEWR+XwBWRbY6XaYyeXJKNEXrogio1hRx3+TouiuN6z5DDdgvRvl7gu5zFBw9VxuimedI6DG+dwkO4MOn9Zec7U4ixN4fBlL2YlSwInZ5Uphjr5rkpRU5tMVjs02U8ksgyBFzzUoa1lMsxkPvFWs8HReZNKNDTd2jWOatoYV2Dzo7DGTzA8JmwvJmeFg+XLuLK/0ZyTEBJdzV9jUN/DCNAupObzQQUBARKSgjhGEMnWhRkmtkpDe6H285XI6AgZwQws7duAJBYttPTooSmqZh/G7WUzN8qDVANqcz01yYHT4rPGKm+NzGDbcre9wszIfdRmtAVeL07Qdk4ycYC5d5FDvMJXMcTQYMPAcqok0Xb1LKIRoojLsTDYsAyPmGL/sHyL4WQaeTau5w5hajFStgPP5CW43tiP6TXWZz+sblLQU75dn2NRrZOWIXpOQJCQhavIsZcZ41N7hXH76F9jBb9Y3OtBWq2UeHhxRSiTfwgLqzilgN6RpRKdQ17LpujYt06RlmlTS09w/iuqqW9Mz3Dkdcs/P8qODXXa6HT6ZW+BFs86ToxO+NbOA5Xjs13pcqUxGsnUWcVENWqiRlBRs3yM7UlRrP1ZUnzJyW7bOnhGdxOv9OnoQpXUHZhtJFNjS68iCxFwmyb3OS/JKiiu5Fb5s7rCYmWMymWK932Y2NY0qt1CEDKoEG4MNVrPzuIHNlrFPWc0jj4wwTvGKwDCVtAJriE/UfZ3JRI79eJa2kL7IyxijuJq5xPrgKXX7mPPZy7ScTXr2I67kruGGNl1nh+XMfCxCa1JRSwSEaIJGIm73Z+U3J/+ozJ8fhvTiWVrT7rPRiYLkZfdkKL7KAIRQZqvXQRUlpjMFfnSySTWR4VJpgrsne5wpTFJMKBwM+rxTnKdud5lKZ1Fkl6fdHc7lZmhbAYN+nYL6Nj5xMMK6r9sDQqBpR+6gJ1aPE3q8U3ozMninGClYP+7sMvAt/vXl7/0eO/Wnr290oP31X/+X+I//m9/mv/78CYIS8MniHMetAb4ZcKkyRkZS8b2AopZgJpcjK6rIokhaUUiMTPKlURrFCMLe9FxqRqzbZ7o8OoktZZUEj+K52mwux5HTZb+9zWKuiJCy+MHxJpdLs6Qkma9OjrleiZD0XcfnanGOfaPFuFZEFiW2BnWWMlV2DZ+uZ1DRskNcpBf61O2odum6Bq+9BiGwOajjh5Xoy7d6XCmOs6FHtcxHlSVe9NcRELhZOs/z/lM8V+FK/hLHVg03DFhOL6GIIn7okpVyjCdKpCQFWZBISsmhFgqAwO8+PnADG92LDgqRDkfWNgDjSorD2K87p4yxrVu0nDZz6XGCUGXHvMd75WUsr8Dz7j43KwtYXoAXuFwtzrKrt5hKlPAzGtuDJsvZMhuDgJ5rUdHSNKwoGJzA5yD2mq5bAzw/wlOudU5YyhbZ1bvs6l2uj1X4Kpayu1le4cv6DhICn4yt8mVjE+SQD8cWqVsDgjDgbK5KJakiCCEHhsp8Jk9GUSOrXVF+y7BwlCP3demV3+hAk0QRw3CwPR/b83Fsn82T6Mt/NzvNvddxUb04xb3dKHV5b2mKZ7UTbjd2+WhllrZh8vD1ER/MzxIoIbVBn8vVcdwgQEJgOpujY5qUEklSioLhuhSSyaGmaEKW8e3oJZueSyeuq9a7TQwv2phf1A5ISerQfWVcKfJpex9ZELg+Ns8XtQMKapL3yjPcbewxla4ykUrSshzymkTPbzKmVXB9kbazzXJmnJSssgMkJfUt/rQTvlGosgITPwzwQztSmLJPFXZLvNYjla7z2SX2Yu+2c5kz1OzXvBrUWU5fZOD12NKfs5q5gIDPwDtmIbWIFwaoYkhRGUP3+iSlPKqQwAkt0nJ2aBCviAkCotvID23abvRuGs4e672oTfO8v44YJDHjJlJeqPCj2g4yAu+UZnjQ3qOkpfj2xBKPO7ucLRZJCCmcwCMhKWz1WyxlKgRBlCIuZ8tklFMInfhWMJz6TvuE9FwLO/SwXQ8v9Hgdo/w/HJ/h0akBSiXSidkx4b3yMmvdI75sbnOrskrHNnnSrnOtsMiFwjT//OzNn38Dj6yfRTMkAXwKaPHP/+0wDP8PP/Yzvw78OSJJA4C/GIbhX/46D+Z6Pv+vr55z0htQSCVJawpJRUGWRIIgIKH8HpaybojpRHVVf2Dz6iQapJ50BmzE2hslO0nLitKYlCQjaxLf391iMpPlTKXEnZNdLpbHyCU11nt1bo3P0rFNMorGvJplrb/HleI0Dcvgdb/BXKqA7jsYvhO5wrinMgshtdjCteOYHBk6pu+x0WuRlqZZ60SBcbM6w2e12LhhbJm7rWio+63qKuuDTfbME94trtL3TPb1PoupOVKyiut7FJR8fEtpKEKkbznKLB9NK0MC3OEszaRmR1+X7jVou9HntGRi+V06DiiChkeCtcEj8kqJcXmaTX2NmeQCmpjhyNzjcn6JtmOTlBJUtAqbgx3G1PM4KYsdo85UokTbcjF9F0kQ6J+asBMOO5Et2+DE7jHwbAZejfPZWZ51o4ziemGe27Eq8cfji/ywtoUoCHxnYoUn7UM2OwNuVpewAoeeY7KcrZJXkkhClJlk5ER8WEXHgzqiE/O2Fqc/nKX1XIunnSi7GbgB/5tzv/pTdutPXz/LjWYD3wvDcCAIggL8SBCE/zYMw9s/9nN/MwzDf/NrP1G8fvRymz/9t38LgHNTVV4dNTho97gwM0bLMPnRq23eWZhC8GFt44iby9N4QYAz8LhSHadmDKiKSWYyWQ76faazWY67fXTfpZRI0jZNQgEUWaIdYyaPB/1IIQt41jyhnE/QtA0aNYPFXJGvYmb3jelJvmzsxJJkS/yotklWSfCt8irPT5qkZIWFQgUxlCKdDdlhPjWGJkqI1KkmsiRP07fwbfa0N9JwOPV0g6hF/bIf3eBjiakh/WY5NcmRtcORdcxCapa+1+RZ7xHL6WUCBJ71trmYuwj4dF2TicRZTK+FLOYpKON0nTp5ZQzda+GEJmmpgOX1Y4iWyiBmUvfcNj03uqUOrW0SYg496KNbj5GFpSFnLyVe5rPGHpIgcrN0hnutdbJKio+KK2zrJyREldArklAkiOXZl7IVMorEBgJlLf2WluNoxnbamArCEMNzaca8NMcPeBzPz64WZ3jQjg6ti/kp1rpHHJodrpXmODb7/OB4i/erq4R4PGo1uFpcxPJCepbIfGqcvqeTlSKv8I6rM5Eo4gb+P3maTKz9MYj/rxL/+qXogfyk5Y10/yRRHCLrTcfjKJZEOmj1aNajR1t7dYzJm02aSajcPtxFU2TOz1a4/XqP8VyGGxNT3N855HJlnERWpt2zOFutsmt2mU8VCMKALzt7XCqP48k+Tcsgr2gIwZtgOC2q/TCkbRuERKdgz3I5juc1t5JvZkTvT8xy+yj6/K3JM9w+3mG7fsh35lbZ7nf48rDOraklXD9ko6lzJj+FIkpYjkxJKeCHLjIpVEHBCV2yI2BmZcSfzAv9ocZjy2nTjCFSL/r7wxQPCzKyxJH9HEVQGNfmeNZ7Tl4pMJs8x/rgFROJFXKSRtMZMJ/K0XNPKChjhATsGC+ZTi5h+x663ycppnFG2NMDd5RZPiAgpOvqGJ5FLW6ZXykscS/2IbteWuJOPHP8oLLE3eY2DWubb0+ssN3rsd4/5lY1Yk+3bIOVXJlEfEMV1SR+GJKWtKHex+hoRRalITXJChwOY47aodFnV4+ym+etFg0rumUVUUIiYL+3RUFNspic4h/svWC7/3/jNz/+Y1+rxf+zCqhKwFfACvB/CsPwzu/yY39IEIRPgFfAnwjDcO93+XN+Zl3Hf+7KKn/uj/4q//XnT9g6anJzfoa2YZCTE6Snx1k/abJcKZHwJA7aXebHiuz3egwsB02W0OOXZ7se++1o89V6AyRJwPZ81o7rrAoVNpttaLa5OjXBvdfRqfytxQW+2NhHFOBXzq1yZ+eAlujw8dwiDcPEbLmcLU6RIoU3CMlLSca0PGkx+sJVUUIbERgV3kpRArz40BjYHrtxwd8YBDxrR+mKRIl95xSfl2MQdtntbzCXqjKZ8vhRfYMrhWXSssLjdo3rpYuEDPBDhbnkGU7sXSYSk8iCRs2uMZWcpGkfYQYGCTGBG5yyp12aTqyp4XYQEPFDjwNzD1+b5sQ55sQ5ZiG9OJylraYv8XKwhojI+dw7vB68QKDJ5dx5Wm4fw9NRpQlySgIIyMgJqlqRlKwhIqBKCuoIGmaUfuOG/lDmz/QdtuNZmuW7PGpF72Y1V+FJI/q8mC1Sd3v81sEmF4oTQMj39/d4t7pISg3Z1lvcKM3TsQ0Sksa53DjbeouZVAHTd6hbA6aSBXpOEyfwycgqXTe+wR2LbgwTe945eovn+IusnynQwjD0gWuCIBSAvyMIwqUwDJ+O/MjfA/7LMAxtQRD+OPCbwO/ohf68uo7/w2tn+d//1X+I5wc0egbVdJqtXvTyl6dK3H2yi6ZI3FqZ5c7rPaq5NFfOTPLqqEEpk0SVRQRNQtJEXtYarI6VEUWRg16f6UKOtBrdBrIgEIxqwrunKQoMDBcjZnO7VshaI9qY76Wm+SIeH9yYnOKr/QOgw7sTU6z3G3x6sMX743Povs2D5iHvj88SAi3L4FJpHMNzUUWZyVSOpqVTSaRISgqm71JMJNiPNU5VScI+rTk9i248MnjarQ2JnJ+eHDCfERjE8gNnsiWe9daQBZkLuTOsD9bIyXlWsxfZMzbIK9NoYoKAAFWQqVmHTCSmEASRrtumoo2hSadSdhLeqBVUPDsLCDB9K7aFsvFx2TOj97GSyfJl82X8LKvcbe7zmhrXC4usdet83tjgvdIiuu/wqr/HjfIcINB3LVayYziBh4pKWUvTtU0KWgpFEHHD4K3RiiSKGLHMX9OyhhLhz1o1UKIgqVt9FBSsIKrVZ1MFPq9vkpU13qsscK+xzUymxGSixOtenSvFGSzPJqMmkASRR819fnX20u8YFfy86+cV5+kIgvB94PcBT0d+f1TD8S8Df/ZrPVW8PD9grlpg87hFPpUgGGnN9/XY98v1OYkH2fWeTsXI0OjrNPo6V1enuHcUdSNvzk/z5U58Y63M89nWDofdHt9ZWGB7u8nxZpuPlmdxQp9W0+BMuUxW1VBsgVIyiSJKZFBR4hQlNZKy/fj44FSCoW0bvOzFpMRBl4MY2JxRVAauzWavRUpWKKaS/PbRJlOpHNcKFR62drlUnCAtqRxbDW6UFmjYfcpaBknM81rf5lJubgiArahZhNijTUDAiOdSXujRcd/ofQy8LLo/QPcHLKZX2In1Ps6kz7Khn2rnX2Gt/xiBE1bT7/C0X2etZ3I+ex0jCNkzDcrqHGk5heWrpKQMopBAII0QRl1AiTcp1qjBhRP6w1la17WGPthtt8NmL3o3RTVNbWCxTo+cnCCvZPjto00WsyUqWpr7zX3eGZtGDgXqlsF75Xn2jRZzmei/P+scc7E4QcNrUrN6VLTMkLcI0agAoO/Z7A5ahMCe3kJC4cQacGINuFyc5H4zSsj+zPU/yL+4eP1n2a4/cf0sXccq4MZBlgT+OSITi9GfmQzD8Cj+v79GZIbx9R9OEvmb//Yf5c/+V9/nH362hpJUubU6S7sTbaTcRIKSliAMoaYMmC8VKAgaAiHphIYyCvEZ+XMdLybFh+CYLsdxzefrHg+Pon/GBaXKk80oSFcmymy2W/zoYJvLU2N0fZvbj/a4tTwDGjw/rPP+9CxW4BEEAZfLExzoPcYSWQaeMzQxb1smhu9SUlMMHDt2Fw2pmdGXf2j00IUeASHPOkdMZ1LUnR7HrS5LmTHux/Oib43P87S7hSxIfFJd5Ul3DS9IciV3noZbRxFFZpOFWN8jJCH0KGvTaGI0L9LELGH4u9cb7sj4oO/7tJ2orhn4Ii/60ZA7Ic7zrBc9y0Jqjg39GD98wUpmiaZt80VznYu5ZQRCtvRdbpTmsX0fUXA5m52gZvUoqlkq6oCG02dMy7MvRurSeSXBMbFIkCBwEgfGdr/F7qCNH4Y8aO5TkCN1q61+i8V8fojyf6c8w73GPilZ4f2xM3xe26WayLNQzFG3dFKySt81qCbyCEDDGsTjlOh9pGX1LfpNJfFGTezrrJ/lRpsEfjOu00TgvwrD8O//mK7jvyUIwq8BHpGu46//Up4OUGUZY+Bg2R6W7TE3FrCxH12gN1amefA8nqWdm+H+ixiveHGOZ1vHPD3a5ZObc7QHFpvPTrh5bhoBgX7DZLVSRvBBDUVKmSSG5ZBNasiiiBcEpLU3KYosinhxaqlbLvvx6bt71KEmRUF/b/uQIBUMmzaVRIof7u6QlGWuFae5s3vAZDrLjXKR+0dHXCpMoSYjAmpWU9nU66xkqgiKw4POLmdyY8hSQN3ukZSUt4bJpwaBkYRdHy/06boD7MDlOHarvJBb4dEp9yu3OnTCuZa/wbPeDtv6Pu8W38XwG7wYHHMmc4EQqFsG44kZJCTCUCYnZ3ACl5SURBIk/NAnOYL+EARpCN61/Dd6I8dWg2YcpHvWBgM3PupCAccv8Xn9NRlZ40x6hjuNXWaTRaZSJZ529nhvfALbifh+Z3Iaz1snnC+OY/ouj1tHrOQqWLZHGxNVlN4CejftGNXvuRwbOrbvs693GUtleB0TWCP6TdSAeb+8zGfHUZB+Z2qVe/V9njebfFBdpmHa/Ht3fos//0GCW+M/uafw09bP0nV8DPyOu/PHdB2Hasa/zOX5Af/w9hoDwyadUMkkNZKagiBEKZIqj7RcRyo+1/EwzOhkNps264fR5tNrFq/r0UYYL2Y46g/Ypkk1m0ZTFX64ts18tUA6q3F3a5+rs5Ooish2u8N789M0dYNCJkk2o/Gy1uDMWBnVltkb9FgoFDkOehH4WRDpxP7Kpuex24s23JHeRxMldNflaf2Ei5MVnnejpseNyhRfxMDm7y0u80VzI/IVmDjLk84ubcfk/coCoTjA8m3m0+P8/9r77yjJ1vWsE/xtF95HRkRmRnpT3ttj77n3ShgJkIQaWjQ0CHqaVjPMAD0Dw6JhNTRDM5JwQ2OawUPjpAZawkggieuOK2+zqrIqvY8Mb3dsv+ePvTMq63DNMVf31tWqd61aJ06cOBVf7L3f73vN8z5PSoki4RCVwqQCMYJi0B+9EVEOj98c5vtwnEGe1bFMdrUDvg+TLZ9gdCiQY7tfB+oMBTJYrs2d5gLF0DBBSWGh9ZSjsRkkUaLUr3AqMUfT6JJQoszHgqx1S4yHC4iCQEVvevwhVgPd9fLSmt+v6lo6q/7Dv9VvYLo2PdvgYXOL8eCIr7kAp5JjA8d4Kz/Nu3vrhCWFz4/O8qC2B47EpewElmtjuTbFcILRaMrXVxA9gXjpuSzV4Xlp8zBSyLTomv5zYzks1L3RoH/49NavvqN9N+3Ld5b4M//gPwJwcnqYJ5sVSgvrnJ0dpdLqcm1xg0vHx0G12HxY4sLxUSzHxW2ZzBeyNPp90nKIbDRMrauSD0fYlBoYtkMiHGSv43ctBGip3s0vNbuo7SYA97f2CEUUVMNkv9OjkI6xsu31ko4Xclxb3yYky3xufoJ3tzfJxaKcHxllrdQgGQlBCCKijIDAI7vMsXSOgCCx3mpSiMYODa0+F9UABigKy3XoWeYgr5FEk8cdn0ovOT1AOJxJjbPSW2GnX+FkYp66uc/91iIn4kep9CU+LJe5lD3iiQX3YTxcpGf1EdyYxw9ptQhJGST2sLEISzHAuwaiIA7kf1tWm65P//C0uzpg+6qbTSJSgm2thIDAWKTIvdYzQmKAM4mj3GkskwulKYZybPSqjOcSNDWBsBhGFEQe1rc4mhxDEKCktckqcZQDKjvXG0M6sLZxwBNj0jX1AcfjRDzFPV8H+0pughsHJ1Zuklv1dXb1Om/mZ1jtVLnb2OaN/BSaabPVrXE6M4IseOSqo5EEpm0TkQKERBnNsb4t4eNL7WgH1TYABGHABKzqBrvVNiCwV2nTeOol/NuPK7R9h5EkETcqcXN/nVgkyMmhLPdubjA5nCI/nmTh6S4XZgs4YRGtZTA1kWK10WB2KEPfsbhXKnE8N0QHk02jRSwYeGH4sOVj8jTLotz1emnlbo/RcJy9dpe9dpeLk6Pc3PZu/mvFca5te07yzuQU7+9sUOl1eWdmhg21znq3wdXCGKJs07W6TMeyxJQQIiIJOYwkCoSkIKIg4rgOoW9QjDEck4bpnaBVvcN9H7z7qKkOcJVhSUYQdVa7y8TkMLlgmncrqxTD4xQCKW5UNzmWOE5YcijrJlORAk1jm1yoiGZrbPXXmI5M07ba1IwaESkyIAZycQdTBppjUNIaOMC+1iAqxijrTcp6k8ngUe742tMXM9NcK/sn1tBxvrazyS513hyZZ73dpNrrcyE7hoToy+3GGQrFCAkKIUkmKHnkqwf2Ak8MLq7ghTuqZQxIVtumxoOqd2KF5SDLjSYAxUiCuqbz5d1VpuJpBAT+ydIddtU2f/ed3/apacFfakf7zW+eRLds/tO7T9jfanFpYpSq3iclBjhSHGJjv85UMoGY1qk1egznE/R3TEzTJhxSaPpl+a6q0/fr5TulJj3bRDMsnjwpMV5Ms15uAnBkJsetp36ed2Sc68+2UGSRL5ye4u7KDrINr4+N021pOJZLOC2TSURBgogsMx5LDsrPIUl6YRbtMChVt+xBL61vmqx3vFPSxOKJr8t9LDnMw4bnpPOJHBVzn6+WlzmZHMcVDD6ornA+NYMoCix3yhxPzKE7OpYTZDQ4Qd2sEJfzDAUFqnqH4VCKlqliOBYJOULLP6V022THLzjs9KuU+iqma/OwtUk+mKKsN1nvwUx0mOs1b22XMsdZaC0TFBXOpc/wsLlCTAlzIjpO21CRBImIHCajJHFcgZLeZCyc97gvgYBflDmwFwTiTWsQzvVNe3BtJuNpbvhigWczo9zd95zkfG6Ep+19vryzxpXCJG1D4/3dLa4OT+HgstVucyZVRLNNZGTGImnqeo9MIEpEUvziVBSBJi4eNcZBz6xvmYNC1Qel9e8c9/53w374rVP85b/2SwCUKm1i0RAltQYCzObS3L2xTjQS4MKZCe4+3GQkn2RkJMX6do1T2TSa4BAOB5AlkccrexyZG8YRoNZWGc7ECAb82F0QXmhKdvwcz7Qc1I5OTzPpaSZT2TSLO17Od3G+yIebnmMetA9WqPPm3ASPamWurW/x1tQkbVPjSbXCpZEiouiJJM6lM9iOS1CQSQfDdA2dVCCE1BexcYjIh08sEcMnm2kZGlXTy12Wu+UBROp6TUXAq2IKCAwFsrzfWSEiBX22qA1Gw2kmo2lWetsci4zjuC6iKBIWZVa6G8wnxuhbLo/bm4yGs4M8TxakF8hvOv70ge6YNI0emqOj6Tr5YIZ11avUnkzMc7fpVSlPJ45yq74C7HM+eZyblQr3uzu8npuloWmsd5ucSY8SkGR002AsmkQRJYKSRERWMG17wMUJvHCaO65HbQDQ0nWeNr1rs9F+3k5pGjp9HxkTkmQCgsxXdlcZDseZD4xwY3+Hk+kCiUCQlVaNK/lxGnqfhBJkLJrkYb3Ej82d/UTP7UftpXe0mzdWyWdilOtd4tHg893PhUbTH4pUDfbKLVwXdvdbhCMBqvUu1XqX4ydGefjMu/nnTo9z+5nnGK+fnuLGow1q7T5vnZpiZa9Gq65xcaqIYLuofYOxdIJsIkpQkIkEFCIBhaikeHux4FVEn9shWSjToumHlq2+xkM/qW5ofZbbfjEmEmVf7bHWapCLRkhFRL60vcZccph8UuR+fZvzmXGCskPLanExM8We2mA0kiTjBFnp7jEXH2G3X6WstyiEUjSNLppj4rrQMA7o2nS2Ve87d/sNIrI74PuYjxVZ9OnLz6YmeegLblzJnOBm/RmyIHI1e5zV7g6ao3M6MYOFg+UY5IMZMoEUiqgQEBUScnQgEC8iIAqHx2+en+aqZQ9EJVTT4KGPhsmH4jxoeGuZimR5Wquz1qkzl8jQNjW+srfC6cwIkiNxc3eXq/lxHFwamsb5bJH9fodsMMJ0PMNGt85UPO1xfZo6hXCMjb4X3suHZJpL/Q7lrvf6UWOfoVCUqtajrPWYiqe5XfUiin/w+f+Szxc/vdonvOSO9hd/+t/zi79wn3AkwJuXJ3l8c4N0Kkzu2DDdag9FkkjEQuTSMUCgWusyMZwmGfZueDiofONZNN3Edlxsx0bTTfbqXi9tspDi7rLnmKdmhnmw6stCTRZ4tl3hg8o6F2dHqfZVbj7c4K2jY5gBl7WNKpfGRr2NwHA5kspS1npkQ2Gy4Qi1vko+EmW94xEDxYPBwSycC1T73uuNToMdn/z0bn2LQsxj491Sa4xFk9zzCyDHE2Pcrq8RFhUuZ45ys7pKLhjnaGyIjU6PVFDBFfvE5Ti40LU0ZmPDRGWR7X6FhBx5Adl/+DRXbQ0Xj0tDs/VBmX40nONR0yuFn05OD6bMzyanWeyusd1/xvnUEfa0Jjdra5xLH6FnCTxr1ziemARcLNtmIpqha+rElRAxOUjX0j0iVN9Ch+jCLdelonnXZrfXotL2Io3b+7vPC0hNSEZlPtjfQBFEjmfyfFhZZygU5Vx+glu1TY4k8yTkIHVD5ViqwHa3yVg4heUI3KpsczI9jOXYVLWeT5PwfHMoRGLf+mH9FvZSO9rmprcT91WD7n6PvmrQVw3yuSTrz7yy+NlzE9y74+2E589OcO+Oz6N/eZrFJ7us3NrmjctTtHsa+0+rnJ0fQRFEtI7J2FASJSChyBKxcADDsomGAh5PvusSVF7EK5o+0LnX19mqNAHvBN06UI1cr9LCp7ITBOSEzLsrmyTDQU4nC9xY3mE6k6EwFOX+fomL+SKWaGErNrOBJIuNCieHcuiiyuPWLnPxPILcpWfpBEUZw34evjV9Fqi+Y1Lpd7Fchz2tRUTMsNGrs9GDS0Me2y/A5ewMN2uek34uf5Lb9XWq/Qqv545RNlps9doci0+Dq9AybAqhNDE5guAGCEsHg5GH5HYPOakNz7lQLJPdvpdX1fQuT1p1/3pIvqAERKUQXVPkvcoS2UCM4XCODyprHEsWiIsRHtT2uZofp2+buILLpfAYT5sVjibzJCWV5Uado+khdnsdGnqfsCwNKrWm67DjixVWtR4bXRHDsXnaKnM0kWOlU4NOzROIL3kn1huFKd4vedMYXxid43ppi7Zr8GZhilpf5Y9/8Iv85bd+C3PJ7Cd6fg/bS+1oP/573+Yv/YV/z9BQnEBQQVEkEskwwZAXowsCSPKhidhDiH9Dt+h2fZhWR+fZqhe+5ZoG93a8OH58JM1qrc7qXp3x4SQt3eS9hXWOjOVQFIm7z3a4OF/ElWC/0eX8XJFau0ciHmJeGWJtv85EIU2/7lDt9BhOx+m3mxi2TVCRafvFmFZfR/Olj9bqDTqiRtc0uFPaZWYkyUrD21DOD+e45Ydvb+Rn+aC8RliSead4jMetTQRkzqWm0R0Tx7ERwmnyoRQiIgFBIh9KEVeei6C/cJofKjiolj0YOemYDqtdb9MatrLcrnkP35HYMHdbJaDGscQo+1qdr+yvcCY1DYLBveYKZ1MzANSMBicTU3SsPiEpwFg4x75WJxdMsqOo/vR0nJrRwXY9LhTDJwnqWTol1TvBF1v7iHYQ3ba5WdskH4oNkCFzsSHe3/fkdt8YneCD3S3SwTCfH5/iQXOXbDBOIhDCch2CksR6t8ZMIoskCOyoLSZjaSJ+oUoWROxD2NbewcCo67Eq9yyDngWm7fCk4eXj/2LpHn/q0vd9rOf269lL7WgXL03z47/vc/z0T/47AE6dHuPJsxK3bq1x9uwE5Vqbu/c3uXBmArfVZ+/hDiePjuAAbs9grJimp+rEIkHi0SCdnk4yEUHaE7Adl0g4AN4mi+NCs+vd8P1Gh1bPi93vL+3iyC4OsFNrEU+GWF9tIgDT41ne39gkHgzw+uw4N9a2Gc0kGBlKsNFoMhfP0nENUuEwogC3d3c5PVrAUWBf7ZGPRAgenAzui/zwbR8v2bctuqZGy1RpmR4//JO2r6+cnubugCt+mruNdbb7Nd7KH+Fpq8rt6jaXh+bRbJOVdp2TiQlkUUS1HEZDGQ9ULIaISEE02yAqRREQvOFR+XDBQRhwodSMHnXTc8zVbom+z+lf1jzc4Cb7SIhkg2luNZ6SUmLMRae401xnJlogqcRZ79W5kstR07zJdtOUuVvb4Uy6SEuzWGxWKIRjA5o/Aej4jWTLdSj7YXZD71M3VRp6n4buCcQ/qHmh/muF8UEv7XMjs7xXXmGz1+CdwhwL1Qpr7Qav5yfRDIdmr898coiEEkJCJBkIEZYVwoPqqMt8cugzPMkvuaMBtJrPueodFyzLL/32DXb3PC+plduU7nsPn+BCzf9/QtEgekji5vUV0uko2ckst+6uMz2VJZWOsvhkl8tzI+iyg923yc8UWdmvcaQ4RFPVebZd4dhEnnKvS7nVIxoKYFgH/PBQ8YmBOrrBTrOD7bhsVVuEowF2Wx12Wx3OTo5wa8s7JS7PjHFt1ytRf2Fqmvc3t2j3DL4wM8tap0G1ZnEuP4EsCfRMi+FQnJFolKAoExI9xt3DfB8v9ouec1xojkHFZ4hqGRpP2l7OmTBCbKjeaV4IJanqPTZ7y4yEk4QR+KXtDY4nR4nKIe5VdjmTmQXRpGeanExMsduvkgsMEVdENtQSE+ER9rQ92naXTCBB3ejg4mK7LmV/9qxpdlEPHLO3TyHosq+12NdaHImPcL+5DsD57Cy3apsIrsAXi/O8V1ojLCt8rjDDaqOJ6IqcTg0TkgI4jktCCTKdyBCXFURBIKmEXiBKOlSbQref3zPVMtn3ZwYNy+H2vl8oy41wu+Tn5tk8i/UqX+mscaUwzv/yxq9nPvVr1NEM3eTP/6F/wo2vPuXcO0dxRYHGcplTR0doNXskNJPJfILdepfhVJReMkyn1Sebi9PsaNi2Qyii0NX9XlpXo7zl7crr6zWi5Q6aZrGwsE2umKJUacMaTM4McefBFghw+dQ4t55uEQkpvHV8igeLO6QTYfJjCXp9A1kUicgKxXQcAYGdRoupfJpEyO+lydIL+srmIbyiapqDAoSm2az7aJRJPcm19joAF/N5Frsb0IXTqSLP2vt8dX+FS9lZTKHFg/YSl7MzWI7Abr/OqeQ4mm0jCiKT0Sw1vUs2FCWuhuhYGplgjC21hoNLWHpOMGo69kCHbKldHfSxblY3SYVkev5pNhJO8WHFo2i/mJ3jVn2TpBLhfPoED5prDIcKZIJhVH/uray1GQmncRyRm7VN5hIFZAJsqRA+7BQ8F3Z0BZe22cfCoWPpqIbFhg9hu1oY53rJ26iu5se5tuvnWGOT3K3u8sHuJm+NTlM22izU9riam/ALTV3mEzlkQUR0JDLBCIZtEZcPCcQrLzIkHxRaHNf9zE4GL7Gj1csdrn/JGwJY/XAFze9rlVbKBIIyZd1CkkXG5wrc++pTkukIZ65M8+DeJuNTQ2SG4uxs1jh9ZISOYRKLhRCCIg9X9jh2ZBTdsHi2sk9uKI7iYyYFQPdPLFxo+aGkqpl0Wn16mkFPM8hn4zzd9GL388fHuOmTBF0+Ps4H21vQrPPW7CQLu/ssbJV4a3qCtqWzXW5xrjBMQJbQLYtiPI4iSQSDEhFZxrQdokrA23oFCCvKYJLa5TkUqWOplIwDiu4a2z2vGNO1NBq69xlZkAhJMtdqT8kEYkzGityubTAfz5MNRVjq7HM+PYlq6chCgNGgxEJjhzOZcZqGyrN2mYlIGlPwePFlQaRvPaf5O8zeVdZbaI7BhlomphRZ7/mV2sTMc4H4/DFuN54hIPDF4ZPcrO6wo9a5lJmjrhq0DI3jyQIxOYjtQjoQJh2IEFEUZMHD0x+mOHhBIN5xBzlnzzQHGMmWofGk6Z2mk9EUa60GUGMsmkDX4EtbqxxJDRGQRd4vbXApX0QWRTbaTa4UxmhofYKSzLXSJq8N/xrFOkbjIY6eGefpgy0mp9KUdlu0WhrxVIS+X+SwLYfKvn/DGyo7Ow1cFzbXvAtd2W9T2W8ze3GShQXPGU5dnOTuE5/v8fIM1xc2UTSd185NsbHbwFFtzkwNo7gipmaRT0QZziaIBBQCskQ8GiIUOCTvIz2/4fahYRzNsmj2/TxLN3lQ9hxjKB7l3r7XO5pJp1nRqqzu1phLZWjpOl/eWONMboxA1OX63i5XR2cQRIeKqnMmNUlVb5GQEgQiebb7VUaCOTqGTctUyQWTtI0GtusQECW6Psdj3egOeFGWOmVaVoyGodIwNhgL5Vjz+T5OpUa5WVtHcOGt/Czvl1eIyUHezM3zrF0iLCmMR4ZwEZFFB10xmYgNEZYERKHMUCBBwK9MHpDhHNhB/umxd+kDIhzdcgZEOOczY9yseXnV6VSRu9USq90a50bGWK93+OruGq8Nj6OZNndKe1wdHvMEKgyd4+k8HUMnIgXIBWPU9B5DwRiKUMN0bRKBMOA9K7Ig0fH7jDWtNxDcuFvexfED8D21Q1wJsNSq8cHeBu/99v+eYizx8R/gj9hL62jxVIS/9LN/kP/37/xrfPhvbhFPR7n4zikev/eYwmiW9FSRXrlJMBGh2rcZHooiSCL1aoeJ6TyxqB++hRUE8cVm8oF1NQPbdrBtB92w2Cv7/aKhBPd9xzx9osidJ94OfeZYkXu7JT5c2ODysTHKjS53H25z9eQYtuuys9nkbHHY46kwYTydpKPpxENBYoEAXcMgHQkhNL1HMKzI+MU3TMeh4if5W502LR+T98HOHpLs4uCy1IJsOMB6exNZEDiSmOJXtnfJBMOcz3oI94lojlwowp7aZS4WoWF2ScspbEfgQXOdY/ExRNmiqndIKZEXBjNV84B52GOm8jSodbqmTsXXFTiXSnLLd4Y3C0Ue+OiPy5l57jRW2VK7vDF0io1ehXv1KuczR+hbAju9DjORURw7QksNk1a83lRQCA/Ct8Nyuy+KCD7XsiurPVbqTQDWWw32/Vw0LMnojs1Wu01cCTASSfPVrQ0m4ylGo3FulXc4ny0iIdBQda4Wxllv15lJZulaOgu1fc7mRiipXXbVNulA+JDcLi+Elp/GXlpHAw8YXPFDtE6jR3Orgtrqo7a2iSdCrN72IT7ff5aF9zwa7HOfO8q9D/yb/xtP8+TJHpsPd7h0ZZpuo0dzqcqJ6RyBaACra5LLxIgqMmFEAoqE63qN7gOTlRfxigekQT3VYHO/CUCt0mOt5vWOXBt2bc9hYiGFfsjhq2vr5GNRRofjvL+9yfFcjmQ4xEKpxNXRcVTHQHRF8rkYi60Kx4dy1OwgS50Kx1J5qmabmq4SlpTBzbdcl11fFLCu99notDEdh5VOFVko+L00r9L4/gFj89AcH+5vIuDy/eMneHd3k4ag8Vphnj21Q8+wOBYfJaoEMG2HdCBCIZQgLAWR8ELRwwUH6dAGZrnOoJfWtayBWHtDd3jc8r5fcIa5V60BNaZiGXbVFputFY4kcuimy5d3NrgwNElAkDzIWmbS01EwFU5lCmx2m4xGEvR1i91el/FYkral0bct0sHw4HqYjsNW1/v+jU6Tcr+H6TjcrexSCCQo9bosU2cumeVDnzTpSmGMm6UdIrLCF/KzXN/aZigc58xEnv/m1CWSwV9l7v2PyesYBP4xcBGoAT/muu76Z1lYZbvOP/vJnyMQCpDKJRiZyROKhhAlkVQuTigSOPhuROkQP7x5iK6tb9Lt+DTQbY3lh94Nz+biPFrwKkxTc3lWNqrsLFeZnc1T7qpcu73GySOjWLLL7ZVtzh8bw3VdGm2VsxPD1Pt9oqEAE/kUO7UWhWycqqrS6etkE1H2Gj1cIKQoNHxagWZfY8/2GbsqFaKKQs80ubW+y3Amxm7Xe0iOjKb5oOwVHN4Yn+R6bY2EEuJzhVkeNHbJBOMMhUMYPgXaTq/JZDyNLMKO2mA8mibmD2bKgvjCnN6BLLGLQFOz0GwbsOlbziCvGY48n/26kC1yv7HFYhsuZiZ42t7nvfIKV4emaFsa1/f3uJybRZIc6nqXI/FRLMcmIEjkggnaZp+UEiUoKuiOSSIQ4SB8U0RpoBHeNXW2/JGlp83KoIB1fX8LUQ8MijPDkRjv7mwQkRUuZYvc3tllLJ5gqpDkQXWfM0PDXsAquEQVhUe1fU5kCxi2xd3qHjOJDK7lbQ6KIA6qkeDB48CrSlZ7Kn3LYrvT5v8x9iYXC5+Ndx++fbyO/xeg4brunCAIvwOP6uDHPsvCful//xq/8Pe+DMCpt46y8J5H9nL2neM8vrnK3S8/5vwXT1Gu93lyd5Ozb8xjmxbl9TJzx4eRZAnaPXJDUQzbJRyUCYUVtL5JNPZ8dzoAFYMH0Wq2fVKXeocdP5RbXNun79989oCkxFalhSyJjI6kuPZsk0wszKUTY9zY2maukCUdjbDTaHE5O0rV6DMUjoDkcrOyy9nCMH3T5Em9Si4aQRaf94sOyGZs16XuTwu3TY2m0R/8GQoXWWh6G8XV3CS36x764/WhGT6srrLRq/NWbo7FdolVdY+3hyfpGhblfpsTqYIPWHbJhaIERG/EJCB6k9KRb0C+arr2oJfWNPo863g552a3S9PxXieVCC1TZbW3T0wKEpIUPqw9ZSSUJhtI8LC1ypX8JIITYaPT4PLQBFWtRzYQJROI86hR4nRmmO1Oh61uk4lYirJlYDoGggC1/vPp6c1mE4DtThs5LNAyNB5US5zM5nnc8NZzMVccUP59bnSKr+2uE5RkvjAxzUKljOnYXMkXsRwXy7EpRuOMxhIEkAlIEvlIlLY/wPtZ7dvF6/jDwJ/xX/9L4K8LgiC4n4GwPBw9FK8fmqS2LQfLP7XUvsHuurcTt+td1h56O7EAlHz4VjqfQLPg9lqF3FiawkSWu+8tcfzEKMF0hJXFPc6fHqVvOwh9izNzI6zt1ZkYTqP0FNbLTWaKWbb2m7R7GolYiIZP/W3ZDqWGH751+zi1BrYLS/s1ZnIOO402O402x6by3PaJga7MFLm+tYMoCHxhfpp3dzYJ2hbvjE+x0Wzhai5nM8MExQC2ZZOSw4xHM0TFIBIiiUDoBZXTw3a4fdB3zIHaiu7q3PXp2k6kwtzyiWfmEzmWWzW2ey2Op3K0DZ0vba9zKT+BLLk8rO9yOTuF5drors6p1KhHeBOK0LVS7PWbFCMp9H6Dvm2QCkQHdG2iKA1el/pNSn4ouaxu4OhZmkafktZmLJLmZtUfZk17xLQBQeLt4Wne3d0gF45xIT/CertJIhjCsRzicgjJFeiaBseyOZSQyFq7wVAoQkA6nNsdysf9/FO3LVTLGOTDU/EUd8v+vRke40bJy82vjo5xY3eXP/3+l9jutvmTb3z+617zj2vfLl7HIrAF4LquJQhCC8iCr6XzKexH/9APkByK8/N/4xe5/5WHnH7rBACtWocjF6boNlVCikhhNEm10iGTjVKKBun3dJKZGPtbdVzXJRCUMX2Uh9rWKDe918uPdyGi4Dguj66tkUyFaTW902z49Ah3b60jSSIXL41z59k2qXiYKxemuL+xx2QqTSIaQjcsggGZrVaLiVwaNwg1VWU6mybuc46EFOmF5ukBdZ3jurR1HdOxMR0bzbTY8Hfpy4nRwU58ZaTIzbKH33ytMMGj3gbvl9d4Iz9Dud/hdnWHS0PTuLiU1DbHkyMIOAQkl4JPDhRXwgQlCd22Sb4gL/ucmFazLHZUL6zbaLdouZ5j3K1tI8jPWaSiYojrtRWCoszxZIEbtTWGwwkuptPcaWwyGx0nJEl0LIOpyAjbvTIj4WFs15u1m40WqQkCTaNPVPrIMK2PhjFcm0q/h+PCvtZlJJT0cq5uiyvZcW76OedrI2Nc8+kfvjA5w/u7GyyoZd4Zn2Gr3WK32eVSrogkiPRMk2I0QSYUISBKhCUZRZKIHKKWf2F+UHgOACj1unxW+3bxOn4s+yQEqgBz5yZ58qFX5Fi7t0pX9XYoURRwXZedpT0CIYWhyTy3/uN9siMp5k7P8ejGCtMnRomlY+zttTl1eYRmrUsiE0UIBniysMOxM2N0+gbr61WGcvHBYKYgCvRUH/tmO1QbPnd+p0+1q9LtG3T7dc7MjLC46fVozh8pDsZv3jg9wQfLmwgCfO7ElFeirtZ5Y3qCjq5Tb6ucGBoiGg7iOC5D4QixQICwrKCIotc/OxTOfrTgoB+I9Rn6gGym3FdZ63lrGXHiNJ06qJBWotiOwNf2lyjGUsTlELeaK1zIjREQQiy1KlzNj9PSNcJygHPBME+bFY6ksuwbIpu9BtOxIapWla4PbO75LQPdsQbjN6V+G0Vy0G2LJ+1dZqJ5Vv31HItNPCfCGTrKteoaiijxhdE5bpa3MRyT1/OTtAwN23GYiWfJBmI4lkhYVhiLJIgFvHA2JMmDMBteHL/RTGsA+tYMi9WmV5yaslNcr/oV5EyBh5X9wevVRpMvb61xaXiUrmHy4d4mr42M47qw025zvjBC3zLpGTpL9SrzmU/fuP628DriiVuMA9uCIMhAEq8o8tH//xMRqMYzMaZOjbO+sMXYsVG2V6t0myrJXIJWpY3rupiGRdkPE2t7TUwHHMdl9dEOI0eLVEotKqUW08dGeHxrHYATbx7h0d1NREngyltHuH1rjXAkwIW35tmotZEkkaPzMUKC6FFaRwJMFLIEQgEkUSAVCxM6hOw/zPZi+AozruuRvRz00nTb4uGud5PPxKPc9GFZJ4ZzLLTKrLeanC7k2bXafGVnjcuFIrbrcmdvj6sjUziSTUvTOBEr0rR7RKUQo6Ek+3qL4XCcktbwyFeDEZp9D8AsCzI9vxhT07rs+GqZj9rbCFYYzbao6ZvkgjHKLa+6ezyb4WZjFUUQeT03zYeVNfKhKK8PjbPUKTEVjSGJIkFJQBZlHjVKnEgVkAQoaS1Gw+kBrYCI8EI42/FzPNOx6VqaL2oBM47L46Z3bS5lJ/lgx6+SFjxa9aV2jTeLUzypVrhW2eTNsUm6hsFSs87FwiiSLKCiMZlMeY3tgERcCaDZFvFgaNDRO6w2CtDzw8mmprPc9J6hjXZzIHhZ1/qopslircr7O1s8+m//0AuO/kns28LrCPwb4MeBD4HfBnzps+RnB5YZTvM3b/0Uf+Z3/jVuf2WR1FCcS1eP8PTeJlNnpglHZAwbQtEQuyslinMjIAk8ur7KxNFhgvEQe0AoHHhRLKHvh2+2S7fTx7Yduh2NvuOwV/JCpvPHizzwR25OX5jk9mO/+HB+gtsbu9yubPLamUm21Q4P9/a5dGwcG4dyq8ux0RyyLILrko9GPbppJUhQltAtm1joEF5RlAYJr+7Yg9xhr9dl2y9RP65UaAuewwi4hMIuWx2Phm46meHD6grD4QRnokVu1zY5nhonHpSoal1ez4+z2ekwHE5huzb3G1ucThWpqRarnTqZYBj3EBNx2zyQl3XY93t5Za3HqBGhqnep6l3OZ8Z52PKuzaXMFHf9ubQ3h45wvbpERWvw5tARljtlqnqTK9kJLBy6ls5kNEMqEEVyZWJykIisEJYVBP8qBA/p2h0m4zRsa6BZ3rH0AQCgHfFQLgBj0QQ7apv1co3xeArDkfjK/jLHh/JEpAB3aztcGS7i2NA0NC4Oj7LXaZNPRHAFl9Vmnel0CtWwaGkaw9EYG60mtuuiiOKndjL49vE6/j3gfxcEYRmP1/F3fOoVfcSUgEJ5pwlAs9qhUevR62j0OiWOXp5hZcFXDrk6y8J1r3924XPHuPPVJ4iiwOVfd5on97cpb1Y498Y8va5Gt9Fl5sgw0WgAR7dIxMMkMxHCkogsiwiC8MIsmig/D98cyxkAm9W+wbrfP2vpGk99ioPxXJI1H583nIrR1UzefbzGxFASISHxtd0Nzo4OE1YUnlT2uToyRtfWkRSRc6ERVto1plJJRAE2Oy2mU2lWVYuOaZAORWi7XgGmb5ts+WINpX4bw7awXIeHjRJHUkk21Rqbao3p8Bg3fSGJWq4wyQAAR9xJREFUy0PT3KhuICPyxeIs16vrRAMB3s5OUtbbiIJAOhghoYTBhX25w1Q8TVwOgisQV4IEDj1wh/XJdMfAFbx3NNugpHnXwBEc7tW97z+VHONmxQfvJkd40irztfIy54fGqOsqH9aWeWtsCtMQWO3UuJQrYjg2juAyl8pQ6/dJh0OkgiGaukYuGmFFE3BwiSrBwWocwRlIZm33mnT8qvHN8jaCIw56fkORMB+UNlBEkROFHB+UN8iGI7w9PM616iazhQxHY3l+4tyvsj7ax+R11IDf/plW8nWsslPnX/yVXySZjVMvtxifHyEcCSKKAsmh+GAuzV/E4KXhX1THcdF6Ot2WT5FtWSwteGHJ8UyUhfeXAJg/M8azxRI7iyVOXJpkp9bl5vUVzp6boC+43F8rce7kGI4IdVPj2FSebl8nElAYScQod3sMxSNsKDKaaZGIhsB3NEWS0PwqaadvsO9zfDzcL/mIe7i5sU0sHRxwQU4VEry7t0FQkrhSHOVGdYt8KMqF4REetXY5Hi4QFCUcAcKKyHq3zGwiB7jUa5tMxzPEfJqFgPgid/6B2ouFQ9vso9meTrcZs1jxc77LQ8/p2l4vjHuT1B14PTfLk/Y6dxvrvJado250edoqcS49hQi0LY3JaA4ZCVmQSShhDNsiJgeRBI8Q9bDaiygIA/Cuahls+JvGrtZkreY5ienYA0rvgCghORJf3V0jEwxzIj3EB+UNjqRyDEXCPKjtcTk3NsA9FqMJnjTKnE6PUNf7LDYqHE3nKHd71LQ+QVEaoGFMx2HP5xipaSobAY9n8lmnwp9749dzKlf4uI/t17WXGhny7/7BV/n3//CrAJx58ygPP/Ac4/znjvHgwyUevPeMC188QWmrxsqjHU6/MY/rODT220wfL6KEFRBF0kNxHMf1SHoUCcu0iXyD9oGl2zT9MZtarctq1xdo322w5zNHKbKIZTts77cIBRUKozHeX9xgJB2nkE9wd3OXk8U84WCAvXaby9Nj7Lc65FMxxuUkdyolLoyMUuurrDUb5GNR+sJBKdqlpR/kdTZ7/vR2WeuRM4KDXtq5TJEHPo/h68NFbtW8k/2d4Wmu15fY1wXeHDrCnWqZPbXD1aEpNMekY2jMxIbIhsKIgndCJQNhYgHJ5/oQCB+iUj9M/GQ4FqpPvtqzdJ51vJZBx9RZ6XowtWIow4paA8oUwxlajsbXyksciRdQRIlb9TVey09g2zI7aotL2XHqhko6FOAoeda6NSaiaTo9h6qmMhpJ0DPrmI5NVAnQ6B308jQafij5rFllXw/QtQxulrcZjycHyJATyQIflDYRgDdHJnl/b4NkIMTnx6a5XymRDobIhMNYroMiiEjdJjOpNJIEW90Gk4kMTeP5qNantZfa0QKHoFCH8YqmaQ8QIFpXZ3fVC9n6HY3lB95OPD4/zNqC9/7wZJZ6qcXNX15gbH4YAZfbv/SAY5dnUaJB1hZLnDk77knlhmSOHRthZ6dBoZCkH5HYK7coFlK06haqZpKOh6k0uoCAZdns+tz9e40ODVvHdlwe7ZQZzsTYa3XZbrSZH85ya91Xn5kd5fbGLrIo8rkjU3xtf52kEOLtyQk2+w0CksxwNO5rK7vUtR7z6SwxRQGXQYn6wJxD4Zvmg3cdXHqmRU07kL51uO875vnMc7G+M+lRnnW2uNXc52phin29zr3OIu8UZzBdi7XeFhcz47iCi43ObCxPx9RIKEEygSgNo0c+FGGj5+EV44EQB1JsAgyIeCp6l4ZPv/CwtYWqi7gI7PZbZEIyO419BFdgIprjWnWVeCDE29lxbtbXmMlmyClpNrUqR4byNFo26aiC4ErcLpU4kyugOwatusZw5PDAqItqHWgJMLgWLUOj6Q+LNvQ+2UiE+xVvo3h9dJwb/jDtO+PTvLe/xv/1/X/Fn7746/nd85c+wdP7or3Ujva7/thvJpmL8yv/5h5Pl/Y59dZRUBS6msXs+Wn6rR6BaJDsSIpWrUMqFycQUjA0k1gqAht+9U2WMPzxkV6zR2Pf2+1WHmxi+s3fh9dWEKey6P7nCoUEd26uEQjKnDkzysL9LbK5GGePj/BopcTRYg45qqCJDuGwwmqlxmw+iyHD7c0d5vIZZFlkr9UlJEuDnACg64dCluNQ1/tYrkut36fvmqx3msDzihvAG2NFrlc9x3h7eJYbtQ1uVLd4uzBD2aiz3N7nUnYSgLrWYzqaIyQpiAikAmEc1yUmB5AEAdt1X6i+yaIwIBg10an4RDw1s8VGzwsld/UKNeMAvKvguCY36k3icphjyQT3W0+YTeRJKwkWO+sePbcjYbkdhsMTLHfqzMaHaBsJFtt7nEgU2ez02Nc6JOQQ1oGwhuAeUnvR2NZruILLhlpDjkuUtBYlrcXp1Mhgo7g0NsWNindifd/ELO+X1whYMp8vTrHRa+A4NmeHRgjJIpZrkwmFmYiliCkBZEEkEQy+MH5z+ATXHXuwhe35OMpPay+1owEcvTTL3/hzHpXBXrlLre5PT0cCaJU2u3ttQtEAyUKKW+8ukR9Lky8keXRrjSNnJwiGg+zv1Dn92iy1UotMLk6hmObZ/Q2Onp+g3tLZ3aiRG0nSlkR0vIt9wDdi6BZlfxSnVukSzIfpqjrPNirMHx/mybbXLzo3M8rtZ74s1JkJ3l/eRBIF3jk2zf3dPWpdlddmx2lbBl3bZD6bJRUNgQtxJcBQJOopmQgCsiASPBy+HboehmMPMIKqbbDmO0PfNnnkw7Jm4zmWfUmkiUiW3V6Pr1WecTQxDILL9doKFzITSILIerfKudQUqqURkhTm48Ps9OqMhFL0LJ2q3mEknKRjaRiORUwO0TQPemkG235lckstUxGbGI7Fs+4quWCCqtEC9sgGJjyYmCtwLjXNjcoWEUnhncIct2rrDMlxiqkEbUMlKAUo9/uMhBKIgkC53/Gkd33y1Yi/gRzY4enpjqVjOg6mY6C7Fhtdr1A1mktw3WdCvpwb50bZR38UJ7hX2+H96ipvF6cpqV3uVHa5WpjExaWqdTiWzDMUivJDkyc/1fN7YC+1o3WaKu//8iPyxTTlnQaFiSw9zUJTDRLJCFq1Da6LY7vUSn4pertJq9LBdeHZvU2yIylq+23K2w3GZ3KDyuTxi1MsXFtBCkhc+sIp7n64TCIV5filKbbLbUJhBVEWCaTDIAp0VZ2pqRxSIsD6Xp1MMvoCTtI5zJ3vU5nbjotqGINemuU6g7L0xbFRbm76odz4CNdbO6y1GlwaG2OtV+Nru+u8MTKOIRosNPe4kvOEDLumznwih2abRBXZE+sz+mQCERRRwnRsEkoAvIgNWRQHDFENo0fF8HbmJ629wfuVSpdE0GtCCwiMRhJcqy0TlYNcSE9xp7HOWCRDMZzmWWePY4kJXNckokBAlHnW2eFIfBTdsVhsb1EMZzkY05MEAd0/sRDcAVe+aps0jK5XOVWb5CMxnnV8AEB66nkxJjfN++V1AD5XmOVefYennTJv5mdoGX0qepvTmWESYQFX0MmHI8SVEBFFQhG9CnLkUAVZOjR+4+AOAABdWx8Aqxt9jWdd7z7NJ4b4R1/4rz7uI/sN7aV2tD/8Y3+Tva06wZDC8SuzPL63ydBwghPnxnl6Z4O5c5PIAliGRTgWZPNZiYkjI9imxeObq0weG0EQBGr7bYJhBfsQS1bXBw/bhk2z3sO2HBrVDoWuxt5eE4ATV6e4t+g7w+lx7j70NakvTXFzeZv6A5W3Lk2xVW+xtlPn4twYjuxSV/vM5DNEgwFkVyQVDiEgEJEDSHj0bOFD0J8XCg62NZi9quo9VlTv4dvutdj1IVIJJYgmquxVaiSVECPRKNfqT5mIZhmJRnnUXufy0Bi4Ei2rw5uFImvtDtPJJMNGlEeNEmczebZ6bXbUDoVgHF3wQjYXl5qPkTzgkwTYVutIgugPjKqcTedY9AU3ziSnWGh7G9ibQ0d40HpMUFJ4a2ierf4OAh2KkSKu6+JioFoxRiIpQqJHmz4UCpMMeg4gIrzA3vWC2ott0vbJT3XHZKHpF2CiUe77fb0jqVHuVyus9yucHhplt9/k3eoSr41OYNg2C+1N3hjxBka7TpfTQ3namk4iJDMSiVHu9yhEo2yoErpjk4/EP8ET+43tpXa0pl/i1TWT8m4TgGqpTUiR6HU0lh/tMHdsmGV/SPPEpWkeXvNG5y98/jh3vvYUSRa58v0neXJ/i65mcfZzx1BVT29t4ugIyVwCN6AQjYfI5BOEwwFEASRZQjl0Yh1ueJuGPZhL0/ommz53v2ZZPNjytZZHsjxa97WWCxm2em3efbLGidEcqmLz3uoGF8dGEAMiS/Uar+XH6Fo6AU3mZLzAltZkJJikY/cp6x1GI0lquopuWyQDIfr+zJvlOpT8yuRmv0bTrmK7DgutTdJ+sWKLKiOhHHcaHpXda8NFHreXCUkBfl1xmifdRXJKnCFlmrZdJSoHqGmQDUYHBY2jiSHCUoCNHiSU8Au9tMPgXd3tg+CiOwamqw0E64/Hc9z0iwynsrNcq3iO+frwFE+6q9xv7/OF0SOsdxo87a7w9vA0DjZ72j5nMyMIiAiCzUg44Z3aAYWwJNO3LZKBw3yTzzcwy7Wp+SdoReuy4Wtir/bK1H1ac0WUsCyX3WqNqBxgPBXj3fIK49EUo+EE18vr/MR7/wd/+eoPezQTn9Jeakf7s3/rx/k7f+EXCQRkEKDX7TM1myeoSGyvlEkNecWPAzt8YmkHeEXLQe0ZdFreCeYIIktPvbDg5JUZHtzzQpQTZ8d5fH+Lzd0mZy5Ps1rvcvfaKpcuT9MzDZ4u73H25BiuCG3bYGYsi27bBEIymXiYtqqTioZQJNHj/jgkZChJwmCyu93X2Wh5J9OzSo2Wr27Z2NjxufO9nCyTj/C1jQ1iSoDzY0Vu1bYYj6aYiqd43N3mbKIIgoMoWkTkHEvtEkfiw7iizuP2FlPRHLbj0KBHQJCwDkGhDlD1mm3Qs5tYrkXVaJALJdjt+dcmMcO9ptdOeW1olrtNbwP74vBxHraWWem2uJw5Ss1oUjWaHI9PoogymqUzFEwTlyMERIWgGEAUxBfYu6TD2m2C81zI0NHY07y8SnV6A+ndUERiyb9m+VCCrtnhw3qDsWQGSRC5Vn/GyWSRkKSw2Nrltfw4PdPGdV3Opots9OoUo0lsx2FbbTIZy6C1DVTbJBuIUrI8ZSLDttjSmwBs9ZrUtB6W6/ArO888EPSvVUc7dWmaE+cn+bl//D4AZy5O8uBD/8R66wgPrq+wWO9y6Ysn2F2rsL1S5tRVjyO9Xe8yPlcgkggjBhXiyQiiLBBKhBEkEdd2Xmh4H24fGIZF029yt+o9lva88Klc67DhE+Ek4iFqgsHa0zbJaIhULMwHD9YZL6RIZSPc39jj7NQIsiKy1+1yabrIfqtLIRMj7oR4Uq5wIp9nQ22y2+0wlkxSU1VU0/TCXT987JoGG76iylavSSBo0zY17jd2OJPN8qTtnZpnU+PcaqwD8E7hCDfqzwiIMq9lj7HQ2sF0HC5mprBdA9s1KYYz5IIJghIERYWhYJKIdDAwKiEdZiI+lH8ajj4QMjQcg/We9/3DoQwPWt4pdTQ2ylrPC+Vmo+OsdFu8X33GqcQUbcPhWmWTC+lpwPVm5BITaLZORBYZi6Qpax3yoSjb/QCqZZAOxBBoe8O0koRl+GovtjEIc5c6pUGR6H5rBazoIAcdDSX4YH+NoChzIVvkbmOLQijOhcw495s7nEgPowgeE3REDrPUqnIkmcV0HG5XdziTGfnMGmkvtaMZujnIpYD/TNXzYC6t3zfZXfN6ZpZhsXjXu8nTJ4osLnnvT87m2Cu1uPHBMrOnihiaxe1rK5w8PwHhABubNU6+NoPR1bFjAWZn8+xX2qSGYwwZOtVal3wuwZ6uYlg28ViIatcvS7tQbXmhyHa5yUa3heO63F/fI54O0VQ1tuotRvNJrvtg4jPFYW6ubRNWFN6ZmeKDNU/I8NzkCOv9JolIENO1SUYVxIDLvdo2J9IjhBSBTRpkghHkQyeDcVh61ye+MRyLrqUP+leT0TSLHe8EP5ee4rHPUHU2NcOD5ipbao2L6SOs9/Z52FrlcmYW6FPStjmVnEASBARBYzSc9VEeike+6hjE5a8P3nVw6frraZo9Fv2TaaP3vGVQ1iSioQ77hhf6ZUNJbjSeMhRMMBsd4XZtm2OpERJyiPVehYuZKZpGj1QgxEQkzUJrlzOpcap6l/VeldFQiqrq0LdNJEEYjN/ojsWO6rUv9rUOUTlIx9R53CpxIjHC45ZfqBoaHegK/Inzv47/9sgbH+dx/ab20jraxvI+f+L3/T0atS7nrs7QVw2WFnc5dWUGXBe13WNyvoCpmwRkgWQmRq/TJ56JPkd/xA9pLR/qpakdjT1fuXNzrUrTR9wvdPoYEQm35vH1xosJri9sEgkHOHZilLuL24wWkhTG0zxaL3F6rACKgGXazI9mWdmrMTuWRRVsHm6WmB/O0hdtmqpGOKC8ILLR9Gmw+6ZJpd3DdlxK7S5DQ1E2uy3owpXZ4QEr1OuFST7c9zaQL4wd4UZtlftalbeHj7KlNtnq9DibnESRoG9rjITTJJUoAUEhLAUIiJ4EEq4AgkvwBe2253tY3zaoGZ4zdC2VXc174OJKmA2/MJNV0tT0LnfMKoVAGkkMcr/1iOOJMZKKwIb6jLOpOSzHwXR6nE1Nsq02GA0nsG3Z66slspgti7apUQjF6NHFxUUAan5ltKq3KfUsXOBpe498KE5F71LRu8zFMzxsrQNwLDHJzdoGkiByNXOE9/bXSCoR3srPsNqtEJODKIJMWJYR8Io8R5J5AqLEardKPhgbXA/hI+qro5FPz3x12F5aR9teq9Koehe8We+x/swLUWrVLntLXuyeSEfoVDrsPtsjkY4SH05z84NVijMFkukIjx9sc/z8JHJAplJqcfrCFLVKm0w+TiwRZuVZiakTI+zutynvtxkZTlHSdTTdxBUEWv5pqvYNtnY9x9zdb2EFBXp9g8WlElNTQyz7oeXxowVurPmknscm+HBxE0UWeefUFHe393AMhyuTY6imiWU7TGZS5BNRkARCikwxmSDu64AFJemF6tvh8K1vmYMwqWdZrHW975+KpVloeo5xPDHCg4bPr5gcZkstca32lNOpSQynx73mU86lZnGB3X6Nk4kpdMdAEkTGIzlqepu0EqNlhunZfdJKgr1+FQeHkBTAFbz1WNjU/Lxmu79P1fTu2UrvCYogY7oWsE1CGWKx+xhZkLiSm+JJ5ynJUIyLQ5M86SwzESoQlyN0LJWpaIxdtcNIOINhC9yobHs9QKCsdYjJoReEHTs+XZztOlS1PrYLdUOlZ+sDhc/L2YkBe9fV3AS3/MLM5/JzfFhZp270eGd4hs1eg61ek4uZSQTB5Z+s3OBoouBjST+9vbSOdvTMGKcvT7O2uEc2F6fd7FEvdxjKx6lulDENm2giQrvsXUgXaFS9UGRvu8HuVh3XhcU7G0QzMbrtPqXtBsOTWRZu+/nDpSnuPdgmFFK4eGWau7fXyQ7FGT07ynapSTwVxpQgEvEqkYsr+8xO5yEsslNrk01FCB6wZAkMBg8BOn1/9spy6KkG7b4OfZ3JQooFfy7t0lSR67707pWJIjc2d1ip1vnc7CQLapnrK3u8OTtN19VYalW5mCsiiQK6ozMZy4ALQUEhLgfp2yZx2ROLdwWX8CHqNhcB3T0QtVAp6Z4DbverVH2Fl46povm5l4RIRA5xve5x5x+J5VloLzMZGSEmJ1jp7nEqMYNq6yiiRDGcZbW7zbHEOKbbYKu/w0hohK7Vw7TayIJE3/HRMK5N2XfMltmlZtQwHJMNtcRstMiG6nNeRua561dJ38wf4b3yOgLwufwRHjRWaJoOV7JzNIwuhmNxNJ4nroSxHA+/ORpOEpU9LbuwFCBwCABw2HTXGpxgmmMOgM2263DPl/79qYVf4m+/8bs+3oP7DeyldbShQpKf+ke/n9/9+Z/k9vtLRKJBjh4f5uH7zxieyDA8keXZ/S2OXpxGcF1MG6aSYdZXykydHMNQDZ7e3WDq6Ai6ZdFt9wmFFcxDLFkd/8TSNJN6rYtju1T226RGEpT2W5T2W5y8MMF9n3D13NkJbqz6k9Rnp7j5ZIvmusabpybZqLeoVrtcmBkFQaCrGRQzCVLpCHJYIhJQCCkyYUUZ5DKBQ2Dmw8N7umlR91mZWj2Dhb7nGG1DZ13zHsTRcILtbofVdpOxSIJwUOdr5WWOJkZJhiTuNrY4l54iLBuoTpPz6Un2tTbD4QhheZgNdZ+JSA7TsWiZPfKhJLv9mgeuFWU6B+xdZpc1vwC0oe4Rlfu0rR4L7VWKoRyrPS8HPpkYZbG7iAicTp7mbnORmBzhTOIUW9oGYSlMQCigiDYg8aTpMBbNo4giO/0yhWBmQAwkCeKL4oX2c7yiamsesNkBy7FY8oHN51LTA5ja+fQkt2pbrPTg9fwUS90dbjeWeKswR8dSWe5tczE7gSK66G6L2XjWzy1FUoEwqmWQDISQBLBdGAr+GheLB2j4vTS1p7Oz7t3U0mYdXC/Xevpgi+njRdYWvYfxyOvzg4HN8184zt1rKygBicufP8YTv+F85vI0at/ABsbGM6SHYoiCSDDUoDCSIuKzZAUCEvJhKrtD4ZtmWph+bqfp1kAvbcJOc8dHfJycLHCvXIIynBzNs1yu8e7iOucmR2jYGu9vbHJlsogtw0qrwfmpUW+HjTjMyRkqao9MMELaCtMw+wwFo2xpnvSuN3vlXRsbj+4NYEuts+YjUe7UNyjG+lhYQJm0EudxZw/BFZmPj/Kg9Yy4HOG17BwL7SWmYlkScoqq3iSpxGmaKtlAjIDk8LSzzFxsHNMRaBgdUkrsBZoF3fG+08FzTvByvK7dp2W2aZltjsYSPO16p9R84hS3G/78YPooD5pPqRh1LqeP86RVYbVb4mJmFsM2qekdjsTzxJQgsgApJUJQkokoHn7TcXihffCCPrZreazIAvScHosdD6bWs9vsa97rfDDFRq/HfgsKkTQBXeH96lPmEznCcpB/v3OPkCzxJ8/8pheQJZ/EXmpHEwSBP/v/+3H+0V/5Ja8U77o8vbPG3IkikixS2qqTzidQAodZsg4JSfikPKZho/Z0um2NLhqjk1mWfMc8dWWGB/d8FqYLE9xZ2oNam4vnp1heLfPgziaXL03StkxWt2ucmxlFUERUzWC8kEIQBAJBiUQkSF83iYWfCxmGDjW8BUFA99fW7eus+ji8zWaLHT/5V02DtqxD14NOhSSZr26ukwmFOZVN88H2NnOpAiOpEA/rJS5mx7CwECWbGTnB03aJ0+kCHbvP03aJI/ECSBVaVouQGEA7OBkEh7rPnd+xVMp6Dcu12e6XmYoE2NWq7GpVjscnB4iPK9k5HrefIiDwZvYkjzuL9OweVzJHaRhVbAxmo5MExACWY5OQY+SCGYJiCBGJsBQkcEh72nUPc+dbgwkE1TbY99dmOCYLbW/TnIuNseC3L+bj3on8YbXF8eQY+6rOe5VlLmWnsByBp60yl7KTmI6F5TjMx4apGR4zcyYQpW70GInEqLclTNcmJkcArzIr4NLwm9n7WoeO5W3u/3LjNn/yzG/6RM/vYfs4VAbjeOSoBbzT+2+7rvtXP/KZzwM/D6z5b/1r13X/7Kde1SG7+OYR3v+lR/ziz94A4OzlGe6/63E8Xvz8ce5/sEyn2efiO0fZ26hRXS1z6tw4gijS6+qMjKVJpKMoYYVINEggJBOMBBAEr9qmBA83Tw/t0IY1KIZ0uxqPd70L3u1oLFe8OH5kKMFWt8Nqs8lIxhPLeP/BOnPFLKGYwp2lHa7MjeIEYb/T4+JkkUq3SzoZ5mhkiJVqjalcCr1hUVX7jCbi9DUL07EJSdKAIq2u9ek0vLUsN+u0UOhYOrdr2xzJxNnwVTXPZPPc8svSV7Iz3Kitetz5hVOs9FaJyWFmAkV0x0JEQBElhsMZFAFKWpWxyBBJvxijCNJhKhSMQfjmort9TNf0xTj67Pk5XyaQHohaHIvNsOifXqcSR9jRVnnYesyx2HF2+yYL7S3OJL2eZ8NsMxMtIuASliAXjNGzTBJKCEWUMR2LuPS8gqz4HJTgVUl3fIXRHbXBts9Ytdjco2s/V18NyfBBdZm4HOJsNsO91jPGwkNkAhkeNLY5k5rAdV002+RSNsNKp8KpTJaGbrDQKPNGfvZTn2bw8U40C/h/uq57RxCEOHBbEIRfdl338Uc+967rur/5U6/kG5ihm/S6z0ksHetQ81QzB700o28OOB5HDYvHj72bP3+yyJMlHxZ1dJjV9SrXb61z4vwkLd3k1v0Nzl6cxHVcNrdqnDk2im47uK7L1ESWelMlkYqQ6oRpdvpk0lHkehPLdoiGAwPGS9eFWtvnMay2aVe9Zund5V3chIDluGzVW6SyYVZ3PBTI3HiW93e3SASDvDk5wbWtLcbTSUYyMTaaLebTEXqmQTISRJQF7lR2OT1UwJFM6oZKLhRD8Tk2BBhMFgODYcWupdMyNTqWSsdSyQSSPPMximdTszxqe+iPy+k5nnQeUzfg7dwpVntb7BnrXM3MYbkqLbPBXHScgBTAdR3SSnKA/JCR/GrkoWFa8cWGt+4XQzqWzqqPPmmaXbb73r3JBVO0zBpbfUgHkjg43G0uMB4eIiRFWOg85UJ2GlkIsNMvczEzSdPokwgEOZMe5lm7ylwig+PAbr/LeCzDWreGZpvE5BA95yCc1djwR162+1XKfYO+bfKgucloOMVuvwnAyVSO+61lBAR++uKP8QPF/4xk4BPZx6Ey2MPj58V13Y4gCE/weBw/6mjfdltd3ONP/f5/QKupcu6NOdSuzupqhROXZxAlEVW3KM7kQBRREmFiyQha3yCajiJKAo7tDqjDwUN/WKbnqF3VZGu3DgjslJpUyt7F13WLjl86lyQRZ0jhg8cbJKIhZo4W+HBtm6mRNIVkjIcbJc5Nj2K5NqbrMJpLsLxdZX4iR8c0eLJd5th4jrLdZ7/dJRpQfBpuXyDeFzJs6zo77Ta267JRbxIKymx32mx32pwrDnPDp0t7fXSMa2VfyLA4z3t7G7R6Fm+NH2FDrdHWLE4nx5EECc22yAXjjIQTRCUBRZCJyiECwnNnOCx95PDcSS1Hp+WX6R00VnreKZlQYix2vBNrIjzKZn+Xfb3KVGSMttXlXvMRxxOzuK7LUmeVU4k5HBwMR2UqMkXHbBOTo+SDaap6k6FgiopWQ3dNknKUlum1KSRBRLUPijEdOj6r17POOg6yV8Y32qSUKBs+mdFMosCd5jPCUoC3CpPcqa8yGkkxGh5jo7/HfGgEzXaIyjJBSeRZd50TyVH6Ftyt9ymGkwNiWkkQnofZuIxHM5/m8X3BPlGOJgjCFB5/yEcJVAFeFwThPrAL/FHXdR99nf//E/E6bizvD4oh3bbGks9E1e5bbPlT1bmRJJVyh+1yh9xwElESuH5ng8n5YaIRhYcLW5w8M44kiVQrbc6cHadS7ZBKR5gNyaxvVBgfy2DbLvVal9xwEq3SwjRtgkF5oDfW7mk0S97r9f0GbVVD1U3uL+8yNppi0y+GzE8NcW3Tc4xLp8f5cGuLSEDh7aNT3NneJaUEOT6co2eZiJJASJYZjccRRZHtVovpTIbkAfmq9JHwzXmef3ZN05+9cujqDhs9L3wqRtLc9HOZK0MjPFNXWVHhXGqGx+1ttnurXM0eoWPXedJe4WxyHlk0qRtVZqPe8KgD5IJp+rZORAoTFAPojkFUigy+XzmESrFci7oPHq7qtQGQeLW3ieV6Ia+AgITEvv6YgBBkPJLnXnORfDDNWDjDYmeFudg4ASHIvtbjdLLAvlZjOJRBsx0etzc5kRinamjs9GsklcgLo0kH6Je+bbCv1UFwKekNYoEAdaNN3WhzIjnGQutg/KY4yD+/OHyCm/VnKK7MO/k51tV9LNfmdHISAfiHa1/ijx//L8iFvgOyTYIgxIB/BfwR13XbH/nPd4BJn5//B4GfA+Y/+nd8Ul7HE+cnOXpmnN3NGslMlGQmQquukh6KsbtRw7YdItEQ+P0z13Fp+BjF/XIbTfXClUcPtlACEqZhs7vdIDUU9yqTAkwfH+HOnQ0ikQDnrk5z9+EWw4UEI4UUWzt1JofitEWLeCyEGxJ5sLHHsekCjuNS7/TJp2ME/F6aKAgDIQnweC0AVMOkpWt0dIOObjCcTfBo30NZXJ4qcn3HbxlMjPPu/iZ04Z2JKe6XSyyUKrw9Pk3L7rPdbnMuO0JAkjAdh5FI3NNaVkRCkoLzEe78wKHJYdt97qhdS2Nb876/aTapGV6V1HFd9v2+WkKOYdomt5uPyQVTFOQQD9uLzEUnCUohNtRtTibmUS0NWZQ4EptmS91jJDSMIiqUtArFcIGyXqJva8TkCF2/ZWC4Ok3NJ3/VGzhoWK7NcneLtFJgp19nq19lJjrKg5aX551NzXG/uYoiSLyePcqdhpdzXkyPUdHaKIJMJhAjFYiCK1DR28zGCsR8ZuaEEiQgPn/kLPf5Ca7amj+bZmK4Bvu+LPBIOMM9v5f3D9f+E3/s+G/9Vo/sN7SPSwmu4DnZP3Vd919/9L8fdjzXdX9BEIS/KQjCkOu6n5oSHKBQTPOX/ulP8Dve/HPcfvcZ8WSY+VNFHtxaY2xyiKGxNE8X9zh2fgLXcjBth+HZHGurFWZm86iqztLiHrNHCrRbfSr7bcJhBfNAI82FRsMXTlAN9isdHMdld69FNBykXOlQrnQ4erbI/ac+RvHCODdXvddvnpvig2cb1Op93jg5xXqlgdo3OTc1iigJaJbFSCxGIRUnHJAJyhLxcHCABRTcF3XArEPdtL5l0tR8R9VNHvhifflIjHs1zzHnU1k2jD22K3Asmaeidfny3grnMhMgury3t8eV/DFCAQ/veCIxQdvskFCCjDBERW8wFMig2jX6tkZSSVDW27i4BESFtuXTCph9GsbBiMkGAhI2Do/aSyTk2OBzheAI95rPkAWJE4kjLLSXSCtxTidnWO5sMhYeIyjJaLaISJBNdY+JyAiSaNM2uxTDeUQ8x5A/MnHQ8blHTNcTXdQdE90wGQlnWfN7eefS0wOOyUvZGR62noEGXygcYUVdYt9o8sXCcRpWg5a1z8nEJAFJRLc1CiGPyTkqC4REBVEQiR7aqAqh1Kd8ij37OFVHAY+38Ynrun/5G3xmGNh3XdcVBOEKHv/jf8ZU/GnMMi26be+B67T6aKteIr29UaVn2ag9gycLO4xPZtna8L5y7ugwD254O9H512a5e2uNUEjh8ptzPFrYIRINMjNfQO0ZCJJAKKQwVEggSCKlcovxsQzRuB++hRQE5esPIqqGieW6WJZN3zLZrnunQTGfHBDxnJsa4faWV5g5PznC/co+766u89rkGPudLrdWd3hzagJDtNloNDk3NAwiuA5MJJJ0TZ1kVCHWVehaJqlgaCC9G5EVMJ6v62D2qqS22ffxivdrJYKh1mDNCcWh2iyjiBKF4BAf1pYZCiY4Fp9iobXMZGSUmBKh1K9xPD5Hy2yTUhIIgs1SZ435+DRtU2VHK5GSvaIFAK4wYEW2XJuqHz42zA51o0PHVumoKhPh2QGw+VRi5nn7IHOchfYjJEHkzaFTPGnv0LE6nE3Oojs2qmUwFs6RCcYQXImwFCAdiPnKOF5epQiH8ZvP75ONTt+nMncElV3N26iGg1medtYBmIkUWe+vUTPhVHqCilFhSb3Dm7lj/Bfjv4Gr2SPf/EH9FvZxTrQ3gd8NPBQE4Z7/3v8ITHg/yP1beOzEf0AQBAtviP53fDuYiq996Ql/9y/+IkdPj6FrJtGEp4/25OEWcyeKIInUaz2GcvHBkKYgeMj+A+t0nqM/uh2dXtf7UxhOsezjJ09fmeKe38w+d3GSG0s7UIarr01zf6/Mw90Kl89N0lJ1dnaanJkaRpYldMNmNB0ndID6CMg4rkvk0PhN4NAYvXMIptXTDdZ95cpKu8dTf5LZBUq+umYyFKQf0vlyaZVCJMaIHOO90jonMnmSgRAPartcLExhYmA7Dhey4yy3K8wks8S0ACudKvOJHC3XpGWqpJQoJp7TmY5NyS8yVPUOAdHAwWVN3WU4NETFaFAxGsxER3nsF0BOJGZ51F5BEkTOJE5zq7FEVA5xKnGCfa2KLMhkAklfudOlZXQYixQ8OJgrkFCiBA4JGdqHTvCD4oNXodRo+sUYNwyP/V7aqeQ0C34oeSI+zf3mFiWtxuXsLFtqjXvNJa5k59Adgy11j1OJKRCgb1mMhHJYjkVIChIRQ/QdjagSxoOPuwTlw3yTDn2/GGPR/cxOBh+v6vgeL/LDfL3P/HXgr3/m1XzE/v3PXGfHL9mfOD/BIx+jeObqDPdveSHC5XeOcvf2Bs1mj8tvzLG9XqHd7nPy3ASC4I3Q5AsJsrk4oaBMMCgTjYUIRfzwzZ+mPrDDbFV9x/YwikDPMHmy7p2m+WyMByV/enokw/J+ndX9OjPDGapGn689XefUeAEBgdsr21yZ8SgOyu0OF4oj1Pp9osEA05k0280Ww4k4+1aXpqGTj0aoGF2PrUqRafqT1B1DZ1/1QrTH9TKKKGC6Dh/u7DCaDlD1tdRmExk+rKwhIXA566HaM8EwVwvjLLTXyQdHyYYUTMcgKAXY7deYjGYJCDaPO10mIsMExAAlqgTFwAtMxM/F4h3aVg/LtWmZPfq2xZ6fc51Kzg7Gb04l5lnw2wfnUsd40l5mpfuUy+mTlLQmm70SpxOzSKKDZncZDeUJSWFwFWJSGBAIis/xm4fVRgXBm0IAj9ag4ueWLbPLes+LJmJmiJ2+t4FllRgGLSpGg1wwTUyIcKfxhOlokagcZKmzwcnELA4Omq1xLD5DWa+RCaRY624xHRv/hE/vi/ZSI0MmZvPcevcZwZDygqqndQj9ofXNAUW3rpns+fThxfEMC3e9EOXomTGeHDAUnx5jcb3C9dvrnLk4SbWtcvvhJufOT2KILqvNFiePjnoyuq7DeCFFV9WJxYLEIgG6qkEiHkLc99Af4UPC8bbr0uh5J2i51aXc9h7+RxslerJ3ym7W28hRiY16E1kUKSYTvL+yQSYS5rWxMa6XtpnLZBiKRllvNLicHafhqqSUMIII96q7nMuP0DF0FhsVRqNxFNH7uwWeMxHbuJS159K7NaNDz9JZs8okAqMs+QLx59NTLHU9AMC55BEWOosIrsDlzEmWOmvU9Bpnk0fp2Sqq3WcqUiQmh7FdiMsRUkqMsBhAcAVkUXqBSuCwmY7lNbkFrxiy1fc2LdM1Wel64eN4eJQHzQP2rmG2ey0+rC1yND5G33b4sLrKhfQsgiCw3q1xOjmF5hiEJJfpaJ6y1iYfitEworTMHrlgnJJWx3ZdonIQzX9OLMemZnmOua3uY+P1PB+1VwhJ8kDYPq0kuN1Y4H7zCX/9wv9EIfQdUpP5Ttvv/3/9ICNjaf7xX/kPPL6xwvk3j9DtaOysVTlxdhxRkdEMi5FiGlmRCCgS4UgAy/KZiH30bij44s0/cMyeZrLtE/FUah2W/UamKwjUmp6ThEMyWhDeX1gnm4gwkY/z4dMt5opZUskwD7ZKXJgpYto2hm1zcarISrnOdD5DIhxieb/GkdEcG70m9V6fdCRE00fJW45Dqe07g9rHbdZwcVmq17Ach71uh71uh2PjWW6WfJT/2Ci3qluIgsD3TU7xQXWZiBXg7cIMq50aiihxJh0nFhRwcOhYYWbiaTIBF0kQyQQiA7UXXGEgLgHPK3Gu4KI7Ol3/NLVdi9Wet2kdi8+w2PGktGYiMzzubLKnlTiRmGGnX+Z24ylnkkcxHJ2l7hbH4/M4LrQMnbFwEcMxkQiSUuJ0LZWEHEUSJGzXJiyFB2sREAfTBG2zz6bq3aflbpWWD5FqmiphxRf/cEVSwQgP2wvE5SgXYqM87T5jPj5MOpBkq7/JqeQ0fcsgIImMi1mWOtscS0zQNrtsqHuMh4bpOl0Mx0QRZPr2AXuZjSJ+/Q3k49pL7WgAkijSafgUZe0+S4+8Xloml2Bl09v9RsczbK2W2VotU5zM0ukZXP9ghbljI0gBmfv3Nzl9fgJEgUpD5dSpMRoNlWg0yNRElp29JsOFJLWKSaOrkUtHafoqM+GQQtsv03f6OhV/YHN5p4bcktBNmzurO+SSUSr+lPXUWIYbS54zXJwpcmtzh3goyFtzk9zZ2mUikSSbjNDp6YQDCuVej2Iqgau41LQ+R7JDRBSZNSCqKF6Y5FvfZ951XJeW2cd2XTqmTt82B9PDr0fHue9zfFwZmmRJfUypA1ezR7jfXONuo8mVzDF2+jUeNvY5kz6Oi8VWr0cxNEZElhFcSCqeblxICg6qgCHxEBfKIYIebwrAC21bZpetvnefKnqDXR8ilZCjNEyNVZrEpQgxOca1+iITkQJpJcpCc4NTyUlcV6aidTmTmqHcbzAUTBMUI6x095iJDbPZq1Az2gyHUvRsAwsLWRSfV0mtHhuqdypt9UsYrkrH6rHYWWEsnGfFR6bMRsd51H6GiMC55DHutRaJSWEupE6w2tsgJkcYCmb59YW3SCufbQD0pXa0a//pMe//x4eMzeRo13vEwzKxRIhuWyOZDiNuCwNO/QNzHJeW75iV/Q4tvxjyZGEHXfYejJ29JpFIgJ2dOoIoMDqV5dbtdRLxEBdPj3FncZuJ0TTZoThrtQZnxkfpaTqxcBBRErm/tsupmRFU2+TJboWRTHyAshBF6BvPVT1rPvqjo+nUen16hkmv2iAVDvGs5OU1F2eK3PCb3G/OTfCur/D5zswkNxs7rLZqvF2coqH1afT6nEoXiCpBLMcmG4iSDnmnlCyIyKJERHmecx6KuLFde1AyV21jkL+0DJNl/8RSpAI72joAI8E8VaPOneYjxsMjOK7DvdYTjsZmkUWBzd4up5OzaLaJgMBsdJyyViMbSKDaKjWjyVAgQ1XrYrgmUTlC3S/TI0Ddr4xuqzX2hAouLovtNQTi9CyN7X6VTCDDncYaAgJH4kXuNlaISiGuZOa501ilEMozGY1RNeoklRiq1ScZiCIi8Li9ylxsHFFwqBlNUkr8hWHagxPTwaVleZFF1+7TtVXaVpe21eW3jH4/rw99NvgVvMSO1mmq/M8/8Q8AkGQR2TC49ctVktkY01M57n35MRPzw6Qmh3i6sMOp02NYjotp2pw+O876eoXp6SHaXZ3V1TKzR4bZb/ao1XvEYsEB9bfruNTq3k7Y7mhsl5q4wMZuAzssUm50KTe6HJ/Mc3/Z26XPHS1yZ3kXQYC3T0/xwdIGQUXmzVNTLFVrCKLA2clhBNFTUBmKhRnPpr2xG1EgG40SkZ9jFF8Ukjg0feBYdAyfMdmyWah5O3EhNjJg3j2bHeFxe4vldoVz2VE6bPOw+5CrQ3NotsGTzipnk3MIok3b7HAkXkSzTRRBIRdM0jJ7ZAJRAqqM4VrE5TBNv2gri5I/Ie3RI1QN72Ta7u8NqnJLnWcYjjIo82cCMe61FgmJQSZCs1yrbTISyjAfyfKouc1MdBpJcDEcl/FwgE11h+noKJarsdTdZCoySsOw6VkaYSmAYR0wEbvU/SmHnq2xr7ewXJudfo1sUGZPq7KnVTmRmOSRTxJ0NjXHw5aP5cyc5GHzCbqtcT51gqpewXQM5qMTBCQF27VJSFGGw1kiUhARgYj8Ivrks9hL62iGbg64P8IRhW7Ld4ZGj07fLywslairJppq8OjuJvmxDPs+/+PUXJ77N9YQBDh7ZYb79zaIRINcvjrDw8VdsiNJctkYTcckGJDplHsMjSRwQhLVjsrUeJZwzAuTIiHlhbrrAXWc63rhpO24qLpJzzLZ8wUvRlIJbvlDohdnigOFzyszY9zZ2OVas8ubcxNsNls82Njj9alxTMumVOpwJltADkkImsBwKI4jOERkmZAko9sW8UO0Z8rheTnHoeN64Wvbag84Pjb7dbq2d3qGxSB1w2FdrRAWAyQUhVvNxxRCGYYCCR631zkanyMqy2z2GhyNHaVjNYnJCVJKkrXeNmPhKRpGhapRIR/MU9a7aI6OKAh0LO/7NUdnU/W+c0+r47iegzxpbzEVGWbdn6Q+mSx6rFXAxfQxbjeWCAoKr2WO86C5SVCWuRCfQfPzpYAoUQglkUWXXVVkLJIlJnvIfkWQEQ+B1gyfBQu8jcLCO9FNx2BP8zatXCgzmDg4Hp/lScdby4nEPMuddf7O2r+gatT5ryd/5Fs9st/UXlpHyxaS/K8/94f5hz/171h7sMH4xWlUVSeWiSPKEk/urHHk7CSmINB5qpEbThDwR15EURgQ8bgutPzChtrTaXU0VNVAVQ1SI3GerXnh07njY9x64jnGhfOTXH+6CSVvkvrByh6ru3VeOzlJTe1T7qqcnCoQDMgYtk0+ESURDRGWPPSHKIqED4VvLwyPOu6ApKdvmGw1fCqBrsbjkodwCIRklmqekxQTCfZo8ZXuOtPJFG7Q5mvlVc5kRgjJMgu1PS7npzAxsTGYC09TMyvkQklM12K3X2cskmaj16Hv6CSVOA3DQ3+IgkjLz2v2tToVreGFb50tEnKEtqVSqTeZiqZY73n9q4nIFDfrqwRFhTPJM9xuLJMJxDmTnGG5UycdCBOSLEQhhO3IPG1vMRcvIiJS0hoMBRIDaJiAl9sd2ICF2DXp2n06/p/RcJpnHe/enEtP86jtFWMuZee511yipMOVzDHWels8a29wLnWEvq1RMRrMxyYISgqOa5ENpAiICoqoDBjEgodzzkMNb8d1MFzPUQ8mDD6LvbSOBjB9dAS10aWy06Cy0+Do1Xke3V4H4PTVGR5e927+5V93itu3NpAbKpffnGNztYphWJw4N44giRi2zVA+QX44gRJSUBSJRCpMMHjQSxOQpOdHlnUofNMNi67fS9Msi0V/Lq2QjnF7xW8ZTOR5tFtmea/G8ck8G+0W7z7d4MLUKH3H4sbmNpenigCUOz1Ojw2j6gZBSWYslaTa7TEUixINNOkZJulICEHzmtdBWcI0DsT6TMp+WXqpXaVveQ/CB3vbJGKWpxfdhtmUzK36EoogcT4zwmJniWwgyfHIJI/b6xxP5JGEMD1LJ6GMsK/tMxbJYbs2j9rrzMVGMRyLtqUSEYMvTJYfQKG83lUbB4eq0SKlp9jTWuxpLc6mJrnvkwSdS85xt+mdElczx7jVeEbT7HE1c4xNtUxF73EyPoMguPRtg+FQhpSSQBYChMQAETlI8GB62hWQedEZBvfJMQfFGN02WOp6eW4mkGCx44WPBxMHe1qF6egYHbPJveYCx+Kz2K7LYnuFk4l5HNehZ6nMRifoWD1EBEpaleFfq+X9x7fXCPpjLqFoEEk+VOUyDk9S6zi2g2E76H2Tfb9kPzKe4YGP+Dh5dpxH973XJ65O8WCjQuXOOlfOT7LR63BndZcLZyfQBYeNepsTM8NIooDpOIwOJTBMm3AoQCSooOom8fDznfAw94ftuANinlpXZa3lrWWt2qDa9fKaYEtCt21WKnWCskQyEOT9x+vkElHmZ4e4vbPHieE88USApW6Nq8Nj1LU+yWCIMTnBw9YOZzMjVLQeK+0a0/E0falFy+wjCwI9+0CH2qaseSd2zWgRlBQ0x2BN3aYYmmC151VtTyfHBuSnl9Lz3Gs9RRYkn3x1la5lcypxlKapYjsOk5FhkorHoxGWAuSDQ4R9ZH9IDLyA33yB/sExDrESG+xpHjJlPDLEk7a3aR6LT3G/6VO8JyZYbO/wYe0Z51Kz1IwONxvrXEgfRREN9rUyJ+Lj2Ai4rstwKItq6YSlCGEpSN/WicnRAcXeC6gU16ZpesWYut6g7OefG+ouXT/89VRrBMp6jfvNRf7+5Z8ieAi0/UnspXW0//gz1/j//vGfAeDi95/i6f1Nnt7f4MLbR2k3VfZ3Wxy7MIWciKA7LvnRFOFwACUoEworuC6Eo4dymUNQKBdhQB/eVw12K74mmNrn2X7N/7zEds17fygRodnXeP/ROiOZGNlEhA+ebHBsPE8kJPNwe5+Lc2OYjk3fMTk3OcJ2vcVIKg6KwFq1wdRQCtN2aPU1cvEoe+0Oti95W+34VdJ2j5qs4wJPShUycpiy1qO812M6meZWySvGnB0vcG1/E1kQ+Xxxkg9ry2TEMN83OsWevklMSaMIQQKSiCSAYW8zGx9GFiT2+lVywfSglyYK4gsng+o87x2ploZq62DrmK7Las/Xnk7Mcq95MD09x+3GOlDhUmaOlc429xtrXEwfoW2prPVKnE5O+TNeKmPhIa+xLSpE5RCWYxOVQs+hUB/h/jhgqOrZOlt+zlfVW9TNHf9euuz7kLW4FEFzLK7Vn5IPJkkEs1yrLTMfnyIbkFntbXEyMYdmm7jAXHSGPW2PscgQkiizp1UohvNsqnseyFpO0PQjCMu1P7WTwUvsaOWdxuC1rj8HFmuqzrI/l5Ydz/DYR3xMzeRYf7bP+lqV6bk81XKHG199xrEzYziiwP2765w+P4EdUdhv9zh5bJRuT0dOKEyIaUq1NrlUlFKnS1vVySbC7NRaHg11UMHyp6f7hk3DL8ws71YxRO9BuL2yTTgWoKd7JePhZIzrz7aQJIEzkwVure2SiYZ5c26S22vbTGczpKIhmt0+yXCIUrNDMZ3EDLrc3N3hxHAeM2Szr3ZJHBJxAAaVSMt1qBs9v1Tex6RL1WhTNdqcTk7zsOWFb1ezkzz2m8yXM8e5XX9GTW/w5tBJNnp7lPQKZ5NzWK5Nx1QZCxWIKxEkQSImhwmJXhjn7e/CR5q3hwHXFh3LCy17ts6zjndvVFtns++dUsXQEKu9Gqu9MmPhLD1L5Vr9CUdiRSRB5E592eebFKhoTc4kJ2kaKjEpxGQkx55WpxhOYrqNwcR4Re/i4EG0Wgffb+mUfVjWcmeHcsDCdh0etZeJilE6/qk/E0vwuPMYGZnTyWmWus9IKUlOxo+yqq4wHx8mLmX5LcXv/2QP8EfspXW0H/q9b7O1vE95r4ltO4xODdHv6UTiYaLxEL2OxthMjuXNutdLO6RJbTvugEquUe2y75fvV1cq1P2P7e23MNIS9nITWRLJJqNcf7BBOhnh/HyRe8s7zI5mSScirO7VOD9XpKvphEIKU1KGx+slTk2P0NT6LJVqzBQytC2dnm4gS+Kgl2bb7gCKVe/12Wt20Cyb5f0aJ0fyrOx74dPZiRFurvlzaScneH9rE0GAL56a4dr+FrW+ytvj41TtLrpjcSKdJ64EcQSXuByiGE0SELzxjrAUYCiYHFyPF2WQrOcKn45XMABvx37U9hzzaHycJx3v9Vx0jJXeHtXGE47HJ6nqPW7Wn3E2NYvtOqx3tzmbmvJZiW2mogU6pkpcDpFSorRMlZnYCDvaLrbrEFMiQBPwcuO2H6ZVjA4NowMCPG1v0PcLRrtaHQmZzX4FEYEjiRgP249JyFFOJ+ZYaC8zHR0hLsfZ1qqcTnrTBTE5jCCIPG2vcyo5juZ22VL3GA4NeXK7Nog8n+S2sKgbXjTTNFtEpAiq3WdT3eKPH/1RTiePfvqHmZfY0ZKZGL//T/0wv+cNj+MnEg9hWC633n1GeijGT/6TP8zcyTF+071NVp7u8Rt+6Dy//G/vce/GGr/1d77Gf/qF+1z76jN++Meu8N67z3i8sM25S1Pc265Qb/TIZePsooHtYDsO5boXfjRaKobk4rqwslNjxDCptVVqbZXZsSwP1vy8ZmqY20vbiILAH/3Rz/Fff/EC7b7Ov7r+kB84d5R2X+dv/McP+Y3njuCK8NO/8DU+f2yadCTM3/1ag8lsirFMkse7ZWRRfKFMf1DkcF3oGQaq/++GYLPY8qqRV/LjXPdpDS4XxnjQWmOxBb9x7Bz/y4UfJSqHuLJ7lOFQmmPJcf7R2s8Tk6NcyZ7ib638awQEvq9wia1+hb5tcCwxwdPOJpZrkwrED0ihEIQXiXAO8qqy1hi83u3vUfHlgmVBRMbhRt2jsvtbl/8wRxNjPOu8zWJ7g98wfIUv7d/nWm2R3z7+Nl8q3+Vr5Qf8tvHP8WHtMQ+aq1zKHGWxs0tFb5ENxGn6TMQOLlXd2xjaVo+tfsnreap75IMWVb1JVW8yFSnyqL0OwMX0GE+7S4iI/J7JH+GHit9Hz1L5xb13+VzuEn27x/+x/fNczVwE4J9v/UvOJk8Rl+PsaSUygTTDocJnfp6Fb8M0y6eyS5cuubdu3fqmn9ndqPIT3/+TWKZNdjhJrerd/WBY4ece/vlv+R2O4yCKIrbtsLtdZ3xyiHanz7vXlvni20fZKrf42V+6w4984Qw7+03+/s9f5wfeOkFL1/mnv3yby8cmUBSRrz1cIxEJUiykeLzpK0EWh1ja8XKG//UP/DBvn575pmtxXXcApdqqNymmkoiiwH948JRTY8Oko2H+5n+6xpHhIU6OF/jTv/QlxpIJ3jwywZ+7/hXCssKPHDvK//bkAxzX5TdPHufn1z3aljdGxrntj4/8lvHT/IXL33wS+PBa2j5uMKFEWe7s0DQ7XMoc40v7N9lQS/zgyBv83M67PG6t8aNjn+ff7lzjSXuDHyq+wVfK9ynrDU4nZnnQ2sFwLDKBGG2/yKAIEr/8xZ/61vfJdQa54k6/xngkR8fs87XKQ76QP8tuv87Pbr7Lby5eoWHU+Gcbv8gX8pfp2xr/evtLnE7NIwsBrtcfE5VCjITzAwKik8kcG6oXwv6Px/97LmdOf9O12K49KPNvqTuMhArI4sc7jwRBuO267tdVlH+pHQ1geWGbr/7bu/yW3/MWD2+s8gv//EN++Mff5nO/6eyv6voanT7puAdyfX9hjfNzXnn+H//KbV47PkE6HuGnf/YrnJsd5Xd94TyR0KdPlL+VdQydiKwgiSJPGmXCssxUPMO/WXuEZlv8pslj/I3Fr1HRuvyBY28zE//0ZehvZa7r0rM0YkqYnqWx2N7kYsZToPmV0j1+ZOw1Hrc2+T+33+NHxt7knfyZX7W1ALSMDsmAh8m8Xn/M6eQsAvAzm1/iQvoImWCMv7P6MxyLz/Jbi99PWA59y7/z09pncrSPyesoAH8V+EFABX6v67p3vtnf+3Ed7ZW9su8V+2aO9u3idfwBPDKeeeAq8L/5/3xlr+yVwQtsZl/XXNfdOzidXNftAAe8jofth4F/7Hp2DUgJgjDybV/tK3tl36P2iTiOvwmvYxHYOvTv2/znzoggCP+dIAi3BEG4ValUPuFSX9kr+961j+1o34LX8WOZ67p/23XdS67rXsrlPpuw2yt7Zd9L9rEc7VvxOgI7wGH2kjH/vVf2yl4ZH8PRPg6vI/BvgN8jePYa0PI5+1/ZK3tlfPt4HX8Br7S/jFfe/33f9pW+slf2PWzfLl5HF/iD365FvbJX9mvNPr2y2it7Za/sY9t3DYIlCEIF2PgYHx0CPpNYxnfZvtfXD9/7v+E7tf5J13W/bjn9u+ZoH9cEQbj1jWAt3wv2vb5++N7/DS/D+l+Fjq/slX0H7JWjvbJX9h2w7wVH+9vf7QV8RvteXz987/+G7/r6X/oc7ZW9sl8L9r1wor2yV/Y9b68c7ZW9su+AvVSOJgjCHxYEYUEQhEeCIPwR/70/IwjCjiAI9/w/P/hdXuY3ta/3G/z3/++CICz67//0d3GJ39S+wT34mUPXf/0QFO+ltG/wG84JgnDN/w23fK3175y5rvtS/AFOAQtABA8a9ivAHPBngD/63V7fZ/wNX/BfB/3P5b/ba/0k6//IZ/4S8D99t9f6Ke7BLwE/4H/mB4GvfCfX9TKdaMeB667rqq7rWsBXgR/9Lq/pk9o3+g1/APhJ13V1ANd1y9/FNX4z+6b3wJ/k+C+Bf/5dWt/HsW/0G1zgQE0wCex+Jxf1MjnaAvC2IAhZQRAieLvOwYzb/00QhAeCIPx9QRDS370lfkv7Rr/hiP/+dUEQvioIwuXv6iq/sX2zewDwNrDvuu7Sd2V1H8++0W/4I8BfEARhC/iLwJ/4Ti7qpXE013WfAD+Fd8T/B+AeYOMR/cwC54A9vNDlpbRv8htkIAO8Bvwx4GeFw3q5L4l9k/Uf2H/Fy32afbPf8AeA/8F13XHgf8CbsfyO2UvbRxME4c8D267r/s1D700B/8513VPftYV9Ajv4DcAPAT/luu6X/fdXgNdc132piVMO3wNBEGS8qfmLrutuf5eX9rHt0D34/wAp13Vdf5Nrua772YSpP4G9NCcagCAIef+fE3hx9T/7CJvWb8ULDV5a+3q/Afg5vIIIgiAcAQK8pGj4b7B+gO8HFr8XnOwb/IZd4B3/I18EvqPh78vGvf+vBEHIAibwB13XbQqC8NcEQTiHl8yuAz/xXVzfx7Gv9xv+PvD3BUFYAAzgx92XNZT4Ouv33/8dvORh4yH7evfg9wN/1T+ZNeC/+04u6KUNHV/ZK/u1ZC9V6PjKXtmvVXvlaK/slX0H7JWjvbJX9h2wV472yl7Zd8BeOdore2XfAXvlaK/slX0H7JWjvbJX9h2w/z9iaK+DB0iSWAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gdf_no_area_lg_def = get_h3_vector_statistics(\n", + " \"../../datasets/raw/h3_raster_QA_calculations/preprocessed/def_area_kernnel.tif\",\n", + " f\"{FILE_DIR}/satelligence data/AcehMills_indicators_50kmbuffer.shp\",\n", + " column='def_estimated_count',\n", + " resolution=6)\n", + "#save\n", + "gdf_no_area_lg_def.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/lg_def_no_area_ha_h3.csv\")\n", + "gdf_no_area_lg_def.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "77f573da", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FIDgeometrysum
00POLYGON ((98.47767 2.24508, 98.47550 2.20109, ...143.095114
11POLYGON ((98.44488 2.31416, 98.44271 2.27017, ...169.505203
22POLYGON ((98.40582 2.39111, 98.40366 2.34712, ...197.194828
33POLYGON ((98.36445 2.43594, 98.36228 2.39195, ...216.081869
44POLYGON ((98.51418 2.45678, 98.51201 2.41279, ...185.922822
\n", + "
" + ], + "text/plain": [ + " FID geometry sum\n", + "0 0 POLYGON ((98.47767 2.24508, 98.47550 2.20109, ... 143.095114\n", + "1 1 POLYGON ((98.44488 2.31416, 98.44271 2.27017, ... 169.505203\n", + "2 2 POLYGON ((98.40582 2.39111, 98.40366 2.34712, ... 197.194828\n", + "3 3 POLYGON ((98.36445 2.43594, 98.36228 2.39195, ... 216.081869\n", + "4 4 POLYGON ((98.51418 2.45678, 98.51201 2.41279, ... 185.922822" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANoAAAD4CAYAAACKefjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZBke3bfh33ukvfmvlRmLVlZa1dV7/v6tpk3GBAwAUIEg5tJETS4WLQJAWGSQYoKByVLskmFJYaDlBUkRcGWBJkWTYIYGAJBrAPM23vfl+ras3Lf97z79R/3dlX1I8B5Mw8YPNHvRHT07czsyl/d+zvn/M453/M9guu6fClfypfyeyvi7/cCvpQv5f8f5EtF+1K+lO+BfKloX8qX8j2QLxXtS/lSvgfypaJ9KV/K90Dk368vzmQy7tLS0u/X138pX8rvuty9e7fhuu7kb/fe75uiLS0tcefOnd+vr/9SvpTfdREEYe93eu/Lo+OX8qV8D+RLRftSvpTvgXypaF/Kl/I9kC8V7Uv5Ur4H8qWifSlfyvdAvlS0L+VL+R7Il4r2pXwp3wP5UtG+lC/leyD/i1W0ntnkV8o/w97wGQD7w5sMzCoAht3DcrTv6Xpulvb5D37rl9lsNxkZJj/76Ck9zVtDvtXBdhwAvhf9f7bj8KsfPOfv/vSv0xuMqbcG/NJvPcW2vTXsl9oHn/1erMfQLX7+G3f42X9+C8dxKRRb3H+YB8BxXNqd4e/5Go6Kppl84+dus/6iDEA+36Td9tZg287BffrdFOH3q/Hz6tWr7udBhvxXL3+Kul5AQORKYo269iEBMcK55L/DZvdnCcoTnE3973jS+ZeIgsRbkz/F7vADNLvLtcz/ltK4SEUrcH3iq1iuRUWrMB+eB8ByLGTxs4NmWuMRl3/mHwCgSjIToyCN4ZjpWJTrM7P8q6cvOT+X5UfPnOS/++Au15bn+LE3LvJPbj7k2OQEP/7mZX7t8QYRVeGrp5epdweMdJPFqRQAummhBj77ej68u8Xf+L/+PAAnjk2xm29imDYXT89hjgyeb1T4X33tNDOTCf7nX3vIn/zDVzm3Oss3fu4Of/APnuPCxUV+7RcfcvHaEvOLGfK7DdKZKJFoENt2EAQBURQ+83p++r/9Lf6nf/IRAG9/7QQf3NrCcVz+2I9e4dbdHer1Pn/pL7xLodjm3oNd/spP/iD62OT9D17yZ3/sLaIRlQ9/8wXv/sAZ1GCA8n6L7PzEZ/7+T8tf+yv/Lx4+yCNJIl//wbP82m88IZEI86f/1Bv8wi/cJxxR+Mt/6eu895vP0TSTn/jJHyAaC37bnysIwl3Xda/+du/9vkGwvlOpaUVCUoRYIInt2oxtzwK5OAysEgCmM6Q6voPljhiYI9a736A89jzeB7W/R3n8AIDdYZmbnW0AnnYf8Ki3Q8/s8QPTP0DL6PK4+4Q/MffHGFlhfqV8n79w7AeYCaX4xeItfiR3nWwwxfvVLa5kFojICpXhAAFwAVEQaAzHAFT7A94f7OICDwtler0xxU6P4v1nbNQaPC3WAPj4xS43n+8D8Meun+Vf3nqOIMBf/sE3+c1PXtLsDvkbP/Z1nu9UebZT4W/82Ndp9oZ89HSPH/+DV5FFkdsv9nn73DKiKNBoH3oI13ExTNu7h40+laLnzb718QaabgLwj37mPVK2xHCo8957L1idSbGzWUNVZb76A2f49V9+RGYqzp/4d9/g5//ZbSYyUf7CT3ydX//lJwgC/Hs/8f3cu7NDuzXkR/7IZfq9MeVihxOnZwHoHvFYvb6G43jG/eVmhf1CC4Bf/vXHvNzwTiT/5d/7V5T3vHXeurWFWR0wGur8f/6HD8hmYtx5/yXX3z3BpTdX+MbPfMTXfvg8X/uh8/z8//gRl95c4as/dJ73f+UJc8sZVk/N0mr0kWWJeDIMQKPRBzzvtb1Tw3Wh0xnx3nvrFH1v/zP//fs8uu953Wg0yE/81A98N9v2QP4XoWi/Xv1n/Eb1ZwlJEb4+9Ue41fxXKILKfGiNmGQRFofgThALzCIJAUQCKGIMWTi0QgLSwbXuHh4N2maLrtkF4En3KYWxd5z4F4Vf4lHbs9p/9f5/Cy7YOPzz/Q9IscjDdpm5cJLvT57nZ54+4HR6irAUYNDRSc2H2Wt3WEolESy4u1dkdSpNRAxAE4Ky7GmlLyPdOrjeq7cxLE8xPnq8w/Ndb/P9zC/d5vGWt7b/8B/8IuvlBgAfPNqm3hrQGYy5cmKOlKDywZ0tLpzMIQhQbw25eDpHtd5nOhMnqgbY3q1zYmWKcq1HrdEnEVVx2sbBGjotTzF03WL9WRHXhXq1x2/8yhNKxTalYpv/5z/8TR4/8oxDYb/Fgzu7ADy8u8vNjzfRNZM//qff4PlGmY2XFc5fmAcEeu0Rx5YymJaDoshMpCL0+mOSiQiBgIRp2sRjIcp4G14URUZDHYBquUPxuXcPbn1rnWf38wx6Y/7ZT7/HR7/2lOJug1/7xl3+1c/e4dHtHWRZ4of+1HV++Rv3iMaC/Nmf+D5+9efvExxbLC+kiaciOKJLOKwwORkjFFYAkGWRQOBwv3wWb/bt5DMpmiAISeCngbN4W+QvuK778ZH3BeDvAz8MjIA/57ruvc+9Ol/2hi9wcRjZfZ71btL2Y7EpNc7QvM0QmA6ep6o9AmA2eI6e+YS69hHLkSu0zQHl8X1mgpeoWVF2hi2WI8fRHQPLCTAbnKVlNJlW4wysPh1zQFpNoYh9DMcmJofomN7mG9sG1YHniQqjDv+y9RLNsnjarHEuNM1mpQ20uZyb5dZ+EYCvrC7w0WYewYWvnljiyX6V7XqLN4/NMx6a1Jt9TuWmCCkytuswmYggiwJqOICqSJimQzSsHtwPRTncBIZp0xl4HnSr2GRUHgHw8EURWRKxbIditcNMOsb9Z/sIApxZm+HhsyJBVeats4s8vrtHPB7i5NoM/doAURKJRFQmJqMIgkCl3GFmboKwv+FkRUI6sgbnSEzTag3Rxp6nfPxwn2cbnmJ0u2P2dj3jkEyFaY519gstohGFZCLMrTvbzGaTTE1EefK4wKlTWWRJotsdc+bNY5Q2auRWprA7I17cz3PsVBZ9bDDojQmGFSzr0Fh1fUNhWTYbT0uYhkW7OeCbv/SIF48LAJy9sXwQJ567OM+jp0X29ppcODdPYbvBvds7XLy8iKHb/NzP3mZyMs4P/aEL38Xu9eSzerS/D/yy67p/XBAEBQh/6v0fAtb8PzeAf+j//blEt0fcbf/PyIJBUIqQkJOERQUREVGQUCQZ/5m+5rEQHBzXs9CW06djeDe0ZdR4MvCUdGgPaJmS/38F5kJBtob3CUlhssFV1gcvuZKeQnCX2RmUmY/MMjQEHCuCMCHzqFXiTGoGZxCk2O8xE4miyq/W4OIc8Zq6f3RzBdBMi/ZofPD6450KAKlomHs73hF4aTJFsd6h3B2wuJCEkcMHL/c4tTJNOBjgWb7G5RM5NMPCdh0urM2yXWyyOj9JPzhkZ6fBymKGTm9Msz0kEJAOjomuC+2u9/2abtFtDNF1i3q9TzYZZWfTMyLnLy/y6J4HRr9wbZl7T/fZKba4/MYKO7t1Hjze5+L1ZXTNZHu3zpkLc7h48eTCUobhQCMaD5JIhOl2R6QzUQqFFrblEEuEaI49LyUIAo3mAIBSuUOr0sOxXZ4/LzM9Hada7ZEH1pYyPHzkPcfLXz3Ow9s7yLLIta+d5PnDPJrlcP7GMTTDQtdMZpcmmMjEkQISobBCNBEiGAwcfKesHtn6wmG8aerWQWKk0x6yu+MZh5/579//vVU0QRASwFeBPwfguq4BGJ/62I8CP+N6mZVPBEFICoKQdV23/F2vDHjc/Q2+VfsfADgWPkVNe0JFg9XoWbpGkb3hHRZD11DFEXX9KTOhiwjYmHaXCfUMmt0EIU084NA3SySUWcJSh5E9JBVI0bUG2K4DuPTMDgBje4TueMrYMGqExTgdq09n0GdKPMW9puelrmeWuNXYBeDrayf41l6ButXnK+eWydd7bAxbXFvMgQut0ZiVqQnUgIwbgIlICMOyiQUVFFnyrkNHPJYkYvtxjGZYBxvxZbGO7Sev7m4WSUVDtH1vtjqd5vb6PqIgcO3qIrdf5IkGFd64uszznSrBoMJ8bgIXF9uyMY0o2WwC1fWOSYlEGNU/OgkCSPJhQto5kjDTTfNgI3Z7Y7b9uKreGFCtekdwVZWxbIfGnR3i8RCLJ2a483if+YUJMpMxnm9WOX1qFsdxsR2HYyGFzc0qqyvTmCOTFy/KzM4mCfgJIFEUMH1jBTAceEpqWQ7DscGg72V355cnWX/iPZ8zlxZ44huKUxcWWH9WpF7ucubSAvX+mHv39rh0eRHHdtnfrHPutGe4BElkcTlDrdpjciJKpzWk0x2zsjL1He3dT8tn8WjLQB347wRBuADcBf4PrusezcnmgP0j/y74r72maIIg/CXgLwEsLCx82y923MObKx1JcrmuhuZ4Z/i+3aRreImNlr6J63oPGxM0N4npPEIUZCaUFUrjeyypKZTAefKjp5yNTeMwjWZ3CUkhelaXsDSNg0TfGjAbnMV1QwAERQVJOPSalnO4NgMTGwdcGLkmu50OAJpj8bjgbcRj6QleNjxvkYvHGHcsfnN7l8VsggQqN3f2Obc4Q1iW2a22ubIyR7s/JBkMMhuJ8XS3woVjs7QHY3YqLaaSURy/ZCAAQ83w75lLe+AdHweaQW+s0+6PaffHTE9EefDcOzpdOJHj/rq3Ka9cnef5gwLVFwWuvLNCvdrn3nqJizeWcWyXYq3D6dM5DNNCFARycxO0mgMm0hEa1RC93ph0Jkqj0ce2HSJRlVbLX8NAo7vnrW2/2KavGYzGBk/XyywtpNnNNwE4ezzLIz/mu/7GMrfu7iAHZG7cOMbuRpVBb8zZc3MgCGhDnalsgol0FFWVUYMBFFUmGAocPBPliMcSRAHH9g3X2KRc9vZItdSh4l+PRzoj//OiKJBWAtz9eItYPMjf+o//CF/7/tO//Sb9jPJZFE0GLgM/5bruTUEQ/j7wHwL/0Xf6Za7r/mPgH4OX3v92n7828aNIyDzvv0dD2ycXOofpjJBEmSl1la5ZIKtM0DOH9K0qycAsA9PEdEfIQgjL9iyf41r0zToApttGs2pYrknTKJBRo1R1b/PNhs7yrL8BwOnYaZ71nwH7fH36IreaVWrWc96dOUtTM9kdNLmYmkdyJXpDm6VYEsd1CQYkEkGVoWGSDKnIoojlOEQV5eD3EiWRoeEd5RqjEcWO97AfFyrERYWhbtDoDVmIx3mY92zVueUZ7m0WkQSBt88s8cmzPSJhlTdPLVKqef//1OIUoUAAx3ZIRIJkM3FCEQVREggpAdQjm08+4rFclwMPOjQsCpUOAJXukFLeywqOdevAcwQCEsFQgNu3dkgkQpw5O8fTJwUWFtOkMzHye03OnMkxHOlEo0GEgMjj9RInjmexcWl1RiQTYSTpcA2GcRhjDUYmLp4XG2sG9WoPgLn5NI/8uOrU8RlePPAU8/jpWfLrFW6/v8GpC/NoI4OHN7c5d2UJRIFaucvpiwv0OiPCUZWF+QmKpTbZuRSjkUmvO2JyJkmx0cOyHCRJpO3Hef2exoVLi99uq35b+SyKVgAKruve9P/9s3iKdlSKwPyRf8/5r30uEQSBk4l3+NWqV6PaHXVRBQEH76GshaK09Y+QhCBL4XPUtLuEpEkmA+eoaZvMBNM4bhBRlBEFifp4h4S6iuaGaeoV4oEJwqJ/bseL1V6JfcSbmo7BwPKOaLYw4knHU9q0GuXRvpcqzoZjVMY98sMOUxMR0lqIb1Z3WJtNk1Ei3KuUuLA0g2yI9EcaV5fn2K01WU2n0RIWT/YqnMxNog9NhnWDsBrAOpJkGIwNf10u3aGG7br0hhq6bpGvdQC4spbj/gvfY63N8nDDi/kunsyxka/z4fM9rpybQ+sbPHpR4tLJOQTbpdMccfJEln5/TDCukp1NUql0mZxP0WkNGQ10JjJRhkMd13ERRZF+z1O6bneMbXj3I7/XxLZdms0BzeaA48dneOInH85dXeKe703fuH6Mu4/yjKsm168sU2v0aPfHnDqZRVFlNMMik4kSiwZRVBlVDeC6LsHwobFSlUPvhQu65hmufmdEwU+67G5W6ff9jGWpgxyQKOw2kCSR3KkZ7t3bI54IcfGNYzx4XiA7lyKdiNCu9UksTdKu95nMJvjVX3nEn/hfv/Ed1Q4/Ld9W0VzXrQiCsC8IwgnXddeB7weefepjvwD8pCAI/xQvCdL9vPGZ990OjdH7JOU4HatHUk5iOD1844vhHx9tV2NoeV83tutI4hRjp8PY6JAOXqQ8fgLAdPASW8PnAJyOXSY/fEDbKXA9dY2y1qBnPOJc/AKmC229xlJ4EcNRGFgK02qKka0TDYSIyApDy2BCiSAKAxzXJSzLBxl7y3GoDT0F3Og1yVs9TMfhXqXMvBCj0hsALU6lMtza8jffyXk+2donIIm8fW6Ze/kiQ8XhSnaOvmGimRZL2RSpaBhBgGhIIRUNEQrKiIKAIAioyuHjlMRDb2HZ9sHRstvXDgL8fLlNpzrwPy/gOg577R5KQGLm9CQ31/dJz0S4MDPHw+dF5s/MkJQDtNsjkvEQtUqXmdkkOC5PHuZZXplCDQYoFtte4uHIxtSPeKzR2DyIuQzTOjg+Tk8nuP/Uux9rx6bY2KqxnW+yupah0Rzy0aM9Tp+fQzYcnjze59zVZRzLpt/TOHVxgVqpTSabBAEKOw0WVqfJb9fpd8ck0xH6Hd9Y2g5V30v2umOKtS6W7bJfaBGSJAr7TQrAmbNzPHxc4OHjAoGAxB/949e/wx18KJ816/hTwD/xM47bwJ8XBOF/D+C67j8Cfgkvtb+Jl97/89/1io7InepPUh+/x4oSJRS9xtD4CEXMMBROgVMiKCrojkFQSgOg2U1igUUEIeb9ckII8civ6B7xWC4mCJ7HcNwRbaPiv9Fiy0/fJ1yJJz1PmaNymOZYoTDYYDIS50RgkmfDF1xezKEaaZ62qlybmmNoGihOgLWszINqiYuZWcaGxZNajfl4nKDmrUcShINCMkDPz8KZtkPf0ukbBhgGZjrF020vzru8NMvdl95B4fzSDI93K+y1u1xcm6HaGvDhiz2unJoDy+HFbpXLJ3KYpoNpO5xcnKLS7JNJRdD6BpVGj9x0Ar2rM9ZMkokwrc4QXK9k8Oo42uwMURExLZvtfIO1bJr9/Rb7wJkzOR76HuvyGyvcebiHgMsb76zyZKPMVqPNpevLDDTvKLy2MkUopOC6LulUBFmWUIOBg/pZOHTosZQjRsN2vcQLQK01oLvrPZMnT4u4unlQk0xOhLl/bw9JEjhxeZEnT4rEkyGuvL3G0ycFZpcnicVVNNslEFUoFdvMz6cRAiLVeo/pmcRBnCd8CpwYDCp8HvlMiua67gPg09CSf3TkfRf49z/XSn4bGZq7AFjuAJwijquj2UWSyjR1YwMTSKjXqWpeyS4TvEJ+9BjYJRu6RlnboDR+xFzoCrozoG28YDl8ChMZzR4wqSxhuiauGyYupxhYfRRpkoDQxnRNwlIc8Ky/IgYY297xpGMOaBqeRczrRZyOQ0fXuF0rsBaa5FnTU9qr6Ry3C97x7d3FJd7b20WVJL66tsRmrcnAMbi4NIuEwEg3mUlEmYpFUSSJsBJAkSVCqsIr2IkqHz4uURQPPKhm2VTbfoq81aPmW+un29XXPEkyFuKTZ3nUgMTZtSyP1ktMTUQ5Oz3Li40Kq4uTBBQJB1ACMtv5OitzGSSgWu8xM5Ug5G84URQ+lY30vsdFYGRZ9Pwisya4PNvyDEUyFeHRc89QLM2nyReaVOs9lhbSGJrFrXs7nDqeRQlIbGzVuHhunrFmILgCZ07NsrvXYHEhTdMRKOZbLC5naBTbDHoasiwexJC27VKveSeKXmdMozlgPDLI7zU4cWWBl8+8Z3L+wsJBzHflxjHuPM5TqXS5/tYq+a0aW5tVrl4/xtvvHOcP/ODZ72Dn/uvyhUaGnJz4azxt/B0igRyioDA0ZRQpgyKE/E8IiEcygRzxWJZrYDje5tOdPnX9JQCGU6eoecqjilHqho1LC1UMMXQWud1eJ6OkWVAzrA82uJBcxHbi1PUeb01Os9MbMhWawMXhcWePY6EFeqZCQxsRV9SjS2BsmQfXPUPHBTTbZmSZlLreRlhIJLm74XupuWke73tKenpuiq16i29t7XBhbQZ9YPLJTp4rJ3MILuSbXS6t5ej3NSIBhbW5DHuVFgvTKVzdod4ZMDeVoFjrohkWoijQ7R/W7155rFprQFRW6A91+sM6p05kee4XmS+fyPHwieexrl1e5taTXcqdHm+8fYydSpvNVofzlxewRWj3xywuZQgFAyCJJBNhbNshHFYIyBKmZb9WdA8EpIMQQNNMKhVvPTv5OtrYU9oHj/eJhBRGI+/YO59LcvfBHgFZ5OLVRR7e3iWZCnP1zRW218vEEmGUYABFEhFEEV0zWVjKEFAkBAESqchByQBeA+dgmjav7IammwfGKhgM8O/86OXfbnt+R/KFVrSZyB9AMwust/8LANLB63S0O/TsIvOhN9DsIpr+PnPhtxBcC9t6xHJ4jaEjI7oGKWWBkdVBlZKEpCRju0NYziAKHRzXIijGcOkAYDo2TcPLsDWMJmNbw3YdytoOCksUxy2KNJlRVrnb2gXgQvw439ovIiDw9YUVbjX2qAotvnJsnqYxomuOOJOdJKIoGI7NVCRMTAmiBiRUWcJ1IaweBvVHPZbgguajHbpjjX0/E7hebTDw60i17oCIJbNtNhEFgfmpJDdf5ImoAa6eXuDuszwzEzHmp1PsVzskokFMyyYeDiLZMBwbrMxnCMkye/tNYtEggSPZyFcdBwC6YR4oxsh1qDQ9QzEWHZ77KPilhTRPfcjY7HSCVmfIRw92mM8lCUkB7j7Y4/TJWZSgTL7U4sK5OdqtEclYkFQ8zMutCidWszQafYrlDpOZGNrosGTb8xMbpuXQ9D1Wpz2i1xnRagxoNQacu7jAk7te/ez81SUe+dCwS2+t8PDhPo9v7XD1rVVqzT6bGxXOX1wAWaTTG7O0kEYQICCLJJNhhiOdWCqMZdnI8lGD/p3LF1rRAAync3DtujbgxTW2O0Sz9kEAySkwMr1aWgCHruF9RnBlTDdBfngbVYySVM+wNXxGMjBLPDBDVXvJydgCAyuA6Qgk1CSb/RIL4Xls12FzuMmUOs3Y9DyoiMDRBorRwXHJZeTojPyjpSFaPOt4cd5UOsoneS8NfSY9xYt8g21anMpmaAyH/EZph0urM8iI3CmXuXw8h2s4dMYalxZmKXV6zERjqNMiW7UWx2cy7FVbNPtjUpEgesf7Tsd1afW8lPRQN6k0urgulJt9krEw5WaPcrPHxdVZHr7w62cn57j/2FvbG9eWeLBe4uFWieuXlqj3h2w025w9P4fkCvQ1nYXZFIIgoAQkErEQo7FBLBpClkUs63WYmCSLaD6Gs9PXKLa8uOrZixJyWMY0bZrtIVPJKHk/GXJybYaHj/cJBCSuX1nm7oM9EvEQV45nqVY7BAIS6USYlKqA5dCo9ZmdSxGJBREEUIMBpKMKccRlWYaNZXpPTxvo5Pe87xyMdDb3vBPOzEyCSqXLLg3S6ShBVeQXf+URLzYr/MP/6n/zuZTtC6topt3lUf1v0tJuklKvAS6G0yKmnMd2ushimJA8j2aVUaUsht3Acnoo0hQCNVxsRFHB8tPyujNg5NfLOmYJFwfdGVDVnhOWz1DQvA23FLnE8753zDwRvcBv1XYQKHF94hTbwzIDq8T19DKG7dA2+pxMTRAWQ4gITKje3xE5QECUMB2baOBISlo6fFCm41Afe2vbH3XptL344nahiGyC50zaTCthbq/vI4kC5+e8Wlo8pPL2yUXubZfITEeZjUTpjXRUWabVHzGbiiHZAuV6j/mZFBE/yaDIEtKRTKBrvw4TewXTGhomm/ve5utbJtsbntHITsap1HrkCy0mJyKIksonD3ZYmJ1gIhrkyYsS507MIkgCne6Yi2fnKRRbLM6kGKdNXmxUOHl8hs5Io1ztEgkr2NaRhJAfY5mmTbszxLYdWu0huZkkBb/r4PLaLI99L3X+0iKP7nve69KNFTafFXl4d4dLb64w7I3ZWi9z5tICgigy1C0WljNomkkwqpJIhul1R0ykIsjFlmcoIoeGQhC83wFgd6/xb69HG5q7NMbvedfWDobd8N/x/MrI2kMggCQtUB7fQhUnCCkX2Bw9Ix5YICxP0LeqzCtT9MwBijwJCBRHz5gNLiMKAbpmhaAUQzyCk7SO1M9GlomL57E026ChdwAQRIMHTS+gPhGb5WbB8xCrsQx7/Q6/Wd7ieDKD7bi8X9/i0nwOxVF43q1ybW2WYd9AUkUuRmbYqDQ5Pp2hLg7ZabZZnUzTag3pjDQCksjYL2zbjkvD91i9sU6jN2RsmOy3ukyFImwUvPtzZSV3kCK/dnqeWy/22am0eOPsIi8LNR7slLl6boGxZbHZ6HLqZBYJAQ2bXDaJrplEQgqxiEp/qJOKh73Eh+MSPgITc11odzwsRaHcomi5uC48eVEikQzR6Y7JF1ssz0xw/6FnxC5cmOfB0wJKQOLGtWPc2ywSCMpcXFxgYBg4jktOTJFJRxAkEVWRyWSiBMOvMIogB45iWg8vTcNi4Nf2+n2Nzafe8+k0h+z78V88EaJnmVTuDYnHQ2RnU9y5tcPc4gQT03GePi9x+nQO13UxLJtsLsXObp0/+qNXvoOd+9vLF1bRVClDSJ5nbO0Tkhaw7BEOIxRpAsv2CqQuJiPbiwl0p0XfqODi0DX3EASZgVkCSqiBa+yPvFraauQM1fFdAI5H3+Ll4AUO65yPX2LsNOiZLzgZOwUojOwhC+EkuCFAISKFMBwLVYggIuLgEBKPHJdEAcOHZvVNnfLIiyOe9ivoPr7n40aeCSFM298UJyYm+bC4T0AQeHNlng/39kmFQry9sMjTZp24rLLsqEiygIPrNYROpwgGZCRRIBUJETxaPzsCkH2F9gDQTJOWnyLvjXWe7XteKqoqBz1YqViIYXfMJw93ScVDLM2kuP1oj2OLaTLhMC82ypw/Potp2eC4zE8nWd+pcWpxiqFm8nK7yvxsCst26DBGkgTMI1nPVx7LMG26us5INxnpJnMzKV5seM/00vEcD/zj7IUzczx6VqBQ63L50gLl/Q53nxe49NYKzshkd7fB6fNzOJaD5bjML2fotIYkJiLEk2F6nRETUzFKdQ8aFo6qdFr+8d6wKPlesrDXot4dYRg2T5+XyM4mKPnK+Xf/zp/k6uXlz7hrf2f5wipaKJDjrdw3uFv9KZraTYLSNMnARQb6Y6KBE4hiEFwbQQjS1veIKitYBBhYDWLyHIoYAbw47ajpc93DB286OqbrBdiuMKKh7wAQlXvc6fhFVDXLR/Uh0CCrpmlrLt/sbbESm0QhzIeVEtdm5hBdiZrR5c3ZHPvdPrlwgslglCftChcnspSlMfl+h0wwjH2EZaGn+QG+61IfedrY1sZ0bJ36aESdEW9M57i77XnNa4tz3N3wi9wr8zx6UeSTZp43Ti1Q7vS5ly9x+fQcruNSafc5vTSNbTuIgsBsJk5nMCYVDxEJKQzHBhPxEOVyx4OPKTI9XzlHmknbV8ztQpOW1Gc0Nnn8osTcdIJiuQPAqeVpHvoNkjeuLnP7zg7BYIA3LyyzvVXDshzOnc7hCmBYFpPpKJmZOGowgKrIhIPKa4YiEDgKDXOPZAItanUvE9jojSg+9wysKIl0at7rckBEkCVu3dklHguyenGeB89KzC+lmUxH2X5Z5ezxLGPbQlEVAorE86dFTpyeZWTbbGxUyWRiSEeO+PFYiN8N+cIqGoAshhma3kPU7CqqGMFyewzMHnHlAj3D81JJ9To1zfNSxyJfYXv4gL5VYCr0NnvjIs3xFovhC8iMGFplMupxJEHBxSApZ7BwUIQQihhCtzVEYQKBFi4uqhjkVbOCg0vb8JShNOzQ1joA3G8ViEgKQ9tgf9hhNpDhZt2zypeSc9wslFFEie+bPcaH+TwJJcjbuQWqowGiK5IMpkkEQ2C5RHsKuXicqKogCgKqJB1pv3kNbIFtecVogIFhsFfzLHR9NCa/7xmKkW7S7nlrDioyckDiw6d7ZBIRVmbTPNgqc3whQyocZK/S5tyZHL32mGQshCDAo/UiZ49lMUcWGzs1JpLh11AnmnZYwuj7HkvTTLShcdB1MJtNct+HX505l+PBto/fXJvl5UaVm/d3uXAyR2+ocffZPhfPz4PjUql2OXtyltFQR5Uk5nIpavU+0+kY/XiPXm9MJhOj1xzg2A7hsErXz0z2+hojHw2zv9dEH+h0OyO6nRFLp7I8f+YZrtMX53n4vIQgwI1rx7hzbxdl4CVjSpUO/+l//gv8rb/5I5w6Mfsd7d1Pyxda0QCOJX6c9fbfJxZYISiqjEyQxQSScJgWP1oPsV3j4JWxbTCwvA1nOyNaxmMAFDFEw6+rxeQpCrrGtnWHqJRh3zjL/e4ey5FFVCHGx7UG5xLLWK6FYbtcS2d40a1xMjlDa2TxtFNlLZ5hZJkMRwaqKGPYh16z4xP0GI5NazzGtB0a4xHHHJvNtldOeGN6nlv73ka8kc1xZ7fEeh1uLMyxXm3wXiHPW2vzDE2DO60yl07mEAxo6RonFibpj3RCUYXpiRj1dp/pVJR6rctYt0jFQ7T7I3AhIEv0fMxkozukN/LW9rLUIBePUm8PqLcHHM9mePgK2b96WEt789Iyd+/soMs61y8uUa32GGsGJ4/PoAYVTNMilQozkYwQlCVkWTxAf7ySo53LLq53DMXL/u34xqFQ79Io+96rNcQdefdTlkUysTB3bm6TSIQ4f2WRR4/3mV+bJhUPUal1Ob06TacxYGIqhgA8eZDn+PEsguNQr/a8bukjqA/dz4y6rrcG23YY2w6Gbh0kYH7tN579269oS4kfQ3RH7HT+LiYwFXqbkX4L3fiYTPCr9O0Obf0lE+oVhm6QpjkgEVgBXERBJCpPoNlDglKcgaBiuzqKFD/4+Z5n85IMmq1THHuxy86wRH2URncsHrT3mAkmqfgebDE6z93WDrgCX82u8nF9m5AU4GvTK9yt1HAFgeuT8xiOjW5azEfjzERiBASJkCwzEQwTCgT8A62AcuSochTYbFg2XV9Rm+aY9ZqX8NgbdqnXPW8hCwLiEPKbPUJKgIWpFJ+s55lORjk9leLBdom1lSnCgkxvpLMSDVGod1iYSmI7Lg82S6zNZVBckUqz7x3jjiA+xuPDOtZwqGNZDpblYGjmQVp+ejLBQz+uOnV8hpePi+wCJ05myTd73LyzzbkzOSzL4fG9PFcuzWOJ0OuNOXM8S6M9IJkKM2cmKVY6XlKmr9Mf6Eylo9S1Lo7j4jgu9boX93a7Y3b3mzgu7O01YCFNpdKlUuly8tQsj/z1XLriFbYFXK5/ZY1HD/NU9ltcubpEpzum1x2xtjpNKKJgOy7JZJhoREUJBpBlEcdxiUYP4/DvVr7wigZgHqml4eq4jBEEsN0BXWMTAMPpkR9712FpkpFdB/YIEsMSwmwO75IMTJGS02wOXzAbPE1QDJEfN8mFzjO2WyhiivOJFE+6edaiy8QlgWfdBmkl9lov2isoFoJLzxgfvNY3TFqa9+/FWJIHDS/zdXVigVtlz0Nczea4XypTLPa4Ppuj0h/yfmGPN+bncVyXF+06VxZn0W0bK+BwfCZNtTNkMhKhHR1TGwzJxeP02xqaZTERDtMa+IbCMNkfePeq2vHAzoZl86JQZ20qzXbZ86Dnlme4t+570NOL3HyeRwTePr/Ms/UyldaAq+cWGGom3cGY5eVJYiEFwXFJJkIE1QBBxUN8WLbtoUF8OZoGt22H/sA3FM0BZT/BsPm0QjdwmN0NhxXKz/IEZInVhUnuP94nFQ9x9fgSD9cLzK1NklAU+ppBVFGo5lvMzaUAgU47z+LCBBE/Nf9KOV6JoR1Cw8aaydhvyTdNm80tz6imp+I88DO1x1en2dyosF/pcHxtmnZ7xM/8Tx9TqfX4P/71P/Rv2KX/ZvlCK5pl99hs/W2ao28RVy95tt7VCMor2E4fRYyiiCkMp0NQziAKbRzXRBUjvqKBIIpopo8iMOv0TO84UNK2EYVZelaHjtVhSl1kb/QCgDOJt3nc3fYQH9MXeb+2h2YbXJs4Tn7Qx3AsziRyBKUAY8sio0aZCsYISyKqJBEQJSLBww131GMBB0XvgWmS73VBgP1hl0LfOy49cioHxV5REEiLIT7Y2SOqKFyZzvJgq0QuGWc5keL5bpUz89PgukiiSBCJF3s1Tsx5HcH17pDsROyArk4UhNcQH6/KBw5ebNUb+rUs2+HZtgcHO3tshodPPUOxNp9hZ6NGpdZj9dgkw4HBrTs7nDk1iySJbG7XOHd5EWPoQc5Or0yzX+2Sm0kiCAKlcoeFhQl2Ol0GY4OgKqP5XtO0bCo+NKzdG1Nq9NANm61ik5OLU2zlPY9+6ViWh37J4OrVJe7c3kEQ4PqNFTY2KhT2m1y6vISue93gS6uTB4DlZCqMKAkEw8ohmDlyWOuUZfEAfG6aNnWfMeuVx/5u5QutaANznerwGwDoloLjeFZHFEK4roWp/xYJMYkcyGEYv8ap4Coj4TRt/RELoVVGThDNsVgKxKiM95kJLWC7FvvjF6SUZQxHoWe1kFCxjljBse09eBeXka1hujambTO2HHaHPooglDiAYp2Nz3O/5XmvC7M5dvoNPm6t88bcPENd4FZ7hzdzi7guVIwOV+dmaA404pEAa+kJdtptFlNJRpZJazwmF4uTtzqYtoMkCHT8WGpgGOzVOwAUOz3CpkR3pNEdaZydn+ZR3lOM6ws57vn4ybdOL/Lxiz2q3QFvXVhit9Riv9nj0nEvE9gZaixOJ4lEVFxVJB4L4jou4UgASRK9tPgR5HrAh46BF99UfPqCQrF9gLB/8LSA6oDldydMLia582CPQEDi3OUF7j8vkE5FOHs2y8utKvPZBIGQDLKILIrsbdZYWppElkUKlTaTE9HDOE/4FLXCkRhL08yDhk3TsHj2yjisTfPssXe9sJShWO9x8+Y2y8uT6AG4+XCPM6dmCSgS2/kG58/PMxroqKrMibUZ9vJNfugHz32n2/c1+UIrWkBMIotJLKeDKk2iOWVcbCQhgul6G95xuxiW5wlcZ5OBI2K7Y9r6EwTpFA0fDTIdPEVlfB+AxfAbPO8/QURiKXKDB90SDdNhNXKNqi7Rt3TmQrNE5TCO65BSQkQklbTqEhBFv//syHFJPMII5ToMLC/z1TZGbLQ9i7g+LNMzvdcLdJBNhZ1aE0kQWJ7M8EF1l4Si8s7SPJ+U95nLxMkpCYrtPulkiOHQYCIWRrTg0U6Z4zOTRASZnVqbaFBBPuI1j3oszbQ8jKLrMjJNik3vXpmuyyOfvm5tLsOTfS9dvjyTol7t8d6zXVYXMsiuwCcv85y/kEMRRfYaHc7cWKRXGxCdjLCWCLK7XmN5ZZJKqUul2iU7k2BQH2CZNoIAHV8BTdM+wEg220PSyQid3phOb+y13PjZyCsn5rj3zPMgb15e4u7DPPX2gOvXlinVuqy32py9vohgurS7IxaXMiiKjCyLJBJhDMMkHA8iySK25VErHDwrRTrohRtqOqWqp5ibOzU023v9wYsCUTlwAGb+x//3H+f46vRn3ba/rXyhFS2irHFt9l+y2/xrmPpvElNWccUsrr2BpJynb42QxCSCINHT7xJVz6NbMTS7SVDKYB/JTDrOYSZQd7wH72Cj2RoDy0sstE2V532vlnY8usyz/hYAp5LzvOyVedwvcX1ynv2By63mOlcmFkAQedHd53pmAd120C2TC6k58sMWs+EElhlgp99iNZFhu9ekY2gklRA9v5Bruy6Vkff9XUNnf9DFch12ex3isSD5bpc8Xa7O5vik5BmNd9bmuek3jL57cYkHm0UeVSu8dXKRVnfEdqvDhWOzSLLIwDSYn0wgiyJKQCYaUtBNi3hYRRIFbMd9zWMJgsDYX1t7OKLtc3882SkDXmtMvTMkEw6zuemjY05NcmuziBKQuHJ9mbuPdpnIRLg8k2O/2SMUUcB0iMZDuJLgKUcuRSzi0ddFwypy4LcnAzIM64Cie6yb7Je9o//Qtdn0210WchPsbXqGYnomgS7Dx/d2WFhKEw4p3H1e5OzVRWRRoNzsc+7yAvVKj0wuQXQyyuZ2jRNrM1Safar1Hql4CGNwWLaYysQ+4479neWz8jruAn08RK/1adpjQRC+Bvx/gR3/pZ9zXfc/+9yrAw86ZT1FEFwMawNFdjHtMpZdRpKv0Tc8WvG4eoOefhMVWAj/MPujuwh0OR59k5peZ2DXyQbPYRGgYxqkAlkUKYruhAhLHnteWFYPEB9B6XDzSYKI45cMNNukonmKsT9q0PSTIY96W5iGguVvkmwozieNbSRErk4ucadeIKWG+Or0Me6UyyzEkiSVELrpoIgShUGPpXgSSRAo9LvMxxJEfJ6RgCi+Vj+z7CPHXMs84B8ZGSbrJS82HadiPN/zgv35iQQ7lTY71TazE3HUscUHT3ZZyaaJRlUe71a4uOKzCg81Lp6ao1BqsTQzwVQsyvpejdPLMzS6QyrNPtGwgmkfJjO6RxAfjc4A24V6Z8jUVJxivQt1uHh6jod+wuHihQXu+h7r2oVFHuYr3N8ocf3sAr3umM3dGheOzyKIIv2RzuLcBI7tElQDJGIhBkONVDSEKIk49usYRUkSGPq9cM32kLzPhPxkvYSqyOiGRbXWY2rmMAFy6pQHtA6qMjcuLPHwYZ5kPMypE1la7SF/+7/8Rf6Dv/pDTH4OhftOPNr3ua7b+De8/77ruj/yXa/ktxHH6dEf/D+IKMt0tSqhwHEkIY4BCIKKdJTjwzlMQ9vuGBfLwym6Izqmd0NjgTnWB179bFJd5nanCTSZCWZp6y1e9O9xIraI5cq86D/lTHwF21HZGrQ4E1+lZw2Q3QSnEwk2+1VW4zOEhl0K4xYL4TQlW6dv6UgCdA2/CRGHqg/FautjaoMRfcOgb7S4kp7jccOzxG/MzPNJxdt872QX+ai0xy4dvrq2xMtak3v1Em/Nz2ONHPKtDudmp5FFEdO1yaXiaJZJJBwgGlQYaAbJSBBR8DxQ5Egrju04NP0C9n69jV7zvMWDrRLxsEpvpLMDLE0kubNeQMDrS7u/XiSoyLx5cZl7m0VCUYVLi5P0DANEgVlFYnLKI1xVym2mJ+MHSQZJFn9H+jrDshm9AjOPDNZ3PePQG+rsFL3yQSYZoV0dsF9uk4yHmIxGuHl3h4XFCdKRME+fFzl9fg7B8ZA2F87Nk99vsnhskmFfY2OjyurqFL2eRq3WIxgMYBiHhqLT9e6Hplt02h4Uq9boMzUVZzffZDff5Fe/+ZQ/8yff+E6272vyhT46drr/F4aj/xGATPBddONbAEwEv45mPsB1HqAG32TojDHsMpHAeVwxRM8yCMszHqmqECYghrEcDUWMIiDi4hAQQ4AXyAsI6D4Ua2R3KPsp+s3BNk0tjAM0jT4qEzQNn3kpOsv99iYBQeLNzCof17dIBaNcCB9jd9ggIqtISAQlFdsS6RgaK/E0YcFDfCQVleARtl9BONx8lmsfFOHHtkV16MURA804wCiGlQC7rY53b8JhBmOdb+3sMZWIsJyI8NFGnuPZDKlQkOf5GhdXZz2mKVEgl06wvlPl9PIMvbHOy0KdhakkumHRG+nIkoj+inAV6PgNo5ph0RlqBxjFbCbBix3Pg15ZzXHHLxlcvTzHg4f77LS6XLuyyE65xZ2tAlcvLzJ2bNabLc6cnEUANNFhIZtiMNSJR1QS0SDdgUY6GWav3MJxXGIhlTbeKcJ1od7yDNd+qUXJauHYLo/Xy6QnojRbA9hvsbQyyb0nfi3t6iL3H+8TVANcf3OFxzsVRFXh/EIazbZxXIdp12V6Oo4sejyXqXQENXIIZp6bTX2Xu9iTz6poLvCrgrcb/hufNu7T8qYgCA+BEvDXXdd9+ukPfKe8jq47PrIA/fDnMMZxWv6/RgwMjwpcEicojLyvVcRFCkYL12iSkHM4BGlo77MWOcHAmWZruMXFxAm6pkrP0jkWOUVdK5FW5lAlnd1hnpXIEjI6Za1LRAoytg6TDF3Lz265Ng2tjwu0jAHZoE557Cnw5dTSARTr+uQitxpeS8dXFla4XSvycXObry4uUx2OeNgq8UY2B45IbdjnTHoK23GQRYFsLEp7NCYVDhEOBBiZJhPhEHutDi4QCgRo2z6PomnQ8glOX5YbRKUAI93k/k6JXDpBsemt7czcFLe3PI/15qkFPn6RJ6wGePvMEhv7dURJ4vxqFgQB03bIJMPMTCVRQx7FQjSsEDzSrRyQjmIUD5+hZlo0/CEXjbHGetU7FJXUAdWWpzwhRca2HD56ukcyGmJ1YZI7T/dZzqXJxCOsb1U5dzqHrpmIskg4l2b9ZZmTq1nGA52NjSqzM4kDxmFBFNCOgJm7PoBb0016mk5v6P3JziR45sd5F8/MHbB0Xb40x6MXRYrPh3zl3eP85X/3KywupH+nbfqZ5LMq2juu6xYFQZgCfk0QhBeu67535P17wKLrugNBEH4Y+Hk8evDX5DvldUwl/3MEIYRpbeLYNQLyKRBkHFdAEmewnRE2KUQhhOOOkcUk4GEjRSF40D3tuDojv81mYGzyUvM2W370jJ41R98aUBjDjJrlSe8Vr+NxnvVfoooKb2fOcK+9x0QQjseW6JkGjuughgNMKHEsRyIkBZgOJojICgIQECUCRzCBr7XNuzaaD9Ma2DovO97amtqIzaYX7GdCYRpjT3kigQChQIDfKu4wm45xUs5wr1Dm9PQkCUVlv97l6lKORn/IpBpGSMKD3RLnFrJoY5ONUoMJH7v4Ssav0uJAd+R7c91kpBnUfcWYScUOygSXVnPc3/SuLx6b5flulY+f7XHl+Byd7pC76wWunpzHtRzKpQ5n17JouoUkS8zPJKm3BkymIpR7fXpjnUwqSr0zxHFcQsHAAU15b6TR99tvdopNuq0Rg5HOo/USi7MT7O15HvT80jQPnnqzBK5fW+bOnR1UVeb69WPsFJrYts2ZE15tzzQtJpIRpqfihBSFgCwS+hSYWZQPb46De9D5IAekz61k8NnJeYr+3zVBEL4BXAfeO/J+78j1LwmC8A8EQch8m5ju24ooRgmH/zD1xp8AQJIW0HyQMUxSd1Rs7VsoUg5VTKIZH7AUOodNCtt6xkTsJEUd4rKMSYb90Tbx4EXmBIfCuEBGyaA7Cn28LjfDOQKQtV7xjRgMrCFjW2ds60wqGV72/ZpZ8hg3Gz4ffGqJe+1ddocNrmeW2RrUudPe4u2ZZQaGy7NOhSvpBVwX+prByeQUXUMjFlCZDkWpjQfMRGIUOn002yIVDB0omiyItH0oVmnUP8AoPqvWmQvGKHf7lLt9TqYy3Pe5HK8c8xD/rxAfH2/nGVs2N04vUu310UybkwtThEMKlmOTioVIJyIEwx70SJZE1NARwtUjVNEu7sHEm+FYZ6fknS7KjR7V/Y53/wYaYx9wLEsiiXiITx7uMpEIs3w6x73dEseW0qTDIfLNDufmcvTaI+KpMAETHr8ocfLYNI5u0+mPScZDr/EqakcxigPdr6NZjHWTqo/yz04neeAfH8+dyvHY7yw/dzrH83yNTx7scvHMPB1T4+52iYvn53GBWmfAydUZxmMDw7HIl1ssZL/7eWzw2bj3I4Doum7fv/5B4D/71GdmgKrruq4gCNfxYJvNz7UyPOoC3XgGKICBKCYO3xQD2LZn/U27hut4N1QzHyMKKSynA8aHRKRzdP0hF3HlTTaGzxEQuZS8wt7wLnPBICuRNyhrBVx0JpRlJFHEsk1SgSQZdQLXCaKIMhEpSOwIr4dyxGMdbULUXYuW4XmFpj7kuQ8ezg/bFH3LLQsirutSHveIyAqrqTQf1HaYSyRYDKW5XS1wbmoGBZHh2OJkLMhWq8laIo1juNzfK7M2lSbgiJS7fdSAhHukfjbSX3UcQF/XMSwbw7LRXZutmree6aUcd/wywfnFGR7tVVivNzi/OsNuo8N7W3tcOZPD0izu7BU9mgVcOkONs8dmaPVGxGJB5qYSlOo9ZqcSDFojhkODyVSE/UoX13URBIGm7yVb3RGDstf+slVuYk0mqbYHVNsDTi5McX/bNxTnctxfLyDg8pVry9x6nmfUt7l+YZFGY8BgZHBidZpgSMGwbZKpMIlkGCUUICBLIPIamFn+VDJG95Mh/bHGRsXzB8VWj3LDJ+VRZMyByU61xe2nef7VP/4JgkdJW79D+SwebRr4hjeZCRn4f7uu+8uf4nX848BfFgTBAsbAn3J/F0aJ5qvfj2G9RJGWUORZBvpt1MAlbFQGdo9kcI2hkSccWETEYGDcJRQ4h+MaWE4HSYi/9vM0x+89w8Gwe7g4WO4IlSFt07MLy5EpnvW8zORqZJUnvV0ALiZX2B3usTmq833TJyiODZ72XvD21CqWI1IY17g8MUfftJAQORadojLuMKkkqKoaLX1ENhSn1tcxHYekGqKh+RwflsG25iPXR10MA3TH5lGjwsnwJC+b3nuX09mDUVDvnFjkg709JEHg3bNLPCpWKbpDrpyeZ2yb9HSdlewE8XAQQRRIhoOElQAhv2HUcVxCytGi+xHCVceh63vN+mB40Hv2stagPziMlRVZpLDZQ5FFFpfSfLy9TyYT5sqJLPc3iiyuZIgFFdqmQTKgUCt3yc6mMBWX+9slVmbThALeGlRZei24061DjOLAMDEsB8NyME2bHR+KNZmJcc9nZj61OsOLlxW2Ki1OrUxTavb46NEOF8/PYdkO97fLXDg3jyW49C2Tk2szNFoDkskwWTNOudljNhOn2x8z0k3SiQgVHzdq2+7nUjL4bEzF28C/Nq/GV7BX1/818F9/rpV8ShxXx7B8ijh7F9Np42KimQ/QxONo1i5YW4QDZxkZ3qi2qPo2Pe0jQCIZ/Dpd7SZx8kRC1xlbXcJuEyE4B2IKx7UJSwmv90wIIgsyuAIB4QiK4Mh4XUFwsHwq8pE9Jj/yNn9Vr7PvZwV75oiO5rk2SRCJCkneq+4QDwS5ml7gTjPPQjJFNpDmRbfGxbQHHg4KAWRB4kG9xNnULIIjUB0NmAlHvaGFeA7zaMf0yDykCB+aJm2ff8TKODz0KesuZme463uIU7OTrJfrlDp9zuSm6A413n+5y6XlLLIgsl6qc+VYDt1HkpyZn2a/2SE3Ecc1HErNHouTSXasNkPNIBZSD9iPDcuh0Dpsygw5EoZps1losHpsiq2yd68urMxya8szFG+cXuTj9T0E4O2zSzzdqbBf63D9xDzjsUG7O2ItlyEaVBFcSMXDKH7LjSyJ2I5DKPQ6NOyVWK57gEaptQcU/aPki/06ffswPAiqMree5gkqMicWJrn7osBUKsr5Y1mevChyfGmKyVSEP/2Hfttpud+RfGHT+wIBJmJ/lfbgv0GQL4Jr4Fp3kKV5hIPxbNJrc8hs59WAGxvLHeAyxHVBdHV65joAM8okt3peX1oycJqHvSrwhPnQMSpal4fdJ6xFV4lII1r6bd5Jn2VoB7CcJufi85S1IQklwkJYpDBqMBucoqdX6VojMkqCvu6NgnIcl7rpxXk9U2N34G22/LCNGAzQ0EY0tBHnk7PcrXnKcCO9yCdlz0J/39wy7xf3aDDi3eUldntt8kaHq3M5BEGgq2ssJpPEVC+4jwdVcCEcDCAK4LgQPkIMJIniAV3c2LQo+oqx1+wcbMp7O54SvPrcTDLGxy/zqAGZyyuz3NsqMRWPcP5Ylqf5Kiu5NIosgei1+mwVGhybTSPjEQNNZ2IEg4dg5qOo+ldgZhcP8dF5BWa2bJ5ueYbizOLMAWPX6lyanVKLaqvP8dUMo7HJBy/3uHBmFlkUWS81OH/RU1I3KHJydZpCqcNsLokNVOo95nIp9mptRppJOBg4qN9phkWh7vNctgeoiIx1i5e7NX7yz/xxrpz59hnybydfXEUTRNKJv0FB75Mf/DwAy+EfoqR9gECfTOj76Rub9K0mCeUGqmBiOV2C8jECUgIJwYNnIaFKCgISLjYI0SNfcngcsFybnuUXlo0WY9GDXzW057SsV8eqIn1rioq+joTEjHKc96r7JANhrqROcKe5y1I0RVKOU9dGxOQQ1fGQmWASAa9gvRafJEgYaBGRAohHh+AdYaUaWSaWb0TGrsFuv+N9JmrzoOBtxJPpNE9qXl1tJTVBZdDnNwo7nFqeRNYFPijlubY6i4zIbqfNlWM52oMxyUiQ03NTbJQbrGbTFKUu5XafuXSSem9wCMHyxz/ppkXJV8xab0gyGjoAM587luXRrodRvLqS447vsd6+usTN9Tyl/JA3zy2xV2mzVWty5UQOS4LWaMTy7ARBNYCgiKSiISyfcFWSBGzbJRJ+vf3mlUcfmxYFv0yxXWsz8JEgdzeLiIp4MBwkOxXno4191IDEhYvz3F0vMJWKcebELBuFOrlcCtGGQFBCkkTWd2usLkwiO1Cqdkknw68hYD6PfGEV7ZXoTvfw2tXwcl4WhqOj2d4DFlhgbNwCIBI4z9i8hQ1E5VMMzD3G+q+xHDpDyVRpae9zOnodBxXbvMXV5Bs0DEgHNGRhgf1xnYVwGssZ0jIqTKjzjN02Y3tEQFQO4jwbm6YPxeqYI0qjLoZjsztssBYJs9X3WzqSi9ysecmYN6eW+bC8BzR5N3uM+40iz7oVvppbomOMKYyaXJqeQZUkNMdkPhZHEkSCUoBYQGFsWSRU9RDxoRwec0VRYGh6Fro5HtGse0pyr1bGNV1woToYklFCbDW9ZMjJ2Uk+2SsQDMi8eXKRT17uMZWIcmFpgkKzSyyoYFoOyUjQMxSDMavZDBEfGxkLKSjS0STDkedmWUcUw6TY8ueQOTaP/KPtykyax2UPGTM/kaA/GPJbm7usLE+gSBIfFAtcPptFQSbf7HDhzByd1pBULEw0pPAyX+f44iSlWpdKo082E6c1GmHZjgdm7r8yFDYlH0xda/dJxIM0eyOavRHnVrMH1AqXj89x76WPJ72yzJ1n+/z1v/cL/M0f/35+9Gv/lqL3h+Y+jxr/Z/r6Bkn1HJKgMLZHqPIcIiqioCIJURxXRxGjjBEBB0E4nPrroUD87JvTo2d6N942H2PjHZcS/DKGmGNgaoQFOB45Tk27hYRMNniJ9cELonKck7HzFEa7nE/EGNspHFdkqIR40nZZjk4iCxL5YZNJNUFI8iyxiPBa7co6Yh01yzpA849sncctb/NNBqM8qPsjdmNJdusd9to+9tGx+c3SDqdmJokJKg8rFa7mcjiuS1/XuZbLsdNus5qYYEqM8Lxa52x2mnp7QKU3IKoqB2l54GDEr2Za1LoDHBcqnQFT8eiBx3hVJgC4vjLPnRc+qv7kAg93ytzbLPLmyQVagzEb5TqXlmcRBYHB2GBpKgWCl+hIRIIMNYNEJHgwMy52BMwsy+IRMPOY9tBb2/1yBUXzwM+1zoBpNcSeDyw+sTjF3ecF1IDEG+cWufU0z2QyyrljSUrNHpGgimFapGJhBKDZHXJsNn3QJBoOBl4rGRwNQzTTOqBZ2Cp8riqV9/t97p/weyTN8W0a408ACLrTNHWPfCcuL4KzztjaIiQtEBUbjPVfQ5VPEhDDjI2bRJVruK6A7VRJqNfRrDJBOUtGlWnoL8kGV+hadfpWlaCUwbUOrfLY9ryUjUXbH7c7sHoMrT4Du8fA7pENprjb2QXgTPI8H9Y9xMe11Bof1XbZ6w94Z2qFkl5lW9vl3dllNBsq4zbnJqYISCKyYpKLxBiZFvFAkLAcYGSZpJTQq5kWvsJ6G8FybCpDb22b3SY+EITb5SJJJXhAebASSnFz0+d1nMtxd6dIWAnw1eNL3NkvEUuonJydZKgZiAgossRMPIrsCKgNiWwqTkT1FECWxNeyke7RzmXzCEZxbLJe9ArJA01ns+DFo9mJGJVGn71ym8lEhEA0xEePd1nKpoinwjzIl7hwbBZRgJY25spajr1am6XsBMORwYt8jdOLM3SrQyqtPtGQ8hpGsX1klkC9PcBxXKqtPpmJCAW/gfTykZlxV07Nc/e5z8x8fpHHW2WebFW4cXqBjqGz3exwbi2LJIsMTYvclFdOGtom/bH+2vjj71S+sIoWCswiCWFsd0RIivLqACmLKq+QUAIWtuNZG9Pax/LxcGPjFgJhXEZg7xKS5jCND5kGUqE36RsfEhOCxEPvkh8/ZDqgIMsXcJ0ClitQMedJyiFMV6RrBskGp4jIQYQxqGIIb3qVJ+4RphfdsQ9mTI9tg7LmWd4xQ+75KfqFiMiGnxjJqFFGI5vfKm8xE4qxEE3wUX2H05lpEoEwT9tVri9kGYxNFEViLhnncaXKpclZOgOd9XqDxUTC40nE45XUjMOsWsf3CiPDpD3WGBoGQ8MgF43x3Ef5X1ua4+4rxVya485mgd1amzfWFtiqNrm9tc+NtQV002Kj0uD8chbB9cDAi5NJBrpBLKocAJLTsQg7YhvbcYgGVbymD486rvEKzFztoPfbuC482CuRiodoDcfs0GZpKsXNXR8zeTLHnd0iQVnmrYtL3NkrEpwIciE0ycA0PTp4WWRyJoYoCQSqHphZjfkTbyQB8ejR9kid0TBshn5n91g3ee5jSKeSUdb9o20uHafU7LJzq8e9vRLf+I//3LffuL+DfGEVbTL0Bl+b+1m26n8Rzfx1lkJnCYhxMO8hh84zsk0iooUg3mCsPyWunsNyOozNZyjScRx3gOWMEFBfQ/Zb/vBCx9WwHY/6wHBrxMUsDX8W9lLwBnsjL+a7EL/O08EGdQNOxS9wq9Vgf7zBxcQJBvaI4ugpb06exnJE+maHU4lpNNsiHBCZUuO0jSHJQIyg1EOzTVJKmMLYUzRFlND9tXWMMZWxtymfd6tExBB9U+dWY5/FSIpnzQ4A55OzfFz0hsJ/ZXGJD/Y8ioOvLi/xstlEEAUuJmcQBRHbtMlEw8yl4oRUhYAkEg8GCb3WtHqU8/JIVtA0qfvMyO3hmJe+x6qpQyo+j2IspDDC4oP1PSaiIY7l0ny8lWdldoLJaITHxQrnT8xi6ha2IjA3l+LlTo2Ty9P0TJ3npTqLmRQmNgzHyJKIZh5iFA+OtpZFy9AYGl5LUC4R57mP8r+8Nsdtv+h+7cIcd7YKbO50eePyItv1FrfKRa6fn0d3HLZbHU4dzyI5YOKQm0ww0k2iEfWg6yEVPTxRhFXlgNbg6JH7u5EvrKIBqFISzfLS8pr5BFkM4LojDONjQtIc+qv2F+UMpvEBIBBT36Wvv4coRIioX0czHiKKAVTpOmAhOQ6Om0OVZ7FQkAUFVZpAfjUKypXgiMdyjngsy7UY+XOxh/aI3aGX5JDlIg+b3tEtKoWomxaVNoQlBdVN8M3iLrPhBHORBPeae5xJZAnLCpVxj7dys+x3hsxG4liOy916gQvpWUamxXpHJ6WGjoJOGJmHQy06moYL9A2DkWlQHniKmsvGuf2KcHV2lrt7PknQ/CxPdip82Nzj+vIczcGI27tFrq3O4TpQbHU5tziDblrIoshCJkm9NyQTC1MOqfTHOpOxMPVGH9txCakBun4Xcm+k0xp4irFVa9EYjBjqJvf3SsxNJckXOwCcXZjm5l4BQYC3jy/y4cs9QorMV44v8aJcR3Th0kIWQRAwLIupWIRcPE5Y8sDMsZD6OuHqUYziEcLVsWVS63onnJal8zLvGQo1EDgYWZWIBBk7Bh+82GMyEWFmIsrNF3mOz00Sj6q82K9xeTUHwF/4we9+2id8wRVNEBQykT9JY/jPmVEvYLp9NPMFsphBEI7MuXJeofxdbPeVxxriuH1st4ltQ0BeYKR7XioeeJu6dhuAldANXo62GVoV0sErVLQ2+eEDZkOX6FgBCqMiS+GTOK6Ni8ZaZJKqoZEKhGkH4nTMHqnABIpYw3AsYoEwdc2nVgCqY88rlEZdeuYAB5en3TJz4RSFUZv9UZvVUI6bNS92uDG5yMfVfUTg67MrfFTOY1tjvjK7SF0foBkGZyaniKoBbMdhIhQiEw4TCigERC+mCkpHUfVHaBYcb+QRQF832Kp72cdSr0/R33z9sc5waPj/16vPffRij3QsxKXlWe7vlFidTZOOhthptLm0PEt3pBEPqUiiyMO9Mmfmpz2qvJFGOhZ+bbDGQf3M9cZRea9ZjAyDet+7V7OpOLf3fNaw+Vnu+53cl5dneZyv8MHGHtdPz1GxRnzYKnD99ByO4804P7s8g25YiCGR3GSCZmdIOhE+8FjpeJhSvQsuvqHQDn7vetfveijUCYcVhprBvc0iP/cf/TjLM7/HWMffTxEFheX0f8GUaGKP/wWuK2CF/gCy/iGuazJU38WyCwjoKIELiEIY09WRxEkC0jSiEAYUBFQEDqmdXY6OSXVxfV4q3dboW166uWs22Rr5CqPlGftDDUVEAkKajWGdoBhiKbzI0946a7EpIvISz7v7XJyYwXZkBAxORKM8aTY5lZrEcm3uNQssRzMHyhAQpdcQH0PrkJWqb+potoVmW5iuzbo/pP7aZJSbZc+bXprK8TBf42XLKw3sl7t8sL7H9YUchmVzZ7/I9cU5bNehO9Y5uzhNszciHlOZm0hQaveYS8bp9cb0NYPJWITxyMRxvaHwr7xUsz8+wAduVpvoVoJad0itO+Tk3BT3/VralZUcd/aKCMBXzizx8WaeoWPy9slFioM+I9PizMIUasibGZeOhZhIRFHCAQKyiCxKBNUjhuI1Phb3oNbY1w02+56h2Df77PtZ0kHQ8ObH9b1sZyys8P7GHpOxCBcWMtzLlzi+MklKUcm3ulw8maPVGjKRioDj8nCzxOm1GUaayXahSSIaQpCOnim+O/lCK9qBOF5MIwguQXeALRgIGCiCjm57bS1BKYvmQ7GCgcsMjQf+9SUMa5Oh/k2CynVGjslQ/4SJ4DUMV6Jr1pkNnmbk9IlKIgNlga5ZIqVMETMc+taAhJLB0DVs1yIgqhh+k6jmjOkanmK2zBodQ2Voa2wM8qxGZ9kc+L1OU8vcb3vrfHfmBB/Wt5AQeXd6jYetKnWrx5sz81hYdIwxq4k0STWILEJSDaJKMmE5gCyI2K5zUD6AT2EULeeAMavWH7LX7gDwotE4QPwDhESZ4m4fVZZYS09wc32fTCzM2bUZ7mwVOJadIBEM0uuNSYRD7Lc7zE+lwHW5u11kbSbjIUKaXUJK4F+L7cDz5gPdwLQ92nLNttj2PejMUvSAmfnC3AwPyhXowoXlGXYbbX4rv8fVVQ+edrNa5OrxnNfwaY85uzhDuz8imlCZlxMUO56haA/GDHSDyUiE4dBD80uieJCZrPeHDHSPAm+9XGcuEafS6VPp9FnLTXI773nQy+e8BIwkCrxzeZlPdvb5M//gn/J/+7Ef4cbK/He1feELrmiOVUTr/W1cK48gryEKSVxBQhAnQAghCWEgAFifqp8dzQraOK4Xu5h2k6H5CuW/TtXykyR2EZAY2DZJZMTAGarjm8wE4swEL7I5eM6EMk0sMMXOsMNyOIXuaITlKKat8Ky7y7HoAgMrTFlrkwxEXrPE5lEeRR9rZ+Mwso0DYLEbd7jf8JH0qRz3/aPkyfg0L9sNfrPU4+zEDP2xwbcKu1ydzCGKAi9aNa4v5BhrFqILZ2enyTfbzCXj2I5DodtjaSLJltVkaJjEVZWBP5het2wKfiG50R+hyh7F3Ua1yenM5CHh6mr2AOX/5vEFPlnPIwjwlVPLPMiX2G92eGNtgYFu0BmOOZmdJBJUcB2XdDSMGpAJqgECkujFdsqR+tmRo63lOHR1b2310Yg9v4P8mU9q5D1bkF2BnUIPRRJZnZjg4619pqIRzs3OcDdfYC07SSwQoDMaMzEVplDtsJBJ4bgO93ZKHJ9OI4sSpVYPNSC9xho2NHwMqePS03V000I3LZ4Wqv/2KpqlfxNL+0UAxMBFbNOLqwT5NK71AtkukgycZuC0GOu/iRK4io3M0HhCSHkD1zWwXZ2gchnTyhOQZwm6Mpq1gyqvoNglDLeLIqYxbI/IFMFiaHolA93pMbLLuDg0jTKaE6dmtMFosxJZZdPnHzmTOM/DruexvpK5xM3WDhu9IjcmjtMym3TNKlfSOVRRYOx0WI4mUMUgQVkgHlC94q2sHGAUP+2xXkGxhuYhFGur16Kte9b6k+4ual89UOiFYJwPd/IEZZlr87Pc2SsxHYtwaW6Wp5Uax2cmvTnPgoAiSGzt1lnNZpBEkWK7RzYRPUg4CMLr2chXw+dd1ysb9PymUcO2eeLzSp6LzHDXx00en83wstmksNHj5MwkHUPjva1dLs1nESWRJ7Uq1xbn0C0Ly3U4l5tmv9Ull4rjuC777S5Lk0k2Gk2GukkyFKQzGAMChu3xpwDUBkNvbJbt8KJW52Q6w1a9zRZtLk1nubPtGYq31hb45EUeUYCvnF7m8V6ZZnfI9ePzDESTvqGzPD1BMhZClASiIYVUOMTV5dzn2stfaEUTxDTeEi28Vjj/dUE+iKsEd4xle9bftLYY+5CtsfEJNjKvRvFKQhZD/wDRDRBSrtLW7xMRU35i5AnBwBKyOEHbcskEQ/TNGonALF07TMvokFGzSKJHjyYL0pHRhd7861eiOV6zIIDpGuRH3tEyGzR42vfiqsVIlnuNMgxhMZGh2DP4VnWDE/FpBEfmo0qeq5PzSAgURl3emJmjMhgyFYoQlhSeNxqcSEySH3QojXrMRxK0Ryam4yC4HBwfNcui1PG8ebU/JBkK0R6NaY/GXMxleVDw4qoby3Pc8UdBfeXEIjdf5Km1h7x1bontVouNVotrq3PYuDSHI45NTxBSPVRFKhI6IACSJQ9nGPkUqv4VGY9uWZS63nr2mh0a/jTWW/sFJEE4qEFOpiK8X8yjShIX12a5UyoyHYtycTHLo1qV45lJVFvCUUEVJDb3GhzPTiIA5d6A2WQMVT00FNbRE4X+KmvrdZS/AjNbosvDkmcoLs1nueO3I725PM9P/9k/+toEne9GvtCKFgj9MIL4L3B6/wmydRdHfQPdAcfeRVLewLBrmGKSoHAR3XxGUDmDYxbQ7TwBeRnXauLQx0P5ew8YwUSzvBqM5bSx7AaWO2RgDpEC0zT0ZwDMhC4cEK6ei7/Di8FTYI+3J66xOSxQ1V9yPn4KzdFp6HmOxxZRRAnX7ZINppAEi6mgzc5QQbNNYoGwP6vUJSi9jjDomX7vl9an+gog29hHwEuKFEddMnLsIDN5Jpnj41KBsBzgq5PH+HirwFQ4yuVMlnKzTyQa8Hregh5GsTUcsTqZOUB8xPya2itx7Nc91qvkzMg0KbS9hNDYsQ4wimtT6QPC1cXJJLX2gA+e7XJsOoWoSHy8mefCYhZFltiptri2OEd7PCIaUjkXmma92uD4TIZgv0uh22NxIkljMGRomN56/c5y3bYp9DzDWR0MSASDdDSNjqZxITvDg6q3nhvHcnxS8HkuTy3x0U6ekjbgK2eW2Gy32NK7XDqZw5GgrWvMzySJqypCUCAeUnEFCIbkAwxpMHB4okiEgp9byeB3j9dRAP4+8MPACPhzruve+9yrA6TAEqL9HADRfIDt2ICJbVQYC2lsv84WUs5hGh+goKIE36WvvYcsZlACl9CtLUQhiouCSRzVFTCdHpHAKo4QpYWAIqYQj9TPhCP1M5tDj+W4GgOfGdlyR+yOPCrL2UCEkuY97GPxSWpaj43hDqvxNLVRitutFxyLZFGEGHfqFS6mFv04wOZqeoHNXp3jiSkyis7Tdo0zqRka2pDKuE9EVg4aIYGDQRojy6TWHWE7LuVBn1wgdhDXXJvPcdu3ym8sznNzx1PSt48t8GC/zN18ibeXF+n0RmyU6lxZmvXab0Y6y1Me45MiSSRDQQa6QTIcPPBYHuLDfz7CYZG5M9RoNH2ey70ygr9xGy9HJCZCbDS8mG9tLsNHhX1USeLt5QU+3tlnMhrhYi7LXqtDLKhiiy7RkIogQlfXOZ5OE/LJgBLB4Gtli9cmm9rWgWcc2RaFrves9AmHB3nPg5+emeReqQo9WMulKXR7fGtrl9MzUziuw8fbea4szCIKIg8LZf7p7Yf8qWv/WkvmdyS/W7yOP4RHxrMG3AD+of/35xLHbmIM/jEB+QyC9RRXPoNgV3HtAi6x16Z3OgcTZ3Rsuw642E4dxx1i2t6GEwLv0NY8wtWEeoOufhOAhdA7FLRnOMb7LIW/SsdqUR0/ZSZ4Cd2V6Zo1csElbEQEIBVIM7ZHxOQwqqiiOzoJOUwZL9umCAEc/2hrOiYV3dtgO8MK7XEf23V50N4jTJKG5lnv1dgkn9R3EYC3ppf5qJonIiu8O73C3WqJqKJyIjHNSLPB9cLJXDSO7IgoTZFsNEbYbyuRRfE1K3wUeqRb9gHh6lDXeeEjPvpjg5c+Q9VMLEq9PmCn1mYyHkGOhHhvfZflyRQTwRCPdspcWMoiiSKNwZArqzn26x0WplNMGyZPi1XOLXmEq6VWn3hIPYgzgQP+E922qfWHOK5LtT9gJhb1FKMLVxdz3PJng99YyPFJ0T/aLi1yu1TkXrnEVxcXqY2GbHSaXMnNIokCPUNjaSKJJIrIqkgiqDI2LWIh9eB4Gj6SjBEl4SBT2hmPD462z0o1xr5x+0/+5Tf5kfOniKpHy0LfmfxuHR1/FPgZn77gE0EQkoIgZF3XLX+eHzpu/3vYxh0MQFbexjI+BIIIyvdhmbcICSEc6S1wB+DaWNIxkKZxXRFRiCBLWSQhAgjgKsCRYedHvsfFwnH9wRZun47hgYRHdp+i5j3sqGxQ0X16NDGCKkB5/DE5NUMikKWs3eFcfAXLTVPR8pyJr9AxdQQ3wvlkiOfdAqcT8xRlgfVelWwwiab7TZEIjC3jYF0tf+D10DLo6jo90/szq6R4XPeObDeyc9z0m0TfXJzn1k6JvV6Xt08ssF1p80lxnzeX59Fti5fdBhcXZgDQBYuldIqhbhCLqCTCQbojjYlEGKnuoeRjQZW6jxsFaPiF5HyjQ970MIoPd8skYiE6ozF7zQ7Lkylu+QmHSydy3MkXCQZk3jm7xK18gXggyKnsJJ2RhiAJhFMyk5EoogB5SSKXShy03yiShPQaGdCh6JZ9oABD0+RF0zMOY9s86M1bTCTY7LZYrzSYT8YRTYFvVrY5uZAhKijcrha5cmwWwYaGOeLK0iyFVo/cdIJoUOVltcHJ3BT7zQ6NwYiJcOhzKRn87vE65oCjc20K/muvKdp3zOvo9A+uDz2WhuN2cd0+uH1EaRHD9DqmJeUNOrqH+I8EbqCZNzHtDSLK21T0Aqb2MQn1LXqOy954hyn1LSTBoWJALHACzRliMEFImmRsNQnKGWShjuUaBKU4+JtPEuSDPrmR3WRsex6rpm3hMGRo9xiOnyBxnJ2RlwA5n1pmY/ACQRB4d+oqHza2CcoBvpZdZqProVkupHLIooRm2UwGI+QiCSJSAEWUiASU1wdrCEcLuYebcWybVH2Uf0Mbs970PFYwMKDU8+5nNBBAtxy+tbfHRCzE8lSaD0p5VuYnmA5GeFSpcO7MLNbIxg66zElJ1vdqnJqbZjQ0eJ6vsTyVwnBsOqMxsiiiHTnavqJV0EyLtqYxNi3G5oC5icQBr+PV5Tlu++Dh68tzfFwssNVu8daxBdabdW4Vi7y1uMDIMthoNrmc9WBZummxlEyiWRYRRSGuqvR1nYlQ2G+Ugmjg0KA6Agenhv1hl9HQW+etapGwLDOyLLZoMzsR48P6PiICl47PcLNWJB5S+IlrN/iLb3zvqAy+Ha/jZ5LvlNcxPPHTjLv/Ma4z9MhUhRkEeQaEkPeHV3/7P/8o4uNoH5hrYPpF75HdPpgw0zKrVHy2KpEAQ0fC5T4BMUQ0sER+eJd4YIawPEdp9IRj4WNYRBhZfSbVOVp6hQk1i+Pa7I+fMxNcYWCJdK0eQTGEeXhaQn9FDCS49K0xtuswtHR0x6A46gAwG45z6xV93cQc91o+0+70Ag/rdb7V2OSNuUXaQ52b5X3ezM7j2FBq9rk0k2VkGgREkcWJJLXegOlohPKgR0/XmYpEqPYHB0enob/5upp20Pu11WzRVEYMDZO7pRJLE0l2K97aLmSnubXnN0WeXuCj9TzBgMxXTi7xvFjHdV0uLc9iyy6GbTMTj5JNxlBlGUUSSYZDBzEWfArMzNEYy6ThK2pX03jie/CYqrLX8daSDoVo2xqV/IBMOMxCKsF7hV1OTGSYCIV4WKtwNZvDdGwsxyEXjfGiUefs1DSdgcaLWoPViQm6usbIsghI4oGXdHCp+SeKnmlw7djcQRLp88jvCq8jUASOVvPm/Nc+l4jyIrL6VfTef+qv9jKGecd/7xK6+QT0byIHruG6HWzjAxLKmwwRGJjbhAI30B2dvhMmFDiBYRVRpBmCkoZmNwjJM0jmPrZroIhxBr4HNZ0xHcNbft+soNkWDhZ1/SVheYWGUaRhFJgNrbE3egLAcuQCO8OHCIhcSFznRW8DRSpyPXWaimYyMnUWQ/PgxhhaIslAmKQSIRaQCAgCCMJr9bPXoEe4B4SrXWvM+iv6un6Xcs2ntRuNDsYOBUSJtBrivZ09MuEw1+Yy3C4UWUtPkIlE2Wm1uDyfpTfWSISCiK7Ig0KZc7PTXsvNWCMTCSMdyUzqR1D1Xc1HxpgWI908OFrmphLc2ffp4hZz3PXxilcWZnlYKPPB5h7XlnLURiNu7RW4sTSH7brstjtcnM1i2jaSI7KUTNIYjchEwsR7Kj1dZzISptDtHhiKxhFkf90v+q+3GoRkmbFlcadcZDYao+QDrU+nJ/m44HU9vLO0wAe7eWKqyrvHlnjarBMOyCwmk6A4Xo3QNFiaTPBJI8/13NzvfXr/s/A6Ar8A/KQgCP8ULwnS/bzxGYDrGlj2kR9ztA9McMGnCXedLrYPxcLeZmD5Ab7epmIH/f8hIonT9LSPkYQY08HzdI27zKoLOOJ5mvom86EVNEcgIIiIokpV22JSXcFyRUbjDvHANJK/BgEB90iAb/jAZhcH0xmju2OwYSKgsznwfodj4TXutF4hPuZ40StQ0ctcnVlgqzvmw8YG1ycXsB2Xx519bkwuYFjQ1QwupLPUxgPS4TCLcYd8r8NiPMmwa9HTdaajUfZ7Pb9m5VLzmbkaoxFmw1OSjWYL03GoDAZUBgPOTk9xp+QpxvWFOW7texjFrx1f4qPtPAPT5J1ji1SaPfq6wbm5aVRJxtAsJmMR0rEwakBClT3OjaOUbEcpDlw4GPQ4NEx2fTbmSm/Aru+ldONwXrciSQQiIt/a2SETDnEpm+VOscTxTJp0JMxGp8nV2Rw9XSOmKIiiyL1KkYuzMwwMkxf1BtOR6BF4mnvAGua47gExbd+Pf+sj715NJyN80vYztfNzfFLd5/bDfXqGxv/pxh/4nbbpZ5LfLV7HX8JL7W/ipff//OdaFWDbdeq1P4jjlFEClxEQ0Y1bqMoNcB0GZotQ4BquU8KWJpEEsK1NkFeQHBfbaSDLWQR7gIsJuOh+k6jt9tEsL+Fh2nl0J4Vmd9DsDmn1NHXd4++fVi9T0jxe/5XoDQrD24hCmQuJa4zMTXR7g2ORs1iui2b1SAdyyFIC25UJixFEQSYsKQfZrtCR+pl8pHxg2DZNP9FSGfcOjpJP2kW6h+MHiEgBPm50CQgSp6an+aixy2QywjuhBW7W9lmZSpGUQ/S0MfHJIKVWn/mJBC4ud/aLHJ/MeDyK7Q5B+WjJ3UsyAAdtN68wioZhsd3wFGM2GeOuTwt+fm6aR4UqVOFsbobdXov3tna5vJBFc2w+KRS4tjyH67rUx0POz8/QHo2JhBUWJ5IU2l1yyTit8YiebjAVjdDXNBxAkSW6hmdEG6MxfT8r+LLRJGsb1Ecj6qMRJ9Jp7pZ9MPNiltvVIqIg8LWVJd4v7RIUZb66vEh+2MFxXM5OTxEKyliOS7IX9Npv1IDX8SDLKEeGjhwlTTp6/d3K7xavowv8+597NUfEtks4jncTLXsfx/G8lG7cou8jMcY2yGIax/oQkJDk8wy1TxCFOFH1XQb6x8yoc+jCMppVR5ZijK0+QXkKEND1NmrgDLgpYI+AEEHk6JHtsH5mu2MQvKS9wJCh5RVLE9KAZ/1dANLqcTaGXl1tJjhPQ6+wPbrNO5lltgcxnvafcHViDdtV2RpUuJhcpmuYOLbK2eQsO4Mmi5EJBAQKozbL0TSb1oCBqROSAowPECc2Rb+zoK4PidBGt23WOw3OJadZb3nx6NXs4fDCrxxb4P1CHsGF71tZ5kGxzHarzduLC/Q1k8ZwyJmpScKKgms6ZCIeRjGkBFAkDw8YUV5HfBzeJ4eez4zcHI7Z6XUAWG826IwPwcyyKLLX6/q9bik+3MmTiYR5c2ma2/kiK5NpkuEgNW3IWjRDZdBnNu5Bse4Ui5yemkKQoTToEwm8DmY+6HpwXbqmhuU6DEwDzTHZ8ZNNN2bmuFk5pHm4XSnBCK7Pz/GsX+G96g5vzizQtzTu1oq8MT2Pi8vN6j4fl/O8mf3uaee+sMgQWT5GMPSH0bXfQJBPIDkJbGsTST6OaFVxnBYCCrYz8AlwbHTbC5wdt4dplwAD197GlWYYWTtgQVy9RlP34rxg4F12Rw+BPLnwDWraY5r6c3Lha2h2h765SzZ0BhEJyxmSCOQQBRkRBUWMYbs6gpD41CgoTwRELNfnDXQG7Pt9aYXxHpWxd9sfdHYwjQRDy6c5CE/wUX0bRZC4nl7iVnOXTCjKpfQyzztVFtQUqighIiG5MuutBmvJNAFHZq/T9WppBwkH96BwCx77FIAreGnxzqtalmnzqOwZjXQ4fIhRnEyz2WhR7PQ4MZ1hONR4b3OXi8eyyI7A02KNa8tzaK6N7lqcn5thv9VlNhnHFl3ynS7L6RRb9SY93SAdDtHy4yrLcSh1fMLV4Qi56ZH1bNSbrM6m2e622e62uZCdOUD5v7W4wId5D8z8fSvL3C4XKQ+GvL2wQMcc0zU0TqUniSuqNw5ZDZFQg4QCXtcDcEBGC7wWc1k4DKzDTvfnba9MUBj0KAy97PJf+ubP8fjP/JXPvH8/LV9YRRPFGBMT/4idyo8w1j4EZELK16hpHyOLSSbU76ejP0cSE4SlKCNXBgRE10aS17BQcN0dFHkG00f2C0ivIT4sjpCvujqm47NkOWOauh/zuSPq/nVUmqNlFmkbe0TlGSqGyvp4nWxwmZAUZHPwkuXISSxHYXc4ZiFyjpFVxXUXWI7A7mCfpegigjukrHWYCESoGofHkrbhfb/h2lT95tGGPiAljQ4IVy9PzHOn5scRk/N84sOyvrJyjA+rO1RGLb6ytsp2r8OLcY3ri7Nei8lowFo6TVgOIIreTDXTcYgEFRRJwrBtYurh0TYgvY5RLPvdyrutNr2Op6S3dwsIQfEASzgdj/LRdh5Fkrg0l+V+ocxkNMI7uSyPShXWptKEAwEsxyUoS2zXWxybSiMIUOkPWJhIEPbjPEkUXvNYI+uwYXRkGgx8lL3p2DxueQb2yvQsN30Pfn5qiketCjuDFhenslTGfX6rssON2TkcXB73ityYn/Uyk6LOmcwklcGAyUiYth6lMhowF49R1wbots10+Agf6HchX1hFeyXWwRw0i4Ffr7KcDkN7gOE0wWkiiNfp+ixZCfUGbe2mf/1VSvot4GPSwXcYmDv09HtkgtfBNRma60ypJ5AEkYCgkQhk0R0NRQwTECKY7hBVTB7xWIetOJYr0PUnztS1OpZPa7c/ek5pPM/Y1iiM2wTFWSqal3A4Hl3lbiuPKgZ4O7PG/c4muViUycASbbODKon09QgTagRBgKrWYzmaIeKXMKKy8no28sjwQsM1vfG/Aoxcg7yP8h9h8sjnTlxNTfCw6nnP+Vic/njEbxZ2OJZJEXQlPtzf4+JClrAjs1VrcWNujrY+JiYppOaCrFfqnJyepCz12G92WcykqOtD+rqBJAgH3cqGbVP2a3b1wZBUOOjNJdN0LuRmeOKv59pC7qAP7J2VRd7f2yPf7/HuyhIv2g22um3eWJjDcB2a4xFr6TRRVUFAIBUMIgoiYcXzWJbrED6CUZRECde3YYZjHcwJL417FMbevXnarTD0yy4CEJYDvF/dJiorXJie4lZzj/l4kj+ycI6/eObfYioDgLnMP6TS/lsIKJgu6GIcVZpHEmOAiCiEEYXg4X8QjtZnbF6Vcm13iO5nMG27zcB8AUBMClAxPAVWxSSWY1Aef0xIShMWFimNb5NSjhGUkjS0F8yGzmA5NrbrcDyaJj8qMBtaRrNHlLQdEoFlOobC2NaQBRnzyJD6ru+xdMekY/YxHYu202E6mGa/522+C8ljfFL34rwrE8d4r1gEGrwzvcyjVok7zV2+MrtMa6zxvF3n2tQcAgI9U2ctkcGyHVQxQDoYpmfopIIhAqKI6TjElcP7JEvSQe2oo2sHtOAPK2XUsYTlODR3RkyFwmz7rF0nZjLc3NpHkSTePOlhFCciYc7PZdluNIkFPTqDsBoAweuCXp2cIKwEEGiSCodQjlIrHPFYmvVqFLLLyLaoDDzFMFyHO2XPUJ2ZnOJe1XuGa+kJtodtvpnf4WQmg+XavF/Y4+rMLJIssNFpcGNmjr6hE5IVzqan2Oq0WIylsAWb8qjPQjTJzqCJ5liEZYWhf3wcWAbbfe933h92+NGV08SPkNV+N/KFV7SQcoFY6A9S6/4dAOKBN2nrd8GEmHqdrr5OS/uQhPoGltunp90jod7ABXS7QUw5g+1qyIJKUM5h2A0C0iSStY/tDpGlCaANuEiiimt7sZThDNB8NErb2CYgRjDdEQ3tIUF5np7pPfBJ9SrbQy9LmQq8xZ32BqqocCl5hq3BHpJgkQsdQ7MdDNthJjjBpJpAEiRUMUBKiRHyB9NLgsjRBpyjXPW6Y9G3POs7sDSetj3FbOtjNrtNfy0Rql2dLXqk1BApNchvFXZYnkgxGYhwt1zk4twssitSH4+4Ppdjv9NjMZFAi1o8KlU4PzdDr66x3+p6GMUjOMmjHqs+8DCKjcGQWS1GuTug3B1wZSnHnVcYxcU5bvpF7reXF7izX+ROvsjbxxb+f9z9d6xlabreh/1W3jnvfXI+lXN3V3XuCbRs+pK8lkxREk3RvgIt0AYE2TSuRAi2aFqiAJokJAqgAyhKxiUFBpMCYZKmAkjO3Jnu6aqu6qrurhxOjjuntVcO/mOts2ufvryTekg3+AE1s6tqT51v1vre743P89AYjnjRaHFzcQ5EaDsWa+USsiSiKCLFZBLLdckmVGRRwAvCU2NQUnx5AOiOM86lnrab6HHbp328T0KWsXwPAVjMFfj4cIeULPPu1CK367vMpfOs5Au8HLRZy5Uj3hdNRRZEPm/tc6U0w+PuMau5fz6Kn/9/W2EY4Pidid9PUlB7eGF083lBj1HspSxvHzP2XpKQjrwZrxBIEAhTHJm3SUhVUspVDq2vKKhnUKU8I3eX2eQVRl6ftJwjDEV2zSfUEpfwAouO8wpVqhCGr0MU239NZdd3Y0LPwMH0LQZxaFnRanwe98+uFFb5shd5rGv5FR72tzi0utwsr3FkdXg8fMZ7tbM4fsiOcczbU9M4vkgoeKznynRsk7yapKQl6dgmtVSa7WEHLwjJKQnqExLEjbgAsz3osuf1CYD79UNqyTQNw2Br0OVsrjwe2L21PMdnhweooshH51f4bHsfNaHy9swCHdNAQCCpKZTyUQid7CrMFXNj/FlClk/DbyYmPhzfH7cQDMflZTO6HHTH4VE3qigvFHM8N3pgwGwmiy8G/JO9LdbKJTKqyp36Hm8uzCKKAkf2gLfn5zgYDJkrZCmkNB63Glyq1tg1ehyNhtSS6TEbdAi0436Z4Xnsj/qEwP6oT05TqZtD6uaQN6dm+bwdk6xWl7jd3OHB7X16jskfPfPLj2J9qw3N8Zp8Wf+jGO4mU4kP0EOZjrNJWX0fAZtBIJBQLuP7hyBOoUoDHP8QTZ7HCfr4oYEiFfE9AwgJQx8riDyB5Tcx/Ci0HLgvSIfzmH4d069TUM/Ti3O+2eQ7HJpfAQLlxHd4rj9CEgyWU+/Tdhoo4ZDF5BouaUzPpaxmySlFFFFFFmRUUUHkdcimTMwohgLjcowdODTsLggw8Ho8i0vSIk32Bs74f+u5Cj863qSgJrlUqXK7tc1qocxMMsvD3iG3lqvYI4lA8Dknl3ncanKpVMOyPL5sHLNWKBEG0MBAEcRTIg59O/ZYQUDPMjFdF9N1WSoWeB4bxlsrc9yJ4Tc3lyIozvN+m3fWF3jebPHp3h7vrSxgWC4vjlq8OTcLclTMWK0UsVyPVEKlkIzytnI6hdSL+oy5RALiboAoCGP6gmN9OC7f3zs+REuKWL7H7rDPbC7H7XqE3bs2PcOdRoTT++7cCp8e7lFLplko5Gm6Q1KSwtB0mC6kEBA4NnTW8yUKSQ36kJRkpInZvUlAr+2/TgF+mfWtNjTT28NwI1LTjntMLy6DN+2nBOHJzS0gUsD17iIJCaa16/Tsu6jSNDnlBn3rAWnlPKKQIAgtEkKenrNLVl3FC6FufUlOWUUSE4w8EFGZnBd3g5OfE2L4EUGPH3pYgUfbiXKHmeQ0j3oRrcFc8jxf9KMbcT29zKNujx39JVfyy5i+w4PuK27kVwkFaFg9LueWGPomCVFhMVXlyOxSVksUFJuea1DV8hwJbbwwIC2rNGKEcM8xGcYHcXPYZuRb6J7NF919VrQaL3pRFHC9OMvt42g/31la4UfbO2iSxPcWV3jcamCELjdnZ/HDENvzmMtkmdVyJEKJpKKQS6gTLQNO5VjCRD5sB954mLhrWjyLmZCboxE7wyisKyQTDC2bA31IIZFgtpjlx9s7rJaLlHNpHhwe8tbsLIEcab69PTvPy06bc5UKA8fmcbPBhXKFnm9yaAxJSPJ4mDkk0gCHGKc3GuH4Pvv6gFouNQ6v352b4157O/o8v8ynzW2w4HvzazxoHPOgeRTJIXs2u6Mu18tzXC5O8+tLl37eY/tPXd9qQ0sqS+S1W/StB/jiBWTxFV5wTFKex/QOCEILAQk3jF6kH1pYXnSoHP8YSdAIMBi5T8molxm5EYA0p7xDK8alzSbf59D8DBCYTr5Px36M7u5TS9zCDUcYboOyuo4kZjCCgLRUQBETKIKKJCgEoQ+8rkaKE1JQPiGjOLTsuwa7RtSf2THqdNwojDm2uoSE7NBAQiQrVfmkuUFeSXE9v8bt+h5LmQq1RIbdUYebtSpdy6GgRlW3+609rpRmgJCmpVPW0qeYsWzvdY41iIlvbN9n5Do04lBqJVfk/n50adwsz/FFLF54Y36GR/vH/Hiww5uLs7R0g083dnlnJaI12Gp3eGN+Fsf3QYS1SommPqKcTUXcHqZFNZvmYDSMeFE0bdzAdnyfvRiUudnusj8a4PgBD/aOmaqmxzOK58sVPj2IQavzi3yyv0tKUfje/CoPWockRYlbU/M4uIQh+EHAQi6HIkgoosRUOjNWFRUFkCYuB39ihM703bEHNTyXLzvRM1jPVfm/vPl7f8ZJ/dnrW21oqlTm2vRf4x/s/ds0R49QhBSLqe9waN4nLc9Q0WZp2EeochENg0AsYgNi8Blp9XzMhrWDLFZgojLpT3gsP3ztsbzQwokLIAEu3XgUK68WeTqKjLSsrrBvHjHwDimra+yZ8Fn3OavpM/ihzNZogzcK69h+QCgY3CxPs6UPWc4kEYUS26MOi+kqnh4y8AzKWo62PSQkwCcY98/6rsFGv0MAbOktJEHgyBxwZA64lJv/HXkEwHen1vnR4Q59oct355Y5MAZ03SFvTE+hygqW5zKdTVNKJtGSIglZQhLEUxK72tdGs7wTtLLjjtHbh90hu7GXsjyPfkxrLgkCKU3mh/vbFJIJrkxHcJO1apGZdJbHnSbXF2ewbQ9Vk1AEiYcHx1xanMJwXZ4cNZnNZ8dYNFEQxsPUMIEsdyPp4J5t0bMt5vM5vmzEtAbT82PKh3fmFrlT32P/qMsHs8vsmm3uNfd5p7aMG/js6j2uFCL4TeDDXDqH4bqnREemkt+sf3ayvtWGBlF4csJK5YYGfa9FSIDuNZDFCkOvAV6DWuIaDfNLIMqrds2olzaf+h596w66/xXl5Pdo2i1Me4+KdhMzUGm6Oil5HVHQsMMEilgiDF1EIYMQKoSCiyhmx/uRBAWEmHA18Gg6UcGjYddpOzHcZBQVZU7gH2WtxtPhE2RB5lphlSfDV+TkDLdy53jQ2WYuWaOgJhm5DoqocWAMmE+VcV2JpmWwmq2QU6KLIiFGjfmTZU+0D3QvIuhxCbACn1eDKFyaTxe4U4/gN1dK0xF4VIfLU1Ps9Pr84GiDG/OzeIHPJ91t3jm7SOjCkTPk+tIM3aFJJqOyWi1FVHbVHEPPpmtaTOeyjAZdvCBAk2UGcSO5Z1s860Th40a3ixX6dC2Tzy2T89UqjxqxJtnKzHgs6nvnlvnR3g5qIPOdpWU2eh1s3+fG1AyyLGL7HtVkitl8lpQmo4giaUUlcUpLYHKYORy/A9NzOTCiy6FrmTyL2ymyKLITe9ZKIo0duPzwcIPZVJb5ZIG/u/mYlmHwl7/zh9CkX95cvtWG1rZecLf1/yApVxAFhYwyhQgIHJBV5lDFiBlLJFL0fL0mPZZDwMkUgcnAjQ6c7gccWhHEJa8s0nejSmBWniEIWuyObpNTlnDCNI+Hz5hOXEAgwbF9wELqCqY3QBHTrKerbI/2mUssIAtd6naT6cQ0fbeP4RtIgsQoZnvyQo+WHRU5Bp5OwxpgBS7bowYX5QVexlP+V/Kr3G1H+/lg+iw/aUZ56kdTZ7jfqPOs2+C92jIjz+HIGHKpME1KVvBDn+lUBlmQSEgySUnGCXyyE0DIycMShCHDk+FdZ8Re7KW+Mo8YDaJCwA59Eki8qneRBYHlhSI/PtqloCV4d3aBT4/2WC4XqSbTHA+GnE9XaJkjpjIZQODzgwMuTtWQRIGDwYCcqjIJOJkEjA4cGz8MMT0X0/PYG0YGsJDPc6ceeam3pme51zyALrw1Ncfjdp3f3t3mnZkFep7FZ8f7vFtbJBBC6saQa+VpTN9DU0Tm03kapk4tmWHP6DLyHEpqil36hAhokjzm2ew7NodGFL7++HjrVM/vl1nfakN73v97HBoRl+N08jrH5hcAzCZv0LE/Y+BuM5O8Rdd5Rd36gunkTQiHjOynlLRrmGGShutQlFcJcTCDArJYwPOHKFIREZkAD0V8HR6IgogTRkm15fc4diOvcGw9xQqSBPiMjB4ZqUQrpjyYSV7nuR55rMvZCzwaPiUn57iUu8KrYYOalkIVFZKSAAJYXZeVTI0wTLKlC5S0LJpwIgovMPlOJxvelu/Sjb2m5XvjPKKspbjbig7iarbMRrfP/qjPWq6M6fj8YH+Lq+VpNEnmYfuYt2fmcT0fK/B4c3qWrV6XxUI+0qHudThTLrPj9umaNoWEhh7LG3lhyNEwOnw922JL7+GHIRvdDioSO70+O70+12enx3wf7y0t8JO9aG/fW1nhzv4+W90uHy4t0TIMurrJldoUSU3BCT2qqTT5hEYiIY1bBakJinD5lMJoOG669x2bZ/3Ig+7rA/ZiBERGUTFFkw0TEpJMMaHxo3okk3WpMM291h6XKlNkhAT7Rp9b1UWOjQFTiTx+GPBFd5//yfy5Uwo8v8z6VhtaUn7dJDwlavG1GUXLj7yEGwyw3AjWMvIH7FiRIXTEPFZgEPKQhJQnJeXZGd0lrywgitPsGM+YSd5AFQJ6rkVZu4nt7aDIq0xJHnXrGUX1CkN/yMA9JCFmx+Q7ACMvugW90GMQM2QNvAED16bt9GnT50p+lS0jorJ7o3SR+71ofvL96mXutHf4yu3xdvkcu6M+T/uHvFVaISSkafY4n59GFgQUOWQ6lcZwI4ldTZKwff/UxIcmyq9nFH2Pg1FkGJv9NnpcIr/T2IsqdnH+M5/O8klzC1kQubk4y93mPsVCko+W5vm8e8DidIZikMaUHRKizN7BkOWpIiICh8MBS4UimZjvQxaF8ehTtIfXJfKR44zVcGzf52kzMoypYobbMbL8crnG4/4xLxsNrsxOczQa8oP6Bm/NR8qmD7oHvDM7jxeEDAOTa7VpGqMR5XSCxSDP3jBSR+26BrrrUE2m2bNNQqKAu2GdwJGGDFyLgJAnvWOm1QKHRjREfDY7zZ16FM7+xQ9+nX959ZtVHOFbbmg3yv8WaXmKu+2/zSv9CcuptwCfjnNMQb1KiIsbKmTkRSy/jSKV8bw8XthHEauIDAjwUcT0mFg1CD30uE3Qd/cwggEBHgfmMxLSFEOvRcOBirpMS4+o7CraO7HHUljPvMtT/QVJKcF8Yp2GbZORISHOklOzhCE0bI2KViUjawiAKqqoEzOK4USO5eHjx0Zr+ja7o2hvI8/kxTAKJecSARvx5EMlmcUIQn7UeMl8ukBW1rjb2eRaeZaUpLExrPPu9Dxd2yKXUJhKpfmq2eRKZZq6obM56LKUKTCIBTQkQRiHj14YUDejg9i1TequztC1Gbo2b1QSPGpFBYdbiwvcPowM46Ozy/x4e48No8P3z6zwpNnkWafFu0uL2L5HfaRzoVIhkVDw5ZBqOhWhyRNRc9v1g7GRwulijBv4Y76PY3PIvh5dYl91jjEmGvNpWeKTZhdNlLhUK3O7s8lUMsuN6gyft3c5n58ipcjonkVeTbI1bLOareCHAZ+39ziTqyL4IoeAJkqnpmGmU6/z82+yvtWGBpCUZ2k5UejRcVuvy/fBCD8mRRUFBZkEO6O7JKQCBeUc++ZjKuoyqjRFy37FdOIyXmjFZd8VmuZTKonz6D4cWy/IKzOEYawUiYTPa+VMwz/xWC4Dz8QJHJzAIS8vsG9uALCeOc8rPapMns2c5/FwgyP2eKt0gR1jjxf6Iy5kL9J3XZ4O9rmYWwdg4AxZz0xj+i5JSaGiZejYI8pqBlWUcQKPnJKGWPNUQh570I5tjEGij/uHpCQVw3fo9LeYSRTYiHWxz5XmuN3cQRFFvjO7zI+PdiioCb4zu8LLfpOUrLIoFkgoCiHQdyxWc6Vo0l8QKGrJU1JQQjhZjJnw7L47RnabvsuDGJR5oVrhXisKJVfyRfaHff7J/pAztTKe5PPD4y2uV2dISDKP23Xeri1geC6iIHC9MsOrfpvlXORBd/U+a/kSW0Yb3XXIKCoj1wYhUlzdHUXRTd0coogiVuDxpFvnYrnKi0HkQa8XF7gd53wf1Nb40d4usiDy3fkzfNE4om0YvDMVXRR/9v4P+Qvv/z7W8/+cRrAEQZCAe8BBGIa//2t/9xvAn+c1T8hfCsPwr3yjnQFt+5h73Z+QU+YYukek5VmCoIcTDElJFYauAYKPiIQTG53l9+gEUT9k4G6jBB5WMODYekRNW6ZtRxXBWuIKdSuqUq6k32drdB9JUFnPvMWxtYXjm8wmr2AGErZvU1RqpOQKTphCERJoYgpZSCDE3kmeoFmYrAr6oTs2VN3TeTaMXnbL7tKwI++lCUkOTJEDs01aSjCVyPNp+yWzySI1rcgX3T0u5eeQUDnSTW6Wy+wbPRbSRdzA44vOAZcL04w8hy29Q05JnEredfekGBTQsgyCMKRjm+iuw2EcWr5dW3it0Tb1+vP700t8Vt/jJ/UdPpxe5mio81WzzjvTC4RAy9Q5Xy0jiAJSOqSWSaHbDvmshtKIPFYukYDIGaFK0nhGceQ6HIyiv3jebY7zrduHB2QS8njIdzlT5OPDqNH+7sw8nzZ3mUpmeKMyx+PuMYuZKRRRRBIEFFnkWbfO+VIVURDZH/WZSeXGF4XAaYrwE45LLwwYOS6dWM8gDEMetKIc+P/+8Db/6Qe/72cf2J+yfhGP9r8DngK53+Xv/1YYhv/ON9rN19Z//uJPYgUGsiAzrV3is94WebnGucxlXo2eUlIvUFM1em6fgpzF9xsgzqEIAX37PgX1HB4aQ6+OLOQIwtf/d/3gdehxwvfhhw5uYI5Dy3S4xHZcqp9LXuB+P2YiTq+xZ2xzaD1mPX2Ovjfki/5TLmYvERKwNzrmTOYMbuAREjCfnKfrdMnLeYqKTdcdMKXl6To93NAnI6c4mT3yQp+23QPg0OzSsS280Odx/4CiWGPf6LE96nAhPzWecHintsRnre3oVp5e525rBxeH92ortO0Rrh9wLl+hmEggiAGZocpsOkdGlRGFiMxHU14XGSah+24Q4MaNXd11eBlPnPTtCD0AMJfJcmj0wYBqPo3ghPzj+iuWZgoUSfJpZ4fr05HH2h52eXt2nqYxopxNUg1TPGzWuVab4kjX2Rn0mU6nMcIT+EpI135NuHqCLK+bOuVEirZl0rZM3qzOcj/2mu/OzvNZK+4tzq3x46MtGvaAj6bX2R522Bt1uVVdIAwEeqbNUrZAXk2giCJZRUUQBFKKOqYIryZeDyT8suvnpQSfB34f8J8A/4dv/FN/jhWEPk5wcvg82k4PgL43pG5L+KFP095DFZZoOYe0HChp13gxiErhZ9Pf5c4gajhfzX2XjdEzjp0h5zLfoe0OeWXqLCauIQoaXU8gI1dRxQw+kccKwhBRiGbiQkJEYRImIeCH8YBsYFG3o4mPI7tNz4l6fs7IxolJWQkF0lKK5/qXpKQUK+k5toxHrGRqaMIcz4eHvFmaZuTK+IGEmlZ41jviXGEG24Mve3sspMqEXlxwEMTxzwfQ3dc51sA1MXwHw3fwQp/n/WhvNyuL3G1tA/Dm9AJ3jg95NYK3ZxfYNBrc7r3iw8UVTM/h6XCXt6fmCQkxQ4MLxSq6a5FPyUylUzQNk2oqxUZfwgl8ClqCQysObQWRQVwZrRs6u3b051+0jsgoKrrrcGzoLJSy3I3JT69NT3OntYsmyXx/dZFPW1sU1RTXpxY5MHskBYVpNxPNJIohTVtnPV8Zty2yioYyycz8tYmPACAE0/PY0aNz5Pkh9+qRYV4s1viqHYfZhQp7Rp8fHGxwtTyNG/j85SefYQc+f/rWL0/Q8/N6tL8I/PvAT8sM/6AgCB8BL4A/EYbh3te/8IsQqIqCxP92/T/ivz3663ihi4RE3d5nITmNJgr03GMKSg1FOkFPi4STucPEQTR8b2y0Qz/kyIoS+Z5/jo1RlGPNaEscGTtAh9nEMn13wNHgIYvJM9iBwue9Tc5kzkIIfbfDeuYsfbdPWsowl5zn2DpiSpsiCBwG3oCSWqblNPFCD1mUGAVR+GgFBnU7CkmadgOFBLpn8Erfpqys83wQI4QLS+Mp//er5/lxfQNJkPjezBmedOt07BFvlRcJCBi5NkvpEiUtjSJIZGSVlKyRkpQJYY2JHGuSGCj0xsjunjsaG+ax2+bIjLxHUpSxA596q0NG01hJZvlJd4PFUpFpLc/nzQOuV2aQBYm+Y7I0U2Sj12E9X8ZyPb6oH3OpXEN3HXTXIa0op+E3Y4/l0XJ03CCgYenMZ/Ls6FHOdau6yJ1G5KXerS3xaT36/J25Ve639vi8s8eHs8t0bIPn3TZvliOKuJHrsJwpIAoSmiSRUzRML5r+OPFYk4SroiiO0dw922RXjy6Kv7v5+J+toQmC8PuBRhiGnwuC8N3f5Wt/H/gbYRjagiD8ceC3gO9//Uu/KIHqUvocZW2Ku50fAHAxe4YDMyrfr6RvsD36kp5bZz1zi56zhe4+42L2CoYfGcNsYgVBSNB3VbJyGQgRSaMIGl7onOqfKeLrHMsPBQw/Fhp3BuzHla+t0SZBzAPScpokpDR1u4GAwExilqfDJ6SkFOezl3gxfEZZLVPWKrTsJlk5ixWYZJUMYSixMdpgIbWA6yfYN7vk5PSpyX5vYnLc8CKlSi/0sQObph3lVavAgxh+c604P/58uTDL0+4xP7Zecr0yT8ey+HF9k1uVJfwAXnTavFVdwPYj9ZZzuRpH5oCpZIaObdC0dGZTeTq2gR145NUkx1b0M+3AY8eKDv+u0aVtWDiBzxetIxYzBXb1HtDmYn6aT+Nh5vfnFvnJQQQY/d7SCvda+/hBwDvTi+iOjR8GLGeLTKczSHKkDzeVypBW1PjdiCjC6f7ZybICl1Es7jjybJ70oomPkeuOpz8W00U2h202h23mU3nkQOWf7G9yrlAlI6t8Xj/gVm2ekKjaerM2z57eYz6dJykrvOi1+D3z6z/ruP7U9fN4tPeBXxcE4deABJATBOG/DsPw3zz5QhiG7Ynv/xXgz32jXcXL8Ax0bxKecLrIcNJPcwKbYczlCEO2jSgkkMVF7nejkGBKK2P5TV6NnjOlzSIJArc7L1lOXSAnS+yYWyylLmP5HkNfYlor0HN3SUorTGl96vY+M4klem6DkTdAFTQc/4QvP6TvnlCEG3ScFgE+TadBSk7Rcpq0nCZnMuu8ilsGZzMXeaFHfbXvVN/gXneLvv+Cj2qXaTtdBt4xVwuLiMgMHJe5ZJGMoqGKIhlZi29iBYFoDiZ5ymMJePF0zMh12NajvGpH73AwjDkN2wf4QvRsRQFqaZVP2y/JyBpvVmb5srfNfKbEXLLEk/4R10rRhL8kCGiiwpfNYy6Xp7HskAfNIxYyeZIx+Y0kCKfhN85rscKhZ49bBithiUed11oCd7vbANyqzfN5e5c9q8V708tsDlvcaW/y/vQKtu/xSq/zZnUWAA+PlWyRkedQSKoU1AQ9x6KcSCMOI7r0tPz6Eg2A5glRkt4fF0M+a+yjiRJ24EMfZjIZflLfQUTg//X9P8R351d/+mH9GevnoZv7D4D/ACD2aL85aWTxn08KWvw6UdHkG62Xw03+7LP/HNO3uF54m75r8KNWnXfLNxCAHcOmqq0Shj4jP4Mm1nCDPnYwg0QTHwdVyBKpTYEsKHgneZXvMowby7vGHppogxDyUn+GH9YYxoDNsjLHS30DEZELuas8HrwgLaW4nL/OxugVBSVLQcnhBg6SKNF1FGqJKhKRx6uqNZJSMv758ilYSTChhOOFNm78e1kacRBzjFQUl7ux3O5ausbG6IAtYDk3Rdvpc6/3hKulORJywKbxmPenzuAFEn2vxa3qPA3TYCqjIFBlY9BiPV/C9aBhGiykCxxaXZzAR0SMwkcBdM9mexTlTvtGBwGRnhMxN1/MT/NVL7q43qgucq8ZheDfW1znx/VNZE/k+/OrvBg0GAYjbk3PEQohZuAwl80ylU2TUCSSskJKVk7Bb7RJ+M34P8AOXZq2DgJ0HX08/ZGSh+PZxZyi4QgOHzf7lBNpzmYKfNre4EyhSlFJ87BzxM3aHJYX4Q9nZ3I8aTW5XJ6OID3dJmcLFbq2SdMcocQhJ0Tg1ZV88Rc+v19fv3QfTRCE/wi4F4bh3wP+XUEQfh3wgA7wG990YwfmEYYfJdU9x2LLiA7csyH0vZO+WhbDHwADklISx68wGLyiqi1QUnPc7W6zll5EFRPUrSar6QsYXo+MnKWm1dg2tlhLr+EEXer2AXmlRN99/cINL8odAgJ6TvRSR77B0Bti+AaGb5BXsuyY2wBcyJ7lZdxLO5+9yLPhE5rOIZdzVzi2ttkfveBC9iJ24NJ0GiylVhFQ0T2BmlrCJyAhqqQkDdN3yMivizGJiVtZEAKG8d56bg/TjQCjm+YrLD86oXU65OQUT3UDIRQ4V1ris84mWUXjo+IStxs7zKZyzKcL1J0OJS2J7tkU1ehnPujscT4/jSIobMctg0mKNmdy4sO3CQlxQx8ztDmKEQjL2dK4TXCjMjvW6L5emeFpr85vN15xc2aevmfyk/YGb1cXEcSQvVGXN0rzGL6LLEisZMvUjQG1VJZjU6fnmNSSGY7NAX4YklZURnEBZuQ54yb3y0GTpDBg5Dnca+0xl8qPjfNsZpZPj3cjivCZJT4+3CWnaHx3foVHnWMyihb3zgT+/IMf8R/f+h9TTLymE/xF1y9kaGEY/hD4Yfz5T038+djr/arWpfx5zmXXOLaapOQcBSVPz+2TV0qMvGM8XJJSBsPvAVGCP/Bi5iW7TceJcF5box1ySoGe26fjdllLV3g1ikCa5zIr7JqPEJG4mL3Os+FDEmKCq7mLHNtNBETKiUVkQSUIAjJSiplklYSkIAkSSSmJLL5OpE+JF05UvtzQZuhFL9gOTDZjktWkmOZh3EStqEV67oC206OilXCCDA+Hj7heXkAM8zzs7nGjGME7bN/lenGJ3VGDK6UiXUflpV7nfG6GfWNIyx6RklScGL4SClGlDmDo2RyaPbwwYHfUo5hU2Tc77Jtwo7jAvXbkpd6urHCnFe3zO1Nn+Ky1y/N+nQ9qqzSMEYfGgOulORRBwvA8ZlM5sqpCOiHEA84BWU2OrwnhFKciAjhxDjr0bDb0yIPujro04gut64yiMI6oylpUknxc36CkpnizMs/nrX3O5CrUkmk2Rk3eLC8wcCyycZHjQfuAa6VZRo7Hk16dqWR2PNkvwLhHF4Qh7Rh+M3BtBo49pvarJTN81tjjfuuA5WyR37zx0S96jMfrWzsZUtXK/KmL/x5/+PZvcmS+ICUlmE6s8nl3g6nELIvJEo/7uyylL1NQHIauz9lMmmPrkCltlkDw2dBfMZ+cJwih5/bRRO208HncPwvwGfk6AT5WMMINbRp2ZABnM0W+6r8C4GJujRexQPyF7Fk2Rtt80XvO5dxlbL/DS/0lZzIXgJCu22ExuUxIgCxASa0wcodkpAyamMAOLNJyDoEBIaCJ6tg4ncAZFx/2zX3aRpeAkAfdbYpqmm6sgPNmNc1T/SkiAu9W1nk0eElKTvL9whqvRq/IKWlU5ug7AWEgo4kSc8kiQSCxN+wzn4lGuCAqOEgTCi+Tw8ym72LGBQfL98bh22wyz514mPlCocqWdciOBWdKNeqmzsft57w5E3F8PBq84oOFJRxbpOfpvFWd49jQqaUSBGKZrWGb5UwJR3foOSbTiTz7RhefEEEQaNrxNIxjYPej5/Ry0MLBoWnpNC2d87mpsQLPzco8D7o7EML3Zs/yST2SyfpoapXtQUQRfrU8TVKR8QkoJhLMZ3NkVCXC1cnqKdr0f6F5Hd3Aw4oLDoZvcWBGpee61SYIA6zA5vlwj7XMFAdmlDusplb5chDdxDfyV3jQf44kCLxRuMrTwTb7psfF3CWGnk3PtZjWFtCkHG4gkpIypOUsspBEREQUROSJaqR4ymOFOIEb782kHgsW9pweTSdKV7NyDifo0LBBFTRkSeK5/oCcUiIlLfBcf8Hl/CIiRQ7NfS7nV9Fdg7yiMp+U+bJ3yJXCItsSvBg2mEkWIM7lRMDyT0LbkL47GO/FCAbRf/smy8kyzwbRfq7lV/n4OPJY70yvcLu1xb7V5MOpVbbNI57rO3wwtYzh+RyZXa4WZpFFiQCfuWQeH5+0EuVXpueQVxOvizGTFOFhSC8O5Rr2gJYTXRoP+3tY7slF1yIra3zWbSMhcr4wxe3mNkU1xXuVVT5r7rKUqVBJpmhZOgU1ScPUmUnlCEOBe809LhRraLLIvtEjLaunBAvNE9IkIfKaHiG652B6PttxL+3tapY7cZ75VmWBe609GMKt6UWeDI74pL3B9xfX+WPn3ub9meWf68z+butbbWiapPJ/vPDH+Zt7/xBVVJAQeTHcYTWzgCgINO0uJTWPJk7SB0yM18SG4IchI99Dj3O+kS/xUo9uvqS8xlfdqJe2ll7hy94e8ILzmXXqdpt7nWdczJ0hCH1e6DuczZwDfCzfYiW1xNAbkpeTuGqZrtOmpJYYeF3swCIr52jbXRBCZEEej2IN3A6NuHe0b+6SEA2G/oChPmAxOcXGKOoRXS+e5fnwGYgCvzZ3lef6Q5KyxpXSOerOIaIgcjazhCxK+GFAXskwnaiQlFRkQSItJU9JQf1uoa0durTiloERWHwZV2qzcoKX/Sism03maVs6nzQHzGcKEKb4tP2SK+VZsqrCk/4Bb5WXsH0PNwh4o7TAq2GTtWyVrK2xpbc4m62xpw/oOiZJScGIwzefgKN44qPrGOyNejiBz6tBC02aGnMs3ijPczee8n9vZplPY/7L706d4V5rjz29x3vVVQbeCN2zOJefIisn8AMoaSmySoKkIo+b25Ph7KRem48/Di19/G9sZPAtNzSAW+Ur/Lj1OT9qRhwfl3NneDSIICZvFS/wZPCEHaPL9cIljq0GbbvFxex6XEEzmNaqpOU0AhIpKYWIgEwSIRQJhQB5gqFqEjxqhR5dNzp8bbtH04nCpZ3RIXY8VykgkBUDXujHqKLKXHKW5/pj8kqRldQaL/XnzCZXyEgKujdkWlmg7TTJK7N4IbzUX7CcWsILQrpun5Q0QQQLWPHFgBDiCX1CIYgKRIJJM9bFLucKPOpHF8Wl7BpP9Vfjzy9GuzzVH/H9mfNsDTweD7b4cHoZy5U4NgdcLswgii5ZzWMumafnmtQSCVKSguG7FLQUwjDyWAlJGetQm75L04xyqRf6IYIQ4ZjvtXfISSl6Me3eSqbMpyfwm/IydzvbFNQUH06t8rB7xEwyT05J4vgBiiixPeyymishCyJ7eo+5dJ6UdDLoLRBO8lxOUByMPGfMeekG3tiDXy8tcK8dXVoXcrN81amzo3e4Wp5jf6jz20eb3Kou4IcBX7YOI8ms0MfyPC7mp2g7Q8oZkUOzy2zym1Uev/WGZvvOKe7ESRyYEziR4ksY0bUdW834Ox7PBtsALCXneT6MbsHF1AwHRodP289Yy6xgePDDxg7XCpdQRIEn/Rbr2Qs4vo4fJFlMLdGwjqloNQJ82k6H6USVY9vBDmxSUpIgnqp3AodmPIrVd7uIiPh47Jm7LKZmaDiHNJxDphMXeDqM8rwr+fPsGQ8QEPio8ga7xhNgxBuFs0hCE8dvkBCnSMgpJFyycoaCkianishCFNomJ7z5KYF4QtzYo9uByVY81d5xBzxuR97DCpKgNjnqQ1LSyGoi93pPmM8XSIazfNHb4lJhhoySYnd0zK3KIh3bpJRQWc0Uud8+4s3KLB3b4NWwzUwyNyYDEhEYuicjdAGN2GP2HIOuY8QtA5PrhUW+6kSG8XZ1kbuxYbxXW+Xjox12+wM+mj3Dq2GTp70Wb1eWCcXIA5/L1UjKCqIQUtZSQJRbnVCEp6XXYb8snJ6GmcSl7cah5LNefcwDKQC1ossPG23udV7yD773m+SUf05Vx3/e69lgi//kyX/B0BtxLX+ekWeyox9zLruCJEgYns10okZIiCyopKQkduCQktKIiAQEJKTJqqCAHR++oWuyG4crzwdHWHGF7l5HJyPLWEFkNCvpIg96z9FElUv5M7zQn1FSi5xNrLFj7FHRVkhKAaoAoiCzZ+4zn5yHUKDrtqmoVbSYGEhEPDWH54/FC0P80BgXZ1LSiF0jmtlcSBZ5qj8A4Gz2LE+Hu7TdXa4V12jZTbbMe7xZvIQT+uwbz7maWycQAkxvxNnMAj13REpKMZfyOTIGLKQz7PSjQYBKIk07aBESoggSAy8qi7fsPnrMmPVcP6Kspei6I9p9ndVMmUf9WMmzusij/gaSIPJ7Zs5wr/uCtJrgu8Vluv4BkhAw406TVUVk2aXnqKzni2QViSddyGsJUhPDzJNyyI4fcOLATN/lMH5Xlu/xpB9dnOdyUzyKqf1W0mW2h31+u/6Kc7kKfgg/Ot7iRnkBVZR4OWjydnWBgeOQECUul6bZGnRYyhZwg4gifDmX52Wvg+l75NQEdix6ons2CfFfYIT11uiAXhy+jTyLF/ru+POuEeURVbVIz+uwZ3SoqgV80vyk9Zzl9Aw5Jcmz4TYXcqsQCvS9IVfzaxyZbaYSJZJShpfDI85k56lbXRp2l5KSxeG1+t/AjW4+O3DoxLCWjtMlI2UYeEMG3pAb+Xl2jMhLrafP8yqe+L+Su8qL4ZcMvZAL2escW3sM3D0uZM8BHpbfoabOkZSj2zgtZRER0EQNUZAIQh9FfB1OihOvyw9fN92NoMmBGYWSdWeHrnNyKwuYvsq+2UcTFa6UyzwbPeJ8tUBWXOTZ8CXrmRlSskbX1llOT3FsdampFYykyBfdXc7nIo3urjMiLWlfU3ix4r0EDHydgIChbyDKI5pWlNtdzmd40I3C2bemVvmitwkW/J6Fs3zR2eeh/oz/0cJZ9oY2j7qH3KwsEvgiLdPkXKEKgCKIVBJpRq5DXkmiCBJu6JNVTmsJnKAMhq7LURzaPus1Xl+i7R00QcGKK6qLuSJ3Oq9ISgrfWZjh8+4WC6UCs+osO/YBM6moffGvLb2N+g2IeeBbbmiXcmsspKbp2H3SSpqUlMTwTbJSDiGsEwohSUmlG4frbhjQjkvf+0YT4hGjp4NNMlIS3Tc5pEFNrfFwXLJf5WF/E01UeLt0jq/6L8krGc5nl2nZPZKSTBGHgpJBFEL6Xp+F1BRpKQkmpKQE8gTNwiQNth86ECu+OKFNN+YfkQSLHSMaxZpPLrNjRDnndGIO3d3jpd5iSlvCDz02R/c5n72AG2gcmjtcyp1B9xxEQWQ5tUzdrjOjlXECgabdZiZRxfSaWIFNVk6N6QvswOXYjLFwTg9DlPDweakfspSqsWs22TWbrKZW+Ekzaiy/XV7lTnsTSRD5oHqOL7rbdGyTm+U1+o6B5busZ6bIqUkEICsnmUomKCUExJEQUdl9feKDk3flY51UbQOTl4PIMHuWxdNYSHE2leXIHvBiCBUtjSbJ/OBog+VsmVpa4V57h2vFeRRBZm/U42ZliboxYCqZo6yledo/4lJhhmOrx4HRZyqRHY+DAbTt1yDVQyu6qA7NHllVoesO6faH/IU3/hd8f/riL3Bq/+nrW21oi+kZ/rPrv8kfvv0fcrfzjKKSZT45zd3uFivpeUpqhmeDQ1Yz5wkxcAON81mJbX2Htewybjhic7THXGIKO3DQfRNFkMdleWAcLtmBS98b4oYeLadHLVFkP24nvFFYGRdgbhTOsBPT2r1RuMSB+ZyXo6dcyF5h6A7ZN/dZTZ9HFMD0dWraLLIAaREyUgY7cEhLSSQhgvokJsQLJST8uHxvByY9N/r5TWuHths1bw/Mrxh5Odx4uHklleHA+hxN1HirGA1dr2YqFJQ16tYr1jIV+m6GlOwhCioPex2W0zMEgUDTHjKbKJGKe2miIJ6aqjfi3NgPA3TPRo8LDl4QjGkWrhdfowxulmY5dJ/yZAg3y2vUrSYvR1/yYe0ctu+zb25wq7TEyJMYOC5nstMMXJOkmKKayNCydGqpDBu9qOqYV5Mc2ZHXlkSRVjyjeDgacBznf19290kKSYaeHdP0FcYFkCvFWe62d0mIMh9U17nd2qaipbmWnufYGpCSVKzApZpIIkshbVtnLVsjGw8zpyXtFOHqN1nfakODaFrc9KMX3HWHtGIE7NbomI6TY+iZfNnbZiFVY8+I4vWLuXke9KJK3BuFK3zS2iApKbxdvspX3SPCQOZCtorlg+GF1FSfilZGEiRUQaGoZUmIJ9UuEXmC74MJuV0vdLDivMoMLPZiMiAjMGhY2wCU1QqGd8DAhbxSwQkEtkefMaPNoYlZDo2vIsNExnAPWU5fZOh2qGkZsnKGA3OHheQSstihbvcoySVs38eNpNAw/egg+qGNEcv9jvwWCTHLyB8y8odMJc6zMYpyvsv5izyI6cu/W7vMx80NGnaHd8vn2NIPGfh13qvOg+ChewNWMyWKWoKUHJBTNDRJJqfISIKIHwakJkvkEpwwQPiBRy/u7Q29Pjuj6NJoOUc87ESHVxEkDFtis79FRtZYzxe503nJQrHElFzmfnuf66U5REFAdx2WM0U2Bm3W82VcbB4P9jmbmWbgugy9SH54ki+/a8dsZoFH09ajXMyMPN5WLEX1dnWBL/rRs7lVXuGzmObvw9oZvurv8Ccf/A3+/Ut/gP/5ws2f57j+rutbbWi324/4ra1/wKXcKm27TzVRwA8FvuxucS67iB+GdJ0heSV9SnzdnvBYJ/mK6bt0bJ92jL2aSZZ50I1VXQor3I8/3yiu8lJ/wZHZ5UZxnZ57zNPBM64VzuIFHjvGEauZM4iEOIFPVZ3FDkYkxCRpKcPI18nJeVpEjd6UlMQev/twbBgDp4HHAQhwYDwlI6vYgcnAaLCaTNGLKRcuZ8/TsT+hKmnM5d/n1eghy6kCGXkdOzhAFRNYgUhSSkMooHsDqtoiSqxymhTTyOJkbjcBMfHdmGA0jOA38fiTKLk86m0DcC47z9NhdBDXc7McWQd8OWxwrbSEGVg80R/xTnUNP5DYNQ44lzuDG1hxaDtHw25TUUoMVZuO06eqldHEPnbgk1dTDGKJX9N32IqHmQ/MDt3QxQ58vmgfspQpjnFpl4rVMXr6vdo6P2lsk5BkvlM7w/3OPiECN8tLmL6DH4bMpwrMJHPIoogqSEyncqTiuVEJAfkURfjpZzOKPfjD7u6/2Ib2t/f+EdtGFKKcyy7xMO4XvVE8y+fdDQgF3ild4H73JYe+w83SOdp2F9OzOJ9dRBUVTN+nouUoqhkSooIiSKiigjYx8aGcYqh6TWbnBDZtpxMpvLh99sxoL3sjCZcI3qGJGopg8nT4MAKBJmZ4pX9JTZulpuU4MJ+xmDpHEIb4oUtRnaJu7DKTWsYOTA7MDaraMn6oYwcmiqDhh68vCi+mKPdCG8frEYQ+Q69NQa1wZEX7mU9d5qUeGeZy6nLU5AbOZK/yZLBFe/iKS7lL9N0+LWeHq/ll/FBG90Ysp8sIKMiCRFZO4QYueUVDFKIK6UlYCRGc5gQBYYcGR3E7Zd88ph9rCXzeGZFVnXjCUSAnFfm894yUmOBibo0ngw0ulSokhEWe9uq8VZ3CcARkQUKTZB51DzmXm8VxoWsfMZfOk4jzPAHGfCMQkQhBVIkceBYDN/q1lC7ysBc9m1uVxXGT+1ZlibutHXZHXd6rrrAxbHGnuc/btXV8HHb0FpfzcyiiSIDPbLKI7bmEocjIs0lPPItfdH2rDa2qFYEtJCQmepWvabCFEDOwcUIPQnADl914FKuaKPBVbJjr6UUe9iPoyfncAq/6HX5Uf8X14gpW4HKnuc0bpVUkKaBjt7mYXWbkm0hoTGvTtJ0WRbVI1xmg+yPKWo6m04pyLCmBE0SVSdM3cPwBCNCwDwnDFm5gs2s8p6zO0I5Hs2YTq2yOIpbkhdQNnuuPUQSVq/m3qFuPGfpJprVlRoGHEfqkZYGMUmUUJGjYKnmlTFI8yask5IlG+6lZTj8CikafbfbN/fhvRjyOh5lnEjWe9ttsjY6ZTZQQRIdHgy85l51FlTQ2R094u7yKF6joQZ3rhRVadp+FVJKsPMNL/Zjz2QrbI5G6PWQ2UcSiPc6D++PKqMVhnPM27BYJMnRdg65rsJ5e4KtO1DK4ll/hs3ji/7sza/y4vokiSnx3dpWX/TY9x+aN0gKEAqbnMaVlmU5l0QSFhCiTlNVTpfhTMlnhaw5ry/eoWydksDYbcdqRVlQO4oppRcvScWz+7t597rW3+Qff/xM/7bj+1PWtNrQ/ef5/yYw2y9/c/pz7rSFvli9i+T57us5KaoG0IuOHAWU1hySIaKKCKsp4gU9yYspCmXjwQRCMQ4KOPWLXiGL1V8MGvhiFJw27G7O2N5AEkaV0kfvdZ2TlNNfzq7zUnzOTmKKi5Tm2D1lKncUJDDQxjSSI7I+eM59eR8LE9J+Tk0sRZz9Ryd0NXjfgDT8KZd3QwfF1LF/HQqeoznBoxl4qfZEd4z4A5zPX2DUeU7c2OJ95k6ZzQN26z5XsNQIc2vZz1jPrMa3DiJnENJZvk1EUMnKakWeQlnNIQgs/DEmKCU4oqgQhZBhT2fW9LiPbBAFe6BtoooCPT8dpUVWzPNcPEBB4szjLjvmIpJzg+4UzPB8+oaYUKakrdJwWKSlDz/FISgVEAYbuKxZTcxhODuiSlROnVE7dU/Abh4AQO/AwPJeDmNtyOVMcw2/erM7yoBPDb8pzPO3W+eHRJreqS4xCnbudTd6pLhMQcmx2uF6aw/Q8JFFkMV2kaevUkknqtobu25S0NAdmG4QQTVBwgxMGs9fVyl9mfasNTRAEFCE1nioYOiFPBtEDzsgzbIy2AVhIVtk3WzTsHkupGn0b/vHRNleLq8iCwv32IVeLa/ihx8j1uVJY4MDoMpUsIAgiO6MmS+kqLddh4I0oqTl6ro4XRlrVnZgYaOiNOLZ8QkIOrTqyGNJ3e/TdHsupFV7okQc9lznP82FUvn+zeIuD0V0sf8CZ7BscW3WGgctc8jyCoGD5DgWlTE4pgqCgCBqyoKJMqN9Mtg8EIUSIWwYBJqOYscsJujTs6HkkpD3242pdQkhjhR7bo0Nyco6EMMXD/hPW0rNklTxbow0+qi3TsTTc0GYhvc6eccRKeg7dM9gc7bOanmfkD2k7XRKiNq54hoRjZmYrsOg7bfwwMsa8kqVhN4AGM9rlcT58NXeBHx7tAwM+qJ7l8/YOL90DPpxapecN6NgN3qrOIKJgei6zqRxpWUMTZZKSQkg4HssCUCfyz2hCKIp2Bq7NVtzOOLS6HJmx5oFr0rWj72iiTDEl8Gn7BVUty3quxoPOHudyMxSUBJt6mzdLy4w8m39r/cNf6Ox+ff2qeB014K8CbwJt4F8Pw3D7G+0MeNDZ5ovuDhUty8izSYlpVEHGCb2ojxUvVVQmVEM8DuIy8KtBezwcere1gypIOHGOMaXludveQBYkrhQW+KK7S0FN8lZ5gUf9TWYSJcpaBjfUSUgqbbvLdKKCLAYM3QFzqVkSUgI4RBVUJrtE3gR62vYtQiHAI8ANHFpOFD6V1BqbcWN7PrHOjhH19dZSZxh5L9gY3WMhdZEw6FI37zGXvEakTnrMfPICdmAjCSJldZ6h1yYll0l6HUx/QFouIxI1kFUpSRhj9tzA4tg+OXyHqHYLJ3TYHL1AZpZju8+OCWcy03zVf4GAwNX8GZ4Mn6MJKm8ULvF8uIUiJLiQncMObAQEJEGiohURkajbDcpqCU08mYaRTpMBTeQApu9hxiGmi8PLYUw7kSty+zAKs8/najzttXhBm3P5KnVD5weHG1wrzyIAd5t73KwtAQFt2+BGeZ6GOaSSTBCIJfZGXRZSRXTXZOhZVBMZ+nafgBBJFOjFxbGmPaQff34+OKam5WjaQ5r2kP/6/T/OleL8L3J0f8f6VfE6/jGgG4bhuiAI/wbwfwX+9W+ysSOzy//6zn8BQEFJY1tJ/ofBNgvpGjPJBD88PORa6RyFhMjzXpf13AVcoYsY5LicL/NieMi57AJtZ8DOqMlssozumjiegYjIyHvNo9g8idUdk7bTxwoc9swmlYTKziimJMut82gQGcONwmUeDiIjuVl8g+3RK7ZGR1zIXsYKdLpOh+XUKoqo4Pg2ObmMImpIsbcKCdAm+meTxECCEOLFNHWWr2N6kSfouwfoXpQ7GH4PKy5jC6GEF07zZPCQlJRlOnGZzdFzphPzpKUyLWeHM5k1Rp5LQlSpqGmeDXdZzyxhBQ5bo13KagnDi46CCK8Bo4ToMUmRHTronsHIj35NJQpsjqIiw6Xc+rgAcyF7nifDFxzZTa7kLvF00OLlcIObpbM4gU3L3uet8jRBqCAKLrPJPF4YkJEVkpKK5btk5eQYfqNNiEsEYUg3bu8cG5HmNMAXzUNc4XUBqZgUuNtpIwsiZ3MV7nY2KGsZLhdXud/Z5kKhQlpO03V0Kskax2aXmUSJUIgwf+dzM/h+SMMekJbU017zl1y/Kl7H/xnwp+PPfwf4S4IgCOFkZv4LrhMIBURkLycd/SOjP+7if9k5oqCp6J5Fq6kzmyyyN4puwsuFOX58vIcsCLxbO88n9S3yapJb5Xk2R02SksKirKJKEiFgejbLmRppUUCgTknNop4YQCj8jqmGk2X5HiP/db9m14gMI68UeBkT8cwnpmk6mxxaDaYSCwzcEY8HX7CYXCNA5bm+yXr6IiEBPWfEdOISQ7eJJFTJKC66s0NaXsIJXJygT0quYNstQiHahx57LMMfchz3Epr2Pp7ions9dK9HRVtlz4z2czl/hVdxMeZq/ib3u89QRZsPKut0nH280OBCdhlNghCLspJlOpknKwsoMbI8cWpgd4ILZUKTzA4cOs4g/qzzKoYmzSeTPOpEBlxL5OlaOrfbPaa1Aq6f57ePN7lSniElJ3ja3+ed6XkMO8QLAt4sz/Ny0GItXyYjq2wMI0+3b3XpOSYZWcOKZxS9MODIjJ5N29bRxEjG6tWoznpmhq1Ri60RXCnMc7sZ7e292hl+0thCEgQ+nLrAvdYuv/HxX+UvvPUHeX9q7Wcd2991/ap4HeeAPYAwDD1BEPpAGWhNfukX4XVcy07xn73xb/JXNz+hrtvcqmTZ1tus5kp4oc+Dzh4XC9O4gYPuWWNmqJM1HJOKhhENNiFdx2DkO9Rjss+b5aVx7vBGaYX7nejzrfJ5Hg02ODT3+LB6iYbd4vFgn0u5cwiCR8fusJKaRxIlfKCglPBCh4SUQBEU3NAlJb1mt1VFZdzn9kOfQUxr0HaadGJIyQv91RiZcGDDlKpxaD9BRGIlfYkX+lOSUpa55EW2Rk8oKstk5Rwdd8SimmHo9sirFURCdoynTCeWkQSZrltHE1MQvi44OBPFGN0zCQixApsQk1ZMADuVLfE8Rhmcz66yYzylYcMbxXNs6jtsjBrcKFzC9LvsmY+5mj9HEAb03TpnM4tYfogsCMwminScEQUlQ1LSMH2brJxFYERIiCYqY2ycFXjs65GRvNLrY1jOg94WmpsfS9+u5ov8pL6NIoq8O73AZ+0dSmqKj6ZX+apzxGxiinxCxgtDNFFi12iwlq0iCCJHZp+5ZGGM04vIaF+fmxNRej8M0d3X0zCft3f/2Rraz8nr+HOtX5TX8aOpC/zFR5/wvN8BOlwrT3P3hAa7usLtGOv04dRZ7nd3sAKHd6srdGwDJ/A5k6tRUJKEhGRljelkjqSoIQli3E+bpGh7vfwwGPeLhp7LYVzuHXomh/HEx7RY5diI8p2ikicIbb7sPaKilqkqEk+Hj1lKLZNXZJr2BqvpixEiWpBYTp3lyNxlNrmEKg0i+oXEAn23g+EPkZFP0SwM4xlJ0x/SdVr4oUvL2UcQztCwo9B2KXWe7VHEzLyWucLWKOK/PJN9i5fDZ5j2AWvpa3Rck6E3ZDG5jCYlMD2XopInJSVRBBUlro5qE1woyqnJmAAvHv9wgiFHMbK877Zp2FFvMS2ZNGLlT01UkcQ097pPKal5asoiHzcOOZudISsn2dTr3Cgu03cNMlKCaVXhi84BN0oLdOwRG3qLaS3PwIvyPFEQGMQG5wbBuETfcQza9oi+a9J3Td7SZnnUjbUEKot8Hl+i71bW+aSxye6oz4e1dV4M6uyNWrxdWcINArqOwWqmTE5NIgkiOSVBUlK4VV3+Wcf1p65fCa8jkbjFArAvREJmeaKiyDdeBTXKZUSEU6hg42TuLgwYeva4ZB+EAc9j4sw3y6/xTTdKCzzo7PFy2OSt8hJbeoMfHm3zXnUdB5On/T3eKC4DkX70emYOO7BISAoVrUDPGZJXcrRsDSe0SUtpIDI0RZTHw7tRDhOFSzvGNhXVxQtdNkdPSEplBl4PgJnEAi/1RwihxErqOo8Gz8jIaS5krnFobZKWyuTVBAEgx+KEeW0RUZDBPqKgVlHF189mck02vG3fwo5Zmu3QZ8/ciZ9rcdzknk2u8XhwzIF1zFp6gYHX5Kv+Q85k1pAEl239KWcz5wkIMDyd1fQqfXdARk5R1Wq07RYltcLAHWAFJjklT9NpxfAleZwPd5w+W1b0Dl8MjyipGbruiG5vi4VUla9i+Mvl4gp32zvIgsh75TP8+HibrJLgO+VltkdtNElmJp0jJcsIQhSprGRLpGUVAciryVMyWZOD3rb/WsHc9N2xoXqhz/24TXCpMMMXJy2D0jy/9eFvnPr3fpn1K+F1BP4e8L8CPgX+VeCffJP8bHL95ff/MP/pwx/w9zees92yeKu2jOtBb+iwlCqRk7IEtkJGSpKQJVRRjY0yHM8rwmnhBieIBAcBWvaIg5ii+8jsUI+54pOSiiCOOLYaJCSVvFzgk+ZLphIl1tM5HvW3WctE6Om63WcheQnTb5JVysiCy77xjPnUWZJSk6a9T0osEE4iuGP0dCj4Y74P3Rsx8g10b4DuDcirZ9g1Ivq61fRrwtXz2Tc4ND6n59Y5l32TlrNL037FeuYSIS6622BWW0aRVCTBIy8XCAnJSAqKIOOG3ik0tyRMjmj5DGM2sa7TwwwOQYA9c2tssACKoPBqdIyMTEWb4+HgKXk5x5lMVDRaSM6RklP03QGz5TzbwwEzyTJGWuJO64ALuRmCMKDj6GS+Br+Z1Gtr2xZ+zEFiBjb7sUzVrerkxMcidzsxXfjUCg86e9xu7vLB1DrH5pBHnSY3SitIUkDP0VnLllFFiZQSUlQTmF6EP5MFAS8MyUxQ+2Vk7RsbGfzqeB3/S+CvCYLwiojX8d/4xjuLlyyKZMQ0e3r08k1TijSMgSvlKT6rRyXhS6Ua26MjDoabXC7Oobs2v320xc3KMrIcsDGoc7O8hO27iELIhdw0R1aP2VQGT8hTt/pMJ4v0PRPLd8grKfpxxc0PgrEB1q0ebhiVzl/q+8xoRep2h2OrzZnsNI8HUS/tYvYqX/ZfIQkC71fe5VH/KQlJ4GzmOt04D5pJLAN53ADSUoqqVkURI5qFhJRAFib5Pr5OvhodTD+0GLjRv+cFJkdWlFdVtQSHsXZbUZmm7fbYGt1lOTmLg8rW6AFnM+vYfoZtY5fLuTVM30UWPdbSqxyZR0wlagzdgLZ7zHRiloZ1jBkYJIQkVhjrcuPRcmJhR29AYDbxQp9dc5/55BxH1jFwzGzi7Lhq+52pC9xpbyIKIh/VzvNFbwsjGPBOZYWBN8L2Tc5LFTJymsAXyCkJqok06bGwo4w2EfaLE3wfXuCPlUyHrs3LeAKm77hsmVEouZgusWMesWPCdKIIFvy48YK1XJWEpHK/u83NygJhKLE56PBXX33GH127eYoA9xddvypeRwv4Q7/0Ln7Ketg+5lmvST6+ebJCYizckD5VFhfGc3C6a49psDeHbfQw8hhfdHfGNTEBWMhq3O2+ICkqXM4v8mVvm2ktz2JhiSf9PZZSy6TkEC/0SEoaO6Nj1rI1BCHg8WAzFtyQwO6gCAr+JMQkOAFFhvRdEy/00D0PKwg4tqPLYSl1iSfx4TubOcMLPYLiXMxdpmm94PHgSaQlEAzYGb1gLX0RSfBx/BZTiRWC0EdCIiuXsXydlJxFFlS80CEpvaZHk0RlDL9xQotmbOjH1g51OzLmTeMJSTGJGeeGVXWax4OnyILMhdwFNkdPycl5ltNX2DW2mFUWUEWNkAABjT3zmLnEHH4o0nY61LQqWqzAIyKdKjicMFQFYYDhWxgxOiPA55UeRRfnUmf4NBa1uFpc5F7jkI1hm5uVRTb1Fh83Nnm3uowZODzsHHCzvECIwMhzOJurobs2GVmL0OG2SS2ZYt+WcAOfrJzgON6LiEA/Lkg1bZ1B/PmL7i6ep+CFIX/my/+e3zt3gVryl1f//FZPhmwNOvyB/+9vATCfyqPoKj98ucOZco2MqnB345i3ZpcQEwGH/RFvVZdpugMqWpa0rPK83+BMrsahLVC3+swmi3QcHcN3EAWBXjwIawYuh2YsCm/3USUF3bN4NjjkcmGKjbiXdqO4yJNhZBjX8hf4cVwGfr96lcf9fbZ0h0v5i5i+R8eymNVmySopXF8gIaZJSWmCII0QioCALEwO7L5u6nqBPw7TdN+gbkcHbuB1sb1okj4tFRj5PZrsoolpVEFhQ/+cglKjpORpWA9YTp1HENLo7i7rmfP03AFFOU1GmWJntMV6ehlNtNg125SU4pi+TkAYtyy80KMXF2MGXp+c12fk64x8nZX0Otsx/GYpeZFncTvjfOYGn7Q2ETB4u3yDx702L60+lwpnsfyQpmWxlJ4iI0dkpzk5hRJPfogIMRnQ60tUOtXw9ujE8Je2PeKlHg0A7Bv9sfpNSlSwQ49Ds09OSXC2mOCLwRMW0xWmklmeDHa4UVogDCMaw/dq8zzvd1nLVhm6Nk/7R1zMz3I0Mjkyh2RkjaL2zTTSvtWGdjKdDTGjrBk94MPBgFEsOv75wSFqQoyAhf0Bc7Mqd+IxrauVGrdb21HVqHKWnzS2qCUyXCkvsDXoUVJUFMVBIYMIGN4Oa5lpFFFm12hRiuVtx3tgshgzUQb2vNdG64s8HkS5w9XCIo9jj3Ums8SGvssr/SUXspcxghb3e0+5kD2HH4Y8G+5zNnMOQXAIQ5PZ5DK62ycp5cgrZQZuh4JcpuMf4IY2KTnLKO6fiYKI6cdNd7eJ7+8jCCFt+ymaVMTwe4z8JkV1joYdI8uzVzgwvyApyrxTfJsv+89Jy2lWtUvsGD1UUaGYLKJJKUQhRGFILTGPIqYg3CMppxHC1xfF6ycDhh/E4BvoOyHNOOzWXWFc8DiXnedh/HktPcPWqMmn7eecz87TNj0+ab3iZmWFMBR41T/mVnUB0/eQ5YALhSoHoyGz6TR9LxNJPKUztG0dJwgoaikOzBPSJJ/juJe3b7boej2cwONhf4ealqdh94E6s4lZ7ra3IBQixq72NilJ5X9z7j3+7XPvf63y+ouvb7WhXa/M8uff+zX+5pOvsEcBi7MlnrdbXKhUGDoOj5oNLlSq9H2LA31ASvka8C8m8TR9l7o5xA9DjswhtUSOvVGfvRHcqi7wWZxIv1Nd4bPmCfDvAnda2xzqLb43c4l9s8dX7SHXy+uEiLRNi8VUlZSsIAsiWTkJYcQmNSYGmhhmFgVhXP2yA4e2E83etewOR1YPgA39EFWKvIeAgCwotAeP0USNmcQyjwbPqKrTzKfKbIxeMps4R1IUcQKTmrZEy95nOjGLJJgcmU+paKt4oY/h91CE5CliIPsk/ww9Rn4/aiN4A3Kyy5EV7eFKfpVnwxNm5nM8iec3r+Ru8HS4yZG5zbXCmxybIx7125zNXsTxZVq2xWJqKmqjiCJ5JYXlu2Tk5DjsT02QJkmCOCFAYrMVy+3uGQ2Ojeiyfdjf5qReKCIwlVG4P3xKSknwbnGKh70t1oplqkqZZ4ND3qjMYHshmiyQVqq8Gu5yvjCHEzo8G+wzlyyNCXElQcQ6US0SwvFYluE7XC/PneIm+WXXt9rQAP7Q+hX+y9v3edGOXv7FWoVPD6LS6/uLC3x8tEtSkvne4gqfHx8ijTRuTVUwAzfibUyLTCWz8XR/h7lUYSzjowgS0u+iu2X6/pgfvmsHbMaI3I4l8VKPDHMlXeOlHu1lIVmh5QxiKrsZFDHks84G1wtnSEiwbxxzKbeO6evkFJmUvMiRdUwtMYUTCLSdLjWtghHoOIGNJibG6G07sGlYUcui6XQQBBc3cNgxtllMTtNx4v2kVmlY0ZT/YuoGu8YDBCRWM7c4MJ7g+AbzyRsYvoUb2lTUBSSxxNBLkhAT5JUiKSkqkUuCjPK7jB45gT9ueg9cZ4wZ7DkeTwZRmD2TqLBr1YEjamqJIAy53X7KUmoKTdJ40Nvgcn4JCZkjs8O1wgode0hJzXIpn+RZv8ladoow6FC3hsynixybEWBUFCLaOoQo9NsZRQWPPaONq0Y5V7+/x7ncFI/70XO7WZnjQSwL9X71LLfbL9AEmXfK53jcbeMGIdeLCwgIEaBXyzCbKvKgs8uHU+u/67P4ede33tAOB8Nxn0gIoz7IyerZJ+hpj6ETCRQMHJvlWoaH3ZgrcGqBuzEi91Zlic+aO2wO27xTXuFJq8PHu4d8uBDNAj5qtblWWUQSBHTHZTlTwQ08kpJCTo7UVnJyauyx0vIEQ5UgjpP8vmPQ9yKP9XiwjybFqjiDIbWESCP2tDVlhi97z1EFlfPZ83zVf8lUosaZTJF984CZxCyy4COJKqogcmhuMptcQhG8CPypVBBOCGBD8dQwszOmsvNxfAM7OPFgIUdWFD5OJ65ytxeFb6vpM2yOXlK3j7hZusCu0eLZ4DGXcucxPJ9nwwPOZs7GdN8BM4k5LN9CEdLklSxDVyen5GLJrICM/HqWUxAEhl60n44zoB/31R71dxCR8UKfY7tHUc2w12shIHA2t8DdziYpSeW96hp3mttMJ3Ms53K03RYFJYXuORTVNIQRY9eFwjRCKLNndCmoqVNcjpOoe9076St66K7HcZzbzaeK3OtsA/BGcYnPO7t82d2j64z4Mzf+lZ91VH/q+lYb2t/+6hF/6n/4x8iiyHcXl9np9jF1lzemZpERsDyPmXSGWipDQlBIyjJJWUabKItP9kDCU1B1fyzv09JdnsZkM8cDm307qsqV1RQGA46sDkUlRUnJ89v1DVYzM5S1FPeae9wor6JKIU3T4kp+jWOrxVyiQi1M80o/4GxmASNo0rS75JQ0QWiM93CifuOEDg07Msy61aeqKfTcPj23z3p6lVcx/OZ85hzP4uHdq/mbPOo/AWyuF97jwDrmiW5xIfMWISEt1yQjzZOQ8wRoMVZOQRYTkQwxAaJw+qI4WV7oRGNiAvSdAa/Gemk9DuNB3qSoYQcuO6MXZKUkeWWK2+2XzCdr5JUCX3T3uJBbRRVDBo7NtcIqe0aTpVQN3bd5PjxgPb1Izx3SsHukpcRYWCMkpBWr3xi+w7E5wAsD9o0etbTCodnh0Oyckh++WYkEUAB+z+wFPm1sszkyea+6xrE55EC3OJdZRBFUDMelouUiCgxBRRMjDpTExADzJE/MpMH+sutbbWgPj+u4QYAbBFiOx063B8BCrsBnh1HIdm12ii8OomLt1Zkpno4a/GBnh1szy/Rcgx9t7/Pu/AphGLLR6nM9v4gVuAS+yFquTMPUqSRTFO0kXceklkpzZLfxCckqGrp70q8KOY5nJDf1JjujiJzmbuuQWiJJxx2xOWpzNlfk83h+8s3SCk+HGyREhRuFy9zvbVBQS5zLFjgyTURBJS3r5NU8hAJtu89SukI2Dm0TYgJp4oVPTsaYvhfnfD6G79OOS/Z9f5qWFY1fLSRX2Yr5JqcTK7TsfVrOA+aSZ7ACi+3Rfa7kruOFIl17m7OZM5G4eigzn5yn7bQpqUUKjk3PHVLRijQsAy/0ychJzLixbAcu3bhqu2822B2NcAKfL3v7zCazNO0eUGclNc0XJzR/mQt81j4pVF3gQWeXnJLgWn6OtukRhjKqoFJNFCAU2Y3hLieNdlWUT03EnFa/sbHHbGLeuJc2lyxwuxtPnxRm+Kp9ALS5lJ/l0Gpxu/2cN8vR8PZX/U1uVZYJw5Angx1+VH/KR1MXfqHzO7m+1Yb26xfP86OtbSRBIKEoJGQJzw9IK69vnq/rbp00K3uWzcth1Evb6gw5jBPsgeVgxDAUCYF8SuHHjY0IizY1zf3uDquZCtPJLE/6x1zJLeMRYb80SeFp/5AL+VlM3+FJ/5CldBlR8Om4IxRBwpl44Sfkq1bg0nZG2IFH3RpQUcu80qOXf6OwwqP+CUh0hY3RY1oOXMpdYnO0ySt9kwvZy+jekEPrkLX0GSRBwvRNatpJwUEmKaXwApeEmIJQBCFAFiZL0iJeeCK9ZNB0DhEE0L1N2nEoa1lPOLbT4xGlvJznyfARSTHJucwqz/VN5lI1ikqFzdEB57PL2IGHhIwiKbwY7HI2t4ju+jzqHzKbKJEQT16NeOrZnAjUm75L17YYxWN0JaUyDvvfKi+Nw/63y6t82txiU4fvTF9g19rlUW+Xm6U1rMDh0OpwITuPKsn4oc9MMlKdSUkKCUnB9rxTovCaNFlNDl8LOzo6u2as12bW6TjRO/zNB3+dz37vf/y7HdWfub7VhvbW/Bx/6dd/P//KX/vr7PT6nCmXGA5tfvR8m+uz00iKyBfbx7yzsIBPwKBrc6uwwKHXpyZkIR2yYbRZThexPJeObTKVzLJndvHCAEkU6bsnD9jk1TC6oTf1Fpbv0nNM7rUOuFQu8fRE+qiwwOdxHP9BdZ3bnRdoosz7lbM87h2j2wJX8ytYHph2SFlxKSplCFVUoU5WziIRGYAQCggTnBbCRJHcDVxM/6Rqao1nFK3A5sCMbuWqVqPp7NN09qmoNSxMHg6+Yi6xTkCGH7V3uJR7m7TssmMaTCfewPcPUMQaVTVB096mrC7jBEcMvR4FtULLcXDDSG63H6MMzMDkMC7G1O0Gri8ycEcM3BFL6QVe6ie4tJUxgdKHlYvcab9EEWXeKFzicbdN04QzmTUsR8P0AqpqjppWRA5VVEEmo6ROkSZNFqq+7s07MVGu4dtj1H1eSfO0F0U688kym8Mhx1afxUwFwwn5UX2Dy4U5ErLEo+4Bb5aX8UMXN/S4UpjnwOgwnSwQELBvdlhKl3ECF92zmUrkf+HzO7m+1YYGMLDt8Q3reD4NPWYi7g3oxCDAz3cOCcMYBdWCfDHBp/U9ZFHkYnWa288PKSQ1Ppxd5c7eAUv5CrVCinrPoKhq9GSdspJBkuDL4RYX8pGY/KHZp6Amv5ZUv76V9bjBawceuueM84q5ZGVM4vlWZYE7rW0AbpTWedjb4+Vgi5vlixwYPX5wdMy7lauEgsfdVpPrpbMIQkDPUahp01i+iSJkSUppTH9EQiwghPuEQkBigi48JECPe2ktp00rzjMfDbZIy1HjuW7DYiKC3wgIzCXP8kJ/SkJMspa+wXP9CYupChl5ipHXICll6TgeeTWHH4p82TNZTs9DqHFotcjKpwsOkx5r5Fsx34fL0PE5juV2Z7QKn8XYrzfLi9w90Scrr/BV74DdwSZvl1c4MnRuH+9zs7pKEIZs9vpcKcwREBAEAlNamZE3IiVmSEkahm9TUNJjKWJNeg2/cQKPAyN6N9t6m1H83u40d8lq4RhfWNWy3GlvoIoSV/PzfNXbpqJm+cNL7/FHVj74+Q/tP2V9qw3tL3/yGf/V7fu8PTOH7jmooUR1Ps2zepPztQoNY8SrdoczlTLN0YiOYaLJEqOTodQgoDGIDLNn2hz2h7iBz2a3S0pW2ep12erBG/Mz3DmKbsIPFtb4SX0bgO/Pn+Wz1g6Pm33enznLvq5zMLC4kl9AkyXswKGWyFFQ0miCgibKyIJ4aqpBnfBYhK9v5pHrchiDEg9Ni6MY7vKwK6MHkZGkJQ1ZDNg1XpBXMuTlaW53NllMrVJV0zwd7rGWuYYmGZiewEJyiqa1xbS2Tloy2TH2WErOYYUDem4XVdTwYlasiO8j+vlWYNJxI76PtlMnJadpOdGM4mLqAk/jAsybxUs8jMPcDyrXeKk/Y+j2uVW6TMcZ0nd7XMguIgoqhudR1fIkxTSKGBUcREEgOfFsFPF0a8Udy+06bMUjdHVzxMte9NkNAvpB5GWzikYQqvyj4TYzqRxnsir3Opucy82SEpM86bW4UVhh6JkoaJRKRZ72j7hcmKFuDdgetVlOlzEY4LomEsKYysAJfI7j3mbLGfLdqQvfuJf2rTa0/+fHdxk5Dve2D5jJZTgaRLfSuakKn27vIQkC760s8pOdXfIJjY/Wlvmyc0w+kaCYTOAHES+EKIos5QvIssBOv8d8Lk9GOQH+CUzOijoTDW/D88aSskM75HkvSvjn0wWeDONKYHaWx70joM6F3Cy7epcfN15yrbiAE3jcae3wZnkZQYSG2edqYZGha5KUVJbSFY7MHjPJLKMgxcA1KKk5TLuDH0ZKOGZclh95Jv0459s1juk4GlZg83iwxXwyPwZsLifneTiICiDX8md5pj8hISa4krvK5mgDhywLySVCIr4PEZGCWiMIZZpCnaJSGdOUS4J0apjZm/BYASZueGK0FtujaEaxqpW4H4fWK6kFHnRaQJcLuRkOjB6fdp7xVnURy4W7zR1uVZaiKqOlc604R9cxycgJFtNFDkc9ZpM5jnQd3XOoJdMMRwOCGDB6EkG0LBMjxhg/Hxwi+Fl0z6Zj7zClFTkwor+7kJ/mdmsbWRB5v7rGT5oblLQU75Tn2RzVycoRvCYhSUhCVORZzdT4srvD+fzcL36AJ9a32tDOVMt8cXBEKZU8VX4eOa/Hn9pGdAv1rUgqt2OZdCyTSnqO+0eRl3h7bp47J03upQU+Pthlp9/jo4VlnnVbPDxq8MH8MpbjsX+sc6U0i6ZIuKbAtJYDAbRQIykp2IFLTlU5EZzRJhQ1/RgbBxGV3Z4R3cQv+i1GYXQoDswukiiwNWoiCxJz6ST3e8/IKykuZc/weWeHM9l5ZtNJnvV7zCUvI0tdJCGHKoZsGy85m13CDRy2jD3Kah55wmva/mtatBO+DyuwGPmj8a8pLceRFV0Uy+lLY8auM+lLvBo9oeXUuZC9QsfZpOc84o38ZdzQpe/ucj47D6gooklFLcVTHioJUcUO3FO9xUmaPz8MGYx7aUM2+9HenvcbY/0DdBBCma1BD1WUmMsU+LixSTWR4XJpmnvNfc4WpsmrGoeGzo1ChabTZzaVRVUcHvV3OJ+bp2sF6MMmBSV1Sm5Xn9Bra9o6IdC2DXTPomENaDDgjdISX8UtgzeKEYP1V71ddN/ij619/6ec1p++vtWG9td/41/jz/7D3+a/+eQrUAM+WFui3h7g2yGXpmpkZAXfCykmE8zl8mQlFVkUSSsRmebJmhQqmBRxMH2X+ih64brp8mUjahPkVJWv4r7aYi7PgdNjv7vNcraIlLX4UX2DS4VFEpLC541jrpXW8PHQHZ+r+SX2zTZVpYyYktkxGixnquybAX3PoKxm6cfciV7o045p4fqugetFYMkXwzZ2UOHY1Dk2dW6UaryIp1Her6zybPgSAYG3ihd4pj/CcxWu5i9zbNVxw4C19GrMtuuQl/OUtRIpSUMWZBJS4mtyuxMASSEY8324gc3Iiy6KINTZM7cBmNJSHMao6pxSY3tk0XG+ZDE9RRCqbBufc7O8huUVeNLf51ZlGcsL8AKXa8UFdkcdZpMlAl9jW2+zli2zoQcMXItKIkPLjIzRCXwOYoHApqXj+ZGBPOk2Wc0W2dW77OpdrlWr3I8nPm6V1/msuYOEwEdTZ/istQlCyHu1FZqWThAGnMvVKCY0JNHnwFBZyuTJKCoCAglJQZm40CeN9JvCK7/VhiaJIubIwfECHM/GMzy2jqPG7lvpOe69iqfqV2f5fDsKXW6uzvK43uB2a5f31+fp6TZfvDri3aUFAiWgPtK5Up3CDQIkBOayOXqmSSmRJKUoGK5LIZmEqK6AJkv4dvSQrcChFwMPN4YtDC8KM+8090hJ6lh9ZVop8nFvF1kQuV5b5k5jf0xld6+1x2y6ynQqScdySMkqRthgKlHBDUS6zoi1zBQpWWUHSEnKaYG+8DVDlelb+GGAH9o4gU0jppKraiVejSLA6Nn0Godm9Plc5ix16xWvRk3W0pfQvQHbxlPOZS4gCD5Dr85yagUvDFDFkKJSY+QNSUp5VCGBE1qk5eyYoUoREwRE3sgPbbpu9Gxazh4vB9F7ejJ8iRikxlMzOaHGJ/UdZATeKM3zoLtHSYvldnu7nCsWSYop7MAjISls9dusZqsEAbQsg7VsmYx6MkJ3WthRH+tOhwxdCzvwsAMPP/R4NYym/N+uLo5xcW9Ulrnf3WbHjNRvnvaP+Ky9zduVM3Qtm0edJtcKq1wqzvIvL9z6hc/v5Pp5OEMSwI8ALf7+3wnD8P/8te/8BvDniSgNAP5SGIZ/5ZtszPV8/j+fP6Ex0CmkkqQ1haSiIEsiQRCQmOilSdKEUIEfYjox8E93eN6I4vNGT2fDjW7oUiJJxzpR15SRNYkf7G4xk8lytlLiTmOXS+UauaQWKUVOLdCzTTKKykoyw+PeAVeLc7Qsg1fDFoupAiPfwfAdZEEcv3AvDGhMUNkdGzqm77Ix6JCW5njaiwzjZmWBT+ICzHu1Ne52ooPwUW2dF/oWu6MGbxXPMPRM9kdDVlKLpGQVL/TJyXnSchJV1FCEiN/yFEPVJC+K4ONxQmVnUo8LMEOvTdeNPqclA8vv03NAETQ8EjzVvySvlJiS59gcPWU+uYwmZjgy97iSX6Xr2CSlBBWtwqa+Q029gJOy2DGaETmP5WP6DpIgvKb5IxxXIju2QdMeMPJtNkd1zmcW47w3GoW6HbMSfzi1wo/rWwgCfHd6jYfdI3b6I96qrOFgM3BM1jJV8moSSYgAoxk5EcNvolGwhDQ5hT/Z8PbHvbSBa/G4H/38kefzvz//az/9sP4c6+fxaDbw/TAMdUEQFOBjQRD+2zAMb3/te38rDMN/5xvvKF4fP9/mT/+dfwTA+dkqL45aHHQHXJyv0TFMPn6xzY3lWSQXnr+sc2ttDi8IcAYeV6tT1A2dipRkLp/jsD9gNpfluDdk5LuUEkm6pkkogCJLdOOZyWN9SD0O5R63G5TzCdq2QatusJIr8nkz9poLU3zW2okpyVb5uL5JVknwYXWdx/U2KVllpVRCDCVCAkzVZSldJilKSEKTipYlGfeLBE4TA3kTxRgnsMczgk7g8XwY5Zm1xOwYfrOSnuPI2uLIOmY5tcDQa/N48CVr6TUCBJ4NtziXvYwseHQdg/nkGXSviyrmKKlT9JwmBbWK4XexA4OMXMD2h4QESIKKHuPSBm6XgRt5qUNrm4SYYxQMGVlfIQurvNQjQ02JV/iktYckiNwqneVe5yUZJcX7hXW2jUZEL+EXSCkSoQC6a7Ker5KSZTaGApVE+nQz+dTYXDyiFUYwpXaMS7P9gIeDeFKoOM+DbhRmX8rP8rR/xKHZ443KAgcjnd8+3uK92ipOIPBVu8XlwipuEDC0RFYzNXqOQVaKtMJ77ojpRBE38P/Zw2Ri7g89/q0S//qV8IH8tOX5r0MCSRTHD9x0PI56kZc47AxoN6OtPX1xjDmhXZZJqNw53EVTJM4vVrjzco+pXIY3p2e5v3PIlcoUyYxMZ2hxrlpl1+yzlCrgyz53m/tcLk/hyT5tyyCvJk5V307Yj/0wpGsbhES34NByOR6NgBFvJxa4U49u4nemFri9H33+YHad20d7bDcP+d7iGbb1LnePmrw9u4rrh2y0R5zNzyCiolsKJaVAgIsmJtFEJS44TJCvTvB9eKE/ltvtOF3aMZX5K31vHOIdWJCRRQ6tpyiCzLS2wKP+UwpygeXUWZ4PXzCbXCMnq7RsnaVUgYHboKDUCAnYMZ4zk1jFDTxG/pCkmMadYB/WJ+R2u65OQMjAHWH4FvW4ZH61sMq9mM3sRmWNO82Y76O6xr32Nk1zm4+m1tkZ9nk5qPN2NUJPd2yD9VyZhKQiIlJUkwRhSEbWkBDxCU61D2RRGkOTTP+13O6ePmLPiC6N5/0OLTO6aGVBQBEF9gdbFNQkK8lZ/uHeM7aH/xW/9eEf/UYl/p+XQFUCPgfWgf9bGIZ3/ilf+4OCIHwEvAD+RBiGe/+Uf+fn5nX8l66e4c//kV/jv/nJQ7aO2txamqdrGOSkBJmZKV40W6wXiyQ8iYNun6Vakf3BAN1yol6aFRmD7focdKLDVx/oSLKI7fk8PW5yZrrMZrsL7S7XZqfHOd8Hayt8urGHKMDvuXCGO9v7tEWbD1eWaekmZtfhQnmaFElcW6CgJqnKeZJhAgkRTZLQ5MmQbSJE8SOuSYCh5bMzjF5+Sw943I2KMbJQZC+mO5hN5tDDHjuDTRbTZaZTAT9pbXAxd5a0JPOwV+dS/iqq2MdHZiW9zpG5z3RiBlnQqNt1ZpMztO2jiO9DTIyFG9zQoxnndT2vB2aEC9s19plOzHFsNzi2GyynV3gRM2atp6/wQn+CiMiF3Bu80p8hCW2uFc7Rske4oU5KqpKS00BARk5Q1YqkZA0RAVVSUCcuh8kagxt4US9NiCZgTugoLN/ly070PM7kKjxsRZ9Xs0UazoB/crjBhfwMoQA/2N/j7allNAW2h23eLC3Rd000UeN8boptvc18uogVuDQtndlknr7dwg0CsnKCflwBHTgW/Xg07Unv6BTO8ZdZP5ehhWHoA9cFQSgAf1cQhMthGD6a+MrfB/5GGIa2IAh/HPgt4HfUQn9RXsf/6fVz/J/+6n+H5we0BgbVdJqtQfTw12fKfPZkD02ReHt9gTuv9qjm0lw9O8OLoxalTBJVFhE0CUkTeV5vcaZWRpQEDvoD5go5UrGEqiwIBP4EFs2O2gdBCCPdxXBjvg0TnjajnO+mOscncfvgjZkZ7h8fAj3emp7j5bDJjw62eGdqkZFv86B9yDtTC4RAxzK4XJrC8Fw0SWY6kaPjjKgkUiQlBdN3KWpJ9uIqvSrJ2E7cyHVt+kF0Ez8bHo4LAXfauyymBUZ+ZEBns6Ux38fF3Fle6hHfx5nsJfaMDfLKHJqYICBAERQa5j7TyTkEQaTvdimrtXEvTUTCm/BYJzJQAQGmb8W/tyF02TOj57GeyfNZ+3m8lzPcbe/zijo3Cis87Tf5SWuDm6UVRr7Di+Eeb5YXAYGha7GereEEHioqZS1N3zYpaCkUQcQNA7IT84qiKGLEfc6OY44pwr9qNUB5zQOioGDFQwCL6RKfNjfJyho3K8vca22zkCkxrRV5NWxxLTuP6dtklASSIPJle59fW7hMQf3nSGUQhmFPEIQfAL8XeDTx55Mcjn8F+HPfaFfx8vyAxWqBzeMO+aRGMFGaH8TIW9v1acSN7OZgRMXI0BqOaA1HXDszy72jKK+6tTTHZzuxx1pf4pOtHY76Q767vMT2dofjzS7vr83jegHdlsnZQomcoqGaAiUtiSKKZP2o/OsFAWlhElJxmu/jhIKhaxs8j0XQ9/Q+B/Fgc0ZR0V2bzUGHlKxQSCb47aNNZlM5ruWqfNHd5XJxhrSscmy1eLO0TMsaUNayaGqeZ8NdLucW6boj9owmFTWHGJdJBcDwJvk+ootp4PXRvewpvo+dmO/jTPo8G3GV8kL2Cs+Gj2g7Dc6k3+DRsMnTgcmF7A2MIOTI1JnS5tGkDJavkpIyMXV6xIUSEiLxOsQ6JXAR+uNeWt+1xjrYXbfH5iB6NkU1TV23eMmAnJwgr2T47aNNVrIlKlqa++193qjNIYcCTcvgVmWJfaPLQrpIRUvzuHfMpcI0Ta9Nwx5QVjOnBOJPdBaGns2u3iEEdkcdJGQalk7D0rlanOF+OwrI/syNP8C/unLjZx/Wn7F+nqpjFXBjI0sC/xKRiMXkd2bCMDyKf/vrRGIY33xzksjf+vf+CH/ub/6A//4nz1BSIm+fXaDbjQ5SbiZBMZEEP6Su6CyVCuQVDUGAtKaihRMjPhP/ruN7EadFGOKYHsdxzueZPg8Oov8bF9UqX+1En89Mldnodvn4aIfLszV03+HTh3tRyyAFTw8avDO3gBV6+IHPlfI0B6MBtUQW3XMiEfN0ga5tYnguJTWF7tggRHtoWLEIujFgxIBQCHncO2Qhm6JuDzi2e6xmatzvnlAuLPGov4mEyAeVMzzqP8ULElzPn6fhtFBEkYVkAVVM4QUCqjCgqs2hiVG/SBOzhOHpOcnxswnccS9t6Pt0Y7ld3Rd5Fk/DKOISX/ZPUN2LPB0e4YcvWM+s0rZtPm2/5FJuDYGQrdEub5aWsH0fUXA5l52mbg0oqRkqWpaWPaSqFdgTRrihT05JcExkGIIg0LDiGcVhh129ix+GPGjvU5AjdqutYYeVQn6c571Rnudee5+0rPJ29Ryf1nepJvMsFXO0rBEpWWXoGlQTeQSgZemcydVIikmgTVpWT3GAVhLpX+Lk/s7183i0GeC34jxNBP7fYRj+g6/xOv67giD8OuAR8Tr+xq9kd4AqyxiGg+m4mI7LYs1nYz9yoG+emePBo+jmeeP8PPefRZWn964u8vTVMQ+P9vje9UVajsXm4wa3zs0heQKDpsmZShnBBzUUKWWSGJZDNpFAkURcPyCtvQ5RZEkcN7oN22W3Hx2+7WaXuhQZ/efbR/hJf5x8VxIpfry7Q1KWuV6a5c7OATOZDG9WStw/POJyYRY1BZbnk9VUNkdN1jNVAtHjq+E2Z3M1VDmgbg1ISgrBhLCGEQ/F+gQY/hAfn743wg5cjmO524u5db6MsV+Xcmd5NIio7K7n3+TxYIft0T5vFd/C8Fs8H9Zj8lWBhmNQ1RYAmRCFrJzBDVxSUhJJkPDD0yKPCK+p5CzfGfONHFst2rGR7lkb6G5szKGA4xf5pLlBWtI4m17gs9YOC6kSs6kCj3oH3JyaxnYF/CDkbE7jSafBheIUpu/yVeeI9VwFy/boYqKK0inUfduOLq2R51A3dezAY3/UZyqV5tUwii7eKi9xJx5mfre6yseH0efvzp7hXnOfR60W702t0TRM/sM7/4i/8G6Ct6d+ek3hZ62fp+r4FfA7fOfXeB3HbMa/yuX5Af/d7afohk06oZJJaiQ0BUGIyGsUeaLkOpFH+KaHYUbFEKP//2vvv6MsW9OzTvC37fE+zglzwkdkRnpvrq1bVRLQQiCBBlo0NAhmmlYzzAC9GoZFw2oY6KYl4YbGDIOHxkkNtISRQBJl7q17b9703kWGNyeO9/tsv+ePveNkZKmqdE1RlaWV71qx7rmRJ/N8Z+/9ft9rnvd5TJb3/IevXxnwrOqHUqOZOKVuj3Xq5BMxQqrC1x6uMZ1PE0+Guba2zempcVRZYr3V5OJMkbqmkY5HSMRCPCnXOFzIoRoyW70Os+k0JadNz7aQEGnui6DbNpttPywq9XqEBJm+ZXG/WuF4cYSHTb+Ren5kgg8DYPPnpw/xUWsZWRD43Phh7ja3aJoDLufmsOljM2AmNkpaiSHhEpMipNU4ISk0xC8q36TgoLsuRsD34esK+Kd22zLZCghG86ECW1oNqJEP5ehaDjdb9ymGRgnJIe53nrAUn0cSJfYGVU4kF2mZPZJKjEPxEGu9PaYio4iCQNVo+fwhdhPDswiJMvUAptZ3DNZ6QWitNfxKpm1wr7XFdHiMp23faU+kJoeO8VZhjvdK/sDo5ycWuFsv4TkCF0emsFxfM6EYSTIRSyMLIoogMhZNDAXixeBn36wD1e2BZdOzgufGdLlf95+bf/jk+n9+R/tu2pdvLvNn/sF/BOD43CgPN6vs3e9xemGCarvHR483OX90EqntsHGvwoVDE1ieCy2LQ6M5moMBaTVELhah3tMoRGNsSi1MxyUZCVHqBl0LAdpBzldudVnrtAC4s1UiFJEZWDblbp+xbJyVLb8YcXQ0z5X1bcKyzOcOTfPe9iaFeJxzhQxrlRapSBgv7BEVFURB4J61x9FsAUWQWG+3GI3FCQ/7Rd5QOQWeE4zanodmm8O8BsFhte+HSCdTc9xp+TnWqfQUK/0VdgZVTqYWqJlV7rQfcyyxRHUg8WG1yqn0UTw8yprLVKRI3x4geHFiUhrNaZOQU8hCCduzCYsxoBlcGgEtmItr2V36gZDFk97qkDulYbWISkm29T0EBCajRW63nxIWVU4ll7jZfEY+nKEYzrPRr3Epn6SlC0SkCCIi91vbHElNgAd7us/LKe8/mt6Lo0kdc58nxqJnGUOOx+lkmtsNf6O4lJ/mauCYrxWmudHYYLfa5M3CPKvdGrea27xRmEW3HDa7TU5mx5AFCct1mYgmsV2XqKwSFmV01/62hI8vtaMZ5vMLLAgCbnBqaYbJbs0/JfaqXZpP/FNqc7k6LJJIkogXk7haXiceDXF8JMftqxvMjKUpTCW5/6TEuYVR3IiI3jaZnU6z2miyMJKlL9rc3dnj2FiermmyYbWJq+oL1bd2cGLptk2l5/fSyr0e45E4u90uu90u56cmuLbrF2BeK05yJQA2vzMzy/s7G1T7Pd6Zn2dDa7Dea3J5dBJRdujRYzaWJamGEZBIKj7SISqrQ76PFwYkD/T4TNemaQUtA6PLnZa/mTzrdqkGzfiIJCOIBqu9Z8TlCKPhFF+qbDATLTKiZrla2+RI8igRyaViWMxGR2kYO+RCRRD6rPU3WIjN0bE7VI06USmKE4S2Ht5wykB3Tfb0Ji5Q1pvExDgVo0XFaLEQXRzOpZ3LzPFRxXeMtwtH+OrWJgIt3hw/xHqnRa0/4FxuEgmRgW0xHkkwEkoQQiUkSoRlhcgBAPNBkLWHNwznNdsckqx2LJ27NX/TiCoqy40WABPRJHV9wJf7q8wmMggI/JPlm+xqHf7uO7/tU9OCv9SO9pvePI5hO/zSh4+pbDa5MD1BXdPIonJkbIS1WoPZVBIxY1Bv9hkrJBnsWFiWQySs0ApIVnuawWDbPyV29lr0bRPdtHn0aI/JySwbZX/3PnyowPWnQZ63NMW1J1uossQXj81xc20H2fV4fXKKXlvHtT0iWYVcIoorekRlmal4alh+DksSinQAoHogfDNsZ9hLG1gW613/8y1sHnXXATiSGuNu06+YHk6OULEqvFd9ytHkNAgmH9afcTo1jyQKPOtXOJpYxHANLDfETHSKqlElo4wwEhKpGR3Gwmnalobp2iTlKO3glDIci62B7xgbWoNtdCzP4V57k0IoTcVosd6H+djYcy6UzBHutVcIiQpnMqe411ohrkQ4EZuiZfWRkIlIYbJqGs8T2DNaTEYKPvcl+OgQ96BA/AG8ouEEDXCHgeUMr81MIjN0zNPZCW6VfSc5mx/nSbfCl3fWuFSYpWPqfLC7xeUxXyB+q93lVLqI7lrIgsRUNE3d0MiqMaKSguZYZNUYAq2AIVkeUssPbItycG0+2Fv/znHvfzfsh986wV/+a78IQLnSJR4LU9IaCAIs5DPcurpOLKpy7tQ0t+5tMl5IMT6eZn27zolcBl1wiURUZEnk0coeh+dHcSSPenfAWDZOWA0kZQXhhRve13zHNG2HvqbTN0z6hslsLsPjHT92P3+oyIebvmPutw9WaPDm4jQP6hWubuzw9swMbVvnUa3KhfEioojfL8pkcVyPkCCTCUXomQZpNYw08BEO0QOMTJIoYnr7wg0DaoGoxWq/MoRIfVTXEPD5LwSgEMrx1c4aUUnldMqvEk5EMszEMqz0tzkSncL1PERRJCLKrPQ2OJScZGB7POxsMhHJDfM8P6w6EL7Z+3yTFm2zj+4a6IZBIZRlPVBcPZo4zJ2A1uBkconrjRWgzPnMElcrNW72dnk9N0/DNNnoNzmVmfB7hpbJZCyFIkqEJImorGA5zgsKL+ED0weu5zsE+MzWTwL86EbneTulZYYYBMiYkCQRFlW+srvKWCTBodAoH+3tcDwzSlINsdKuc6kwRdMYkFRCTMZS3Gvs8aOLpz/JY/sr7KV3tGtXVylk41QaPRKxEFZQYfI8aLaCCpNmUqq08TzYLbeJRFVqjR61Ro+jxya499Q/Gc4cn+RGgP54/eQsVx9sUOtovHlyltXdOq1an/PzRTzHQ9NMJnMpcokoIUEmqir+j6IMB0VV5eDle77bGZZNKwgt2wODu01/923qA551/AR/NBqjrPVZazfJx6KkoyJf2l5jMTVGISVyp7HN2ewUIdmlbbc5n52lpDUpRlNknRDPerssxMfZ1WtUjTaj4TQts4fuWoDwAl3bVsBQtTtoEpW9Id/HoXiRxwF9+en0DPfafs53KXuMa42nyILI5dxRVns76K7ByeS8L3rv2IyoWbJq1ifmERRSSuyAQLzwAnuX+3U0f/vKnX3H4n5AxFMIJ7gbMFTNRnM8qTdY6zZYTGbpWDpfKa1wMjuO5Epc293lcmHKV3HVdc7mipQHXXKhKHOJLBu9BrOJjM/1aRmMRmJsDnxlU0WQaAWIj71Bl3LPf/2gWWYkHKOm96nofWYTGW7U/GflH3z+v+TzxU+v9gkvuaP9xZ/69/zCz98hElV58+IMD69tkElHyB8Zo1fro0gSyXiYfCYOCNTqPaYnsiTj/g2PRhQk+UAz+WCFybBwXA9cD8OwKDX8Xtqs6XHrme+YJ+bHuLviPwjHZ0Z5ul3lw+o65w6NU+8PuHp3g9ePT+KKHmsbNS5MTmA6Llgeh7I5qlqfXDhCLhylrmsUInHWuz4xUCIUoqz5G4UH1Ab+641uk52A/PRWY4vROPRtgy2tzmQsxa2gAHIsOcXN5hoRSeViZolr9VXyoQRHkzk2On1icgRP7JNU4kiCj0FciI8Rk0W2B1WScvSFXObgiaU5Oh4+l4buGMMy/UQkz4PW82LM7WBA8lRqjie9NbYHTzmbXqKkN7neWOFM+jCG4/G00+BocgbwsF2PmbjvBAk1TFxWfSLUUHQ4fhM5QBduex7V/T5jv02140caN8q7zwtILUhGJT4ob6AIIkezBT6srjMSjnGmMM31+iaHUnlSapjaoM+RVJQdrU0xksF24Hp1m+OZMWzXoab3SSovyjSPRp8r83xae6kdbXMzkJTVTHrlPgPNZKCZFPJJ1p/6ZfFTZ6a5c9PfCc+enuJ28Pq1y/M8frjDs4+2eO2NWTodncpynTPzY4ghGb1nMllIIcsSiiQRC6tYjkMs7DcsXc8jdODEEngeWmp9k61qC4DyTputAG1grddoB2MoogBqSuXd1Q1S4TCnUmNcXdlmLptldCTKnXKZ84UitmjjKA4LaopHjTInx/Lons7D9i6LiQKe2KdvG77QuXOQrs0/sQaO6Q9Gei4lvU1UzLLWawJNLuUnh4xdF3PzXKv7Tvq5wnFuNNapDaq8nj9CxWyzqfU4FJ/HdUN0TJPRcIa4HEXwVB+o6wkvkAEpB5zUhWEvre+Y7A78vKqq93gSQOYkQQoEJSAhR+jbIu9XlsmH4oyFR/igssqR5ChJOcrt2h6XC1MMHAtP8LgQmeRJq8pSqkBK0njWbLCUGWG336VpDIjKyrBSa3kuO33/3tT0Phs9EdN1eNKusJTMs9qrs9qrczI1yZWgnfLG6Czv7/nTGF+YWOSjvU06nsmbo7PUBxp//INf4C+/9ZtZTOU+wdP7or3UjvZjv/dt/tJf+PeMjCRQQwqKIpFKRQiHghhdAPnAieUdwCtaA4t+QB9ntgyePfPDt3zH4n7JP6WmJtKsVhuslRpMj6ZpmSZfu7/O4ck8iiJx6+kO5w8V8SQoN3ucXSxS7/RJJsIcUkZYKzeYHs0waLjUun3GMgkGnRam4xBRFdqBjnNb19GDwsxao0lX0OlZJjf3dpmfTLHSDBrwxRGuBY7xRmGBDyprhCWFz40d5XFvAwGZM+k5DNfCdR2ESIZCOI2IiCpIFMJpEkP8pvgC/cML2m32QbE+l9VA+mg8nOVG3d+oDsfHuNXeA+ocSRYp6w2+Un7GqfQcCCa3WyucTs8DUDebHE/O0rUHRMQQk5E8Zb1BIZSmpAzoWANGQgnqZtfnQhGVIWayZxvsBmxmjztlRCeE4Thcq29SCMeHyJDFeN4fGBVE3piY5oPdLTKhCO8UZ7nX2qUYyZBUw9ieS0iSWO/VmU/mkASBHa3NTDxDNChUyYKIc+BZOTiN0TUN+rZF37awHJdHTT/n+xfLt/lTF77vYzy139heakc7f2GOH/t9n+OnfuLfAXDi5CQPn5So3ljn9OkpKvUet+5scvbMNF7fZO/eDseWxsDxoGswOZaib1jEoyES8RDdnkEqFUUq+6iDSDQELf+zHDxaQbxebnZp9/084s7yLq7sg5R26m0SqTDrqy0EYG4qx/sbmyRCKq8vTHF1bZuJbJLxkSQbzRbzqRx9zyIVCiEIIrdLJY6PFXAUl/KgTyEaHVKWC3x9vyhoHzgWHdugbWm0LZ8f/lEwe3UmM8etIVf8HLea62wP6rxVOMyTdo3r1S0uFxbRbIvlVp2TqSlEQUKzXSbCWVxcVDFMVAoxsE0iQgw8AQTvBXps1/OG4y91s0/D8h1ztbc3JA+q6AFukDKyIJFTU9xoPSYlx1mIz3GrucZ8bJSUkmC93+BSPk9dH5ALR3BckeuVXU5lJunoFo9aNUYj8ecbhcewkWx7LpUgzG4aA5qWRtMa0LQGnB8pcrfub6KvjU4Ne2mfG1/ga5UVNvtN3hld5H6tylqnyeuFGXTTpdXXOZQIBOI9iaQSIqqoRALIGngcSo18hif5JXc0gHbrOVe95zHcibSByW6pBUC91qN8w7+oggf14O9EYyEGYYnrH66QzsbIzeS4dnududkc6UyMx492OX9kHEPycDSb8/NFVip1Dk+M0NIMnm5XOTKdp9zrU+30iYUUjOBk8oBqQAzUNUx2Wl0c12Or1iYSU9ltd9ltdzk1N871rX2ahSJXAirzL8zO8f7mFu2+wecPz7PealGrWpwdm0JCpG/ZjIUTjMdiRGVfSjYsqajCAbq2F/pFDDGKumtSDYohTd3gUcf//JQRYSNghBoNp6gZfTb7zxiPpIgg8cu7GxxJFonLKrerJU5lF0C06FsmJ1Oz7A7qjKo5EorIhrbHbGyMXX2PttUjqyZpWr40luO5VIJZuLbdYxCcmKv9MqMhj7Lepqy3OZwY53ZrHYDz+XmuVjcREfhi8RBfK68RlVXeHp1jrdFB8OBUdpywqGDbHkklxFwyS0JSEBBIq2FCB3ppB83YHxjFHxgtBxyPpu1yoxwUyvLjw9cncqM8blT5SneNS6NT/C9v/HoOpX+NOpppWPz5P/RPuPrVJ5x5ZwlPFGg9q3BiaZx2q09qYDNTSLLb7DOWiaGlInTbA7L5BK2ujuO4hMIynWDEpd/VqVp+uLK+XidW6aLrNg9vb5Mvptmr+qXgmcURbt7dAgEunpzi+uMtYmGVt5dmuLO8S1aNkp9M0tdNZFEkKisUMwkEBHaabWYLGZLhoJcmSy8QA1kH0B+aZQ1nnPSBy3q7BcC0luZKZx2A84UCj3sb0IOT6Umedvb4amWF87kFbKHN3c4yl3LzWK7A7qDBidQUuuMgCiKz8Sw13R+/SWhhurZONhRnS6vj4hE5QDBquQ6l4OFb6dUwg8rutdom6bBM3zagC2PhFO9X/VzmXG6Bq7UtUkqEc9mj3G6tMRYukAtF6TsaUSnM3qDFRCSL40lcq/VZSIwhEWJL44UGMzwXdnTxaFs6tucT9ui2zUbXvzaXI1N8VPJ7aZfz08Mc683iHDfr23ywu8lbE7NUrC73m3tczk/7TFcDjcVEHhkJwZXJhqKYjk1CDiMLIrbnElcOMiQLw0KL63mf2cngJXa0RqXLR1/yhwBWP1xBD7CLrFRQQzIVw0aSRSYPj3Lnlx+RykQ59do8925tMjmTIzuSYGezzqnpHG3LJpGMIIRE7q2UOHJ4AsO0ebpSJj+SGGImBfyxGwA8aHf9ULKvm3S6Ov2BSX9gUsgleLIZcOcfneTas6CXtjTF+7tb0Grw1sIM93fL3NvY482FabqmwXalzZnRMVRZwrBtiokEsiISUkWisuyDmRWVfZHtiKKAvr8cbxhadkydiu3nnCWjzlYvGP2wdFoBmkYRfMTEh/WnZNU4M/EiN+obHEoUyIWjLHfLnM3MoNkGsqAyEfJpsk9npmiaGk87FaajGSzB58WXBRHdeZ7L7HOhtK0BZb2D4Vhs9KsklYlhL+14cp77Hb+X9lZhievNZfAE3imc4GZjmx2twaXcIvWBQUs3OJoaJS6HsD3IqFEyaoSoIvvcmwgHIGu8gLC3nOc5Z9+2WG4Hgh+mzqOWf5rOxDKstZtAjalYCkOHL22tcjg9giqLvL+3wYVCEVkU2ei0uDQ6SVMfEJJkruxt8trYr1GsYywRZunUFE/ubjEzm2Fvt027rZNIhhloAa+j7VIrBXRtTY2drSau67G55l/oarlDtdxh4cwU9+/7znDi/Ay3HgV8jxfn+ej+Jopu8NqZWTZ2mziazcmFcRRPwLRs8uk445kEUVVBlSUSsRCh/WKMB5J4gBjoYL/ItmkNAmCxbnE3QDKMJGLcLvsTwnPZNKt6nbXtBovpLG3D4Msba5zKT6LGPD4q7XJ5Yh5BdKlqBqfSM9SMNmklTlgtsD2oMRbK0zEc2pZGPpSka7VwPBdFlIZkMw2zN+RFWe5WaNtxmqZG09xgMpxnLeD7OJGe4Gp9HRGBtwoLvF9ZIS6HeDN/iKedPSKSwnRsBM8TwANTtpmJ54jIAqJQYURNEhL3BeL3i/W+DenCBY+BYw3XZjoO9xoByiM7ybWgGHMiVeR2fY/VXp2zxUnWal2+urvGa6NTGJbLrXKJy2OTgUCFwdFMga5pEJNCFMJx6kafkVAcVaxjug4pJQL4VU9JFOkGmMm63qcR9NVuVXbZJ9wraV0Sispyu84HpQ2+9tv/O4rx5Cd5hF+wl9bREukof+ln/iB/7nf+NT78N9dJZGKce+sojz54wmgxR2a2SL/SIhSSqdlhxgoJhLBKo95lejJLPBpIH0UUBPHFZvK+9XQTx3FxHBfDtClV/BtRHElx554fohw/McHtR/4OffLoBHd3y3z4YIOLS5NUWj3u3N/h9SNTWKLL9k6T08UxXM9DMD2mUim/XxQOEVdVeqZJJhpGaAX9IkXBC04sy3WpBkn+VrdDO8DkfbBTQpJ9vN5yG3IRlfXOJrIgcDg5yy9v7ZINRTib8xHu07E8+XCMktZlMR6lafXIyGk84G5rnSPJIgguNaNLWom+UJnUgoKDi0fT9PGbXdugZxlUDf8Ey4WSXAuGIl/LT3G37Y/fXMwe4mZzlS2tx1v5Y6z16txu1DiX9XtpWz2N2UgR3Ah9QyWj+L0pxYsMw7eDcrsHyXAszx5q2VW0PiuBfNd6u0k5yEUjkozhOmx1OiRUlbFImq9ubTCTTDMRi3OtvMO53ASSKFLv6Vwem2Kj02QulfFFKOt7nMqPUdZ67Pa7ZEOR52RA8EJo+WnspXU08IHB1SBE6zb7tHcbaJ0BWmebRDLM6o0A4vP9p7n/NZ8G+8znj3D7a/4c1sXfcIJHj/fYeljiwvkZ+k2N5nKNY3N5QiEFq2uRz8aJhn1wakiV8TyPSOj5ZVHUA+MmAlh2wJ0/MNkstwCo1XusNvzekedCKSBIjYdVBhGXd1fXKcRjTIwleH97k6P5PKlImPt7e1yemELDRHAFLhSKPGnVODqSp+6EWO5WOZIuULM61A2NiKSgB6P7tuexq/kPf8MYsNHtYLkuK90akiCx0W+w0W9wND47pFx4LX+ID3Y3EfD4/qljvLe7SUPUeX30ELv9Ln3T5mhygpisYrgOWTVKIZIkIoUCTQHlhYLDC8S0njs80TuWMxRrbxguD9v+54veGLdrdaDObDzLrtZms73KoWQe0/L48s4G50ZmCEkCD2o1Luam/V6aIXMiO8pmr0UxlmRg2uz2e0wlUnRsnYFjkwlFhtfDcly2ev5GtdFpUen3sF2Pm9USo2qSvX6PlVaTxVSOD4Pi1KXRItdKu0Rlmc+PzfPRxja5aJwvzBT4vx6/QCr0n5l7/2PyOoaAfwycB+rAj3qet/5ZFlbdbvDPfuJnUcMq6XyS8fkC4VgYURJJ5xOEgxNLEATEA+Bdx3w+BGjoNr1uwCPYN1l+6FeVcvkE9+/7r+cWCjx7UmGXCvOHClQ7Gleur3F8aRxLFbi5vMPZI5N4nkejqXFqdpxmXyMWVpkupNmtdxjLJagONLoDg1wqyl697wNUFZmm5e/ErYFOKaDoflStElMU+pbF9fVdxrJxdoM8a2kywwcVXxPujakZPqqvkVTCfG50gbvNXbKhBCORMGZAgbbTbzGTyCCLsKM1mYplSQS03F+vVLkviO4h0NJtdMcBx0GzXJYDyoWxyBRXgmnls9lJ7rY2edyGC7kpHrcrvFde5fLIHB17wPXaLudGDqHKNg2jx+HEBJZrowgy+VCSjjUgpcRQBRnTs0mqUcB3AEWUhjoHPdNgu+dfm6etKt2As+XK3jaiERoWjcaicd7d2SAqK1zITXBju8RkIsnsaIq7tTKnRsb8gFXwiCkKD+pljuVGMRyb27US88ksnu1vDoogDquRwHB+ULNt6t0Buu2w0+nwPxTf5PzoZ+Pdh28fr+P/DWh6nrcoCMLvwKc6+NHPsrBf/N/f5ef/3pcBOPHWEve/5pO9nH7nKA+vrXLryw85+8UTVBoDHt3a5PQbh3Asm8pamUMnioiSiKfpFMaSGIZNJCQTjijoA4tY4jldW+jAieXYLq2OH69XGj12A4jU47XykLCHUhMhLbNVbSNLIuOjST5Y3iQbj3D+xCTXNndYHM2RiUXZaba5mJugZg4YiURB8rhe2+XU2BiaZfO4VqUQiw05RwRebJ42gmnhjqXTMgfDn5FIkfstf6O4nJ/hRsOHQr02Ms+V2iob/Tpv5Rd53NljTdvhzdFZNMuiqnc5li4EQ5Ae+XAMVZSJiD4XiuN531TtxXS9ITFsy9R42vXzqu1ej3bAYpGSo7RtjbV+hbgUIiwpXKk/YSKSIaMkud9e5VJhBsGNstFtcnFkmpreJ6fGyKlJHjb3OJEZY7vXZavXYiqWpmqbWK6DKAjUg/BRsy02gin37W4HOSLQNnXu1vY4nivwMMCWns8Xh5R/n5uY493dNUKSzBem57hfrWC5DpcKRWzXw3YdirEEE/EkKjKqJFGIxugY+id9dL+hfbt4HX8Y+DPB638J/HVBEATvMxCWR2IHqAQOTFI7tosdVAa1gcnuur8Tdxo91u4FvTRgL4BvpcdS6KbHjbUqhakM6nSOW+89ZelkkUg6yrOHO5w9WWTguAgDm1OL46ztNpgppFENlfVSk/nJHNvlFu2eTioeprEfvjnukG+k0Rvg1ps4rsdyuc583mWn2WGn2eHIbIEbATHQhXkf5S8I8PlDs3xtZ5OQI/PO1CwbrTae5nE6O0ZIVHFsh7QcYSqWJSb63IVJNfwCwehBsw/QHQxcawgsNlyDW42gEpiOcD3IsQ4lRnjWabDdb3M0XaBt6nx5Z40LIzPIqk9/dyE7iyvYWJ7Jycw4e4MuI+EoPTtNadCiGEthanUGrklKjQ3p2kRRoh2c5nuDFrsBlfozbQPPyNI0dfb0DsVomms1fz0ns+NcrW+gChJvj83z3u46+Uicc4UJ1toNUqEwruORkMNICHR1nWOFUVRVYq3TJBeKor6wORzIx4PWjuHYaLY5zIdnE2luVfx7c2lskqt7fih5eWKSq7u7/On3v8R2r8OffOPz3/Caf1z7dvE6FoEtAM/zbEEQ2kAOAi2dT2E/8od+gNRIgp/7G7/Ana/c4+SbR0EUaNd7HD43S6+lEVZERidS1KpdsrkYe7EQg75BKhunvNXA8zxCqkKr69/wflun3PR3qNV7OxBVcF2PB1fWSKUjtFv+aTZ2coJbNzYQJZHzFya5+XSHVDzC5TOz3N4sMZNOk0yE0Q2LsKqw1W4zM5LGUwTq3T5zI1kSAedIWJFeoCIe7De8PehaZqDRbaJbNhutFgAXkxPDnfjSeJFrlYCUZ3SaB/0N3q/4bLuVQZcbtR0ujMziAntalyPJcUTBRZU8RsMJNNskpYYJSzK6Y5NUn+caqigNwbO6bbGr+WHdZq9Fy/NPjNuNHQT5+a4el8J8VF8hJMocTY1yrb7KWDjJuXSW281NFuJThCWJrm0yGx1nZ1ChGC5gui6PuussxIrUEWiaOjFJfYHZbJ89zPQcKlof14Oy3mM8kmK732G73+FSboprQc75+sQUH+761+kL0/N8UNrkwaDKO5PzbHXb7LZ6XMhP+lTklkExliQb9tE4EUlGkSSiB6jl1QMFGL+w6l+bvX6Pz2rfLl7Hj2WfhEAVYPHMDI8+9Isca3fW6Gn+DiWKAp7nsbNcQg0rjEwXuP4f75AbT7N4cpEHV1eYOzZBPJekVGpz4uIorXqPVDaOJ0s8flTiyKlJugOT9fUaI/nEUC1EEAX6WsBd6LjUmv7O1+4NqPf69HST3l6DU9Hx5720I0VuLPs3/42T03zwbBNBgM8dm+VWbY/VWoM35qbpGgaNjsaxkRFikRCO4zISjRJXVCKy4odqAkQOhLMH2we252Lsi/WZxpBspjLQWOv7axmLJGm7ddAgq8axDHi3ssxELE1CDnO9+Yxz+UlUIczTVoXLhSnapk5EUjkTivjg22yWku4LtM/FR6haVfqOD2zu2fsC8Tbb2j4RTwdFdtFdi0edXeZjBVb7fv/qSHyaDyr+KfHayBJXamsoosQXJha5VtnG9Bxez8/StgY4rst8fMSvSLoiEVlhMpokrvrOEJbkF6j9DuI3ddseNtp1y2a15RenZu0MH9X9zz+ZHeVetTx8vdps8eWtNS6MTdAzLT4sbfLa+BSeBzudDmdHxxnYFn3TYLlR41D20zeuvy28jvjiFlPAtiAIMpDCL4p8/d//RASqiWyc2RNTrN/fYvLIBNurNXotjVQ+SbvawfM8bNOmvOk/cPVSC8sF1/VYfbDD+FGR6m6L6m6LuSPjPLju5zLHXj/Eg1ubiJLApbcOc+P6GpGoyrm3DrFR7yBJIkuH4oQkCUeGdjzM1GiGUERFEgXSsfCLIvUHzLSfz8sNrOe9NMOxubfr3+RTiRjXtnzHPDqe50Grwnq7xcnRArt2h6/srHFxtIjjedwslbg8PosrOrR1g2PxIi2nT0wKMxFOUTbajEWSlPU2mmOSVaO0AyYqWRDpB5PUDaM3VBh90NlGsP3y9dXaJnk1QSVgzzqez/JRfQ1FEHk9P8eH1TXy4Tiv5aZ41ttjNhZHEkVCkoAsyjxslllKjaKIHnt6m4lIZigLJQniCwy/+9pxluvQs3V6tkHPNphPODxsBXlVenaI+Lg86tOqL3fqvDU5w8NqjSvVTd6cnKFnmiy3GpwfnUCSBTTPYCaZRgBCqkRCUf0TPBRiHwEQkV9Eo/SDdkZLN3gWiExudFpDwcuGPkCzLB7Xa7y/s8WD/+YPveDon8S+LbyOwL8Bfgz4EPhtwJc+S362b9mxDH/z+k/yZ37nX+PGVx6THklw4fJhntzeZPbUHJGojOlAOBFh52mJqSMTeAjcv/KM2SPjqKkIJSAcUV+gEhgMTyyPXneA47j0ujoD16W054dMZ45Pcu/6OgAnz01zI6hSXjo/za21Ejdqm7x+coatQZe7pT0uLE3ieh57rR5HJvLBVIFHIR7DdBziSsiX47Ud4uED/PCSOEx4DdcZ5g6lfo/tnr+Wh9UqHcEPfwUgFHbZ6vo0dHPJLB/WVhgLJziZmeB6bYNjmSkSIYma3uX1wgib3S7jkTSW53CnscWpTJG6ZrPabZANRV7Q/uoEzVvLcykHvbyq3qNpRqkZPWpGj7PZKe4FvI4XsrPcavrjN2+OHOaj2jJVvclb+cMsdypUzRYXczPYuPStAdPRLCkljoxMXFaJyv4YjhBchfBBZrOD9A+uM9Qs79oGdyu+Y3aiPsoFYDKWZLvfYb1SZyqRxnQlvlx5xrF8gYiocqu+w6WxIq7rD+FeGC2y2+tQiEfx8FhrN5lLp9FMm7auMxqLs9Fu4np+YejTOhl8+3gd/x7wvwuC8Ayf1/F3fOoVfZ0pqkJlpwVAq9alWe/T7+r0u3ssXZhn5X6gHHJ5gXtX/L7auXeOcPMrjxBEgYu/4TSPbm1S2axy5o1F+l2DXnvA/GKBeEzFNWySiQipdJSYC7LktwtCyvMbLh4YxXFsFys4tfq6yXrdD1HapsGTgOJgSkyx1vGdZDQVo2dYvPdwjemRFEJS4t3dDU4XxwjLMo9rNS6PVT9mtwAAR+9JREFUTdJzDSRZ5Ex+nJV2g5lUGlEQ2Oy2mEtnWNVsupZJNhylHZTIB47FZt+f99rTu5iug4PHveYei6kU24MGm1qDmdAUV2t+oejiyCxXa5vIiHyxuMBHtXWicoi3xmapmG0kEVJqhKQSAQ/KcpfZeJaU6iPZ43LohYLDwQFJwzXxBD+zGTgme7p/DTzB4U7D//xjiSlu1P3T/GR6goetMu9WnnF2ZJKGofFh4xlvTc1iGgIrnRoX8kVM18H1PBbTWeqDAZlImHQoTMvQKURjrOgCLh4xJTTMh13BpRyM2Gz1WsOWwdXyNpInBVjGBrlImA8q/vjN0cIIH1Q3yEWivD0xxUfVTQ6NZzkcK/Djp/8z66N9TF5HHfjtn2kl38CqOw3+xV/5BVK5BI1Km6lD40SiIURRIDWSIBQ+sPyDN1wPCg6uh9436LUDimzbYflBELLlYtz70HfMQ2emefpkj52nexw/M8V2R+P6hyucPjPNQPC4s7bHmeNFbMXnazwyW6A3MIiqCuPJOJVen5FElA1FRrdskrEwBI6mSjJ6UCXtDkzKAcfHvb29AHEP1za3iWdCtIJS8kw+ydf21lFFicuTRT6qblIIxzhbmOBBZ4ej0VFCooQr+CRAG9oeC8kC4NGobzIXz5FQJBj4ajMHnWE4boJLxxqgOza6Y2MLFqsBx+LFked0bZfz09xur0LPJxt91NngVnOd13KLNMweT7tlTqdnkQTo2DozsTyyICELPnuX6di+2osg4nguUfl5NVk4AN7VbJONYNPYHbRYq/tOYnsurQA+pooSkivx1d01smqEo+kc71fXOZzOMxKNcLde4mJ+cojoKMaSPGpWOJkZp2EMeNysciSTp9rXqOkaIVEa8o3YnkspaHjXdY1NrRkMjFb5c6/9ek7kRz/Jo/sr7KVGhvy7f/BV/v0//CoAp95c4t4HPtzn7OeOcPfDZe69v8y5Lxxlb7vByoMdTr1xCNd1aZY7zB6dIBQNIQgCmZEEruv5JD2KhG05RL9J+8A2HVoB5Xi93mM1aKRulpqUAnyeIovYjst2uU04pDA6Eef9xxuMZxKMFpLc2tzleLFAJKRQ6vS4ODdJud2lkIozpaS4Wd3j3PgE9YHGWqtJIR5jIPgPh8CB6pvrDOnRKnqfvBmibQ1otwecyRa52wgwm4XJoQzS50bnudp8StkUeD23xO1ahdKgw+WRWXTXomvqLMRHyIYjiIJAQgmRUiPEVQkRAVEQiBwQ6ztI/GS6DlpAvtq3DZ52fcxmzzZY6fntg8lIlpV+HahQjGRpuzrvVpY5nBhFESVuNFe4lJ/B8yR2tTYXR6ao6X0yYZUlCqz16kzHMnT7LjVdYyKapG81sFyHqKLQ6gd5laXTDKrET1s1yoZPiXCtss1UIsVWEHYfS43ywd4mAvDm+AzvlzZIqiE+PznHneoemVCYbCSC7bkogojYbbKQzSAhstn1wQAt4/mo1qe1l9rR1NDz5PUgXtGyHJzglNB7Brurfsg26Bks3/FDyanD4zy55z+IYzM5Gnttrv3SfaYOj4HnceMX73Lk4gJKLMzq411OnZthYNp4EYUjR8bZ2WkyOppCD4vs1jpMFNK0G3U03SKTiFIN+BJt22E36KWVml2ajoHjejzYqTCWTVBqd9lutlkcy3E96KWdW/Q12mRR5HOHZ3m3vE5KCPP21DQbgxYhRWI8nvC1lQXP1wVL5YirEngMS9T75gkv6nKDj1fsW/aQItvxXO4Ejnk2VxyK9Z1KF3na2+R6q8zl0VnKRoPb3ce8U5zH8mw2+ltcHJnCdsH2DBbiBbqWTlIJkVVjNE2NkVCcjb6PV0woEfanaQV8dD/4qi5N01/Lg/YmminhATtam0xYZrdZQfAEpmMFrtRWSahh3s5Nca2xxnwuS0FNs6nXWBop0Gw7ZGIKgidxY6/E6cIoumvRruuMReNIwj4AwBsWPDwYNrw7pkHL0P3BUWNALhrlTtXfKF6fnORqzb82n5ua42t7a/zfP/hX/Gnj1/O7D134uI/ur7CX2tF+1x/7TaTyCX7539zmyXKZE28tgaLQ020Wzs4xaPdR4xFy42na9S6pfAI1rGDqFrFUlP3CpyxLmEYwRtHSaOy1AFi5u4kVNH/vvb+MOJvDCN43Oprk5rU1QiGZ06eK3LuzTS4f59SxcR4ulzhcHEENKwwEh0hcZbVaZ6GQwxY8ru3ssljIIisSpXaXsCK/0C/qBchx23VpGANsz6M+GDAQLDb6fs63X3EDeKNY5KO6f/PfGp/nem2La7Vt3h6dp2o1WOmWuZCbAaBlaMxE80RlBVn0tdtc15+3EgWfnu1FKjsBT/BDSwuDakDEU7fabPT9UHJ7UKVu7oN3FVzP4mqjRUKOcDiV5F7nAQvJAhklyePuOpfzk9iuiI3GZLzIo2aTQ8kCHWvAo/YeR5NFtnp9ynqXlBLGDrQEPMEbgpe7ts62UccTPDa0OrIkURp0KA06nEyPDzeKi5OzfFTdQgC+b3qB9ytrqLbM54uzbPSbuJ7D6fwYYUnC9hyyoQjTyRQJRUESBFJq6IUCzEHmRjPQattH838We6kdDWDpwgJ/43/2qQxKlR71hr8rhaMqerXDbqlDOKaSGk1z/d2njE7lGBlN8uj6GodPTROKqpS3G5x8bYH6XptsIUFhIs3TOxssnZ2m0TbY3aiTH0/RkUQM/HCp1wv6RYZNueKHb/Vqj3A5Qm9gsrxe5dDRMR6V/NP0zPwEN54GslCnZnj/2QaSKPDOkTlu75ao9wdcXpii65r0LItDuRzpWBg8SCgqI9HYUMlEFnwxw307GL5ZrjOcS9Mcc5hXDRyLBwEsayGR534Qyk1HRyj1+7xbecpSahQEuFJb5Vx2GkkQWe/VOJ2aQ3M0wpLM4cQ42/064+E0fdugZvgVy66tY7o2cTlMax9l4ZrsBqHtllahKrYwXZtHnXUK4STVgIxnJDzN9cYqAgJnUvNcrW0Sk1XeGVvgRm2TbChFMZaka2kookptMGA8kkQUBCqDLvOJEeIB+WpUUoIRHN8OIuy7tjEEABiezUbP37Qm8skhE/LF/BRX9/t6k9Pcru/yfnWNtyfn2Ov3uFkpcXl0Bg+Pmt7lSKrASDjGD80c/zSP79BeakfrtjTe/6UHFIoZKjtNRqdz9HUbXTNJpqIYNb+X5joe9b1A1XOrQbPcxnU9nt7eIDeRob7XprLdZHJ+hPtBZfLo+VnuX1lBUiUufOEEtz58RjId4+iFWbYrHcIRBVEWUTMREPwm9uzMCFJSZa3SIJOMPt8JPV44sQZmMC/nemimSTvopdmCy929oF80OcG1zSCUmxrno/YOa+0mFyYnWevXeXd3nTfGpzBFk/utEpfyvpBhzzQ5nMyjOyYxRSYbitExNXKBhpvlBmJ9AV2/JIhowcBm09Comv7O/KhdGoaZVaNHUgXDsxGAiWiaK/VnxOQQZzMz3GpuMBnNUoxkeNotcSQ5jeeZxBQBVZR43N5mKV3EcGwed7aZjGaHyH5JENDd/fDNG+pO922TptFHc0w0zWQ0Eudp129yn0nPca22r/Yyx/uVdQA+N7rA7cYOT7oV3izM0zYHVI0OJ7PjxFUJV7DIh2Mkg1NKFSUEQSBygM1MOkhY5HlDR+3ZxhBY3RzoPO359+lQcoR/9IX/6pM8tt/QXmpH+8M/+jcpbTUIhRWOXlrg4e1NRsaSHDszzZOb68yfmvJllgyLaCLM5nKZ6UOjOJbDw2urzC6NgyRS32sTjqovqHr2AvCwYzq0Gn0c26VZ6zLa0ykFXCTHLs9y+7HvDGdOTHE7kIi6fGmWG8s7PLi/y9vnZtlstVnbbXB+YRJX8mj0B8wXssRCKrInko74GthRRUUSBB+8q3zj/NN0ns9e1Yw+K5r/8G3320OIVEJRMaUBu9UGSSXMeCzKh/WnzCRy5EMxHnXXuDgyCZ5Ey+rwWn6KzV6H6XiKUTvOw1aJ09kCW/0OO1qX0XACgx44/snQCDCSPp+kXwnc1hpIghgMjGqcy43wKBCvP5ma5X5Avvp2/jB32g9RRYW3Rg6xNdhBoEsxWvT16FwHzU4yEUsSFn1nyIViJFV/0xIRXqR/cF/MPztWAABwLe63/FO7GItxr+d//uH0BHfqVdYHVU7kxtkddPhabZnXJqb9IdP2Jq+P+SzNPbfHyewobdMgEVIYjyaoDHqMxmJsaBKG61CIJj7pY/sN7aV2tFZQ4jV0i8puC4DaXoewItHv6qw8KrG4NMbKfsn+/OyBXtpRbr73xEd/fP9xHt7ZpKfbnP7cETTNRDdsppfGSU1k8WSJWCJMdixJJOrnMpIsoRzopR00y3KGvTRdM9ms+GszLIs728FOOJ7jwXowST2aZavf4Wv31zhazDOQHb62usH5qQlEWWC5Wee1wiQ920DVZY4nRtkyWoyHk/Q8XzJ2IpqibmgYjk06FGYvAO86nsteQDC60a/TMGu4uNxvb5JRY0EBos54OM+dgFbg9fEiD9rPCEsqv644x6PeY/JKghFljo5TIySGaZseuVAUWXDpWBpLyTwRSWWjD0kljHLgZLBca/h64A4C2gUTy9OHgvVHE/khld6JkQWuVP21vDY6y6PeKnd7Jb4wcZj1bpMnvWe8ObqI41mUjT1OZcaQRQFJdJiIJjEdh4SqEg7m81LqwYHR5xuYg0sjKMBU9R4bgSb2mlamYfWD90tYlkepXiMqKUylE7xXWWEqlmYikuSjyjo//rX/g798+Yd9molPaS+1o/3Zv/Vj/J2/8AuoqgwCaH2dmYVRQrLI9kqF9Ihf/Ng39wAT8T7HiOt4aJpFr+3vhK4gsvzEd4bjl+a5eztopJ6Z5uHtTTa3W5y8PM9arcvtj9a4eH6GnmPz5FmJ08cncVWBrmUyP5nDtB2UiEI2EaGjGaTjEeRqIL17QMhQkoThZHdH09kMwrenlRrtQN2yubETcOf7CXm2EOHd9U3iqsLZYpHr9S2mYmnmUikedHY4nSni4SEKNjE1z3Jnj8PJMRxMHnc3mY3lcVyXJn1UQXoB2d8JHjLdMek7LWzPpmY2yYeT7Pb9a3MsucCdlt9OuZxf5HbTf/19Y77AxXK3w8XsEnWjTc1sczQxgyLK6LbBSChDQo6iigohUUUUxEB+N7geB7TbBNHFDRRHdVenpPt5le51htK74YjCk6AvORZJ0nW7XGk0KSYyKFKEK42nHE8VCUsKj9u7vFaYom85eJ7H6UyRjX6DYiyF47psay1m4ln0jonmWOTUGHt2BxCwXIetgHx1q9+irvexPZdf3nlKyxz82nW0ExfmOHZ2hp/9x+8DcOrCHHc/8EHG5946zN2PVnhU73L+C0cprdfYXq1y4rLPkd5p9JhcKBDNxJFCColUFFEWCCcjCJKI57iEIs+dVDwYvlkOraDJ3WpoLJf9nbDc6LIZDGim4mFqgsHqcodULEw6HuH9e+tMj6ZJ5qLc3ShxenYcWREp9XpcmCtSbvcoZOMkifK4XOXYaIENrcVut8tkKkVd09AsC0EQqOt+aNszLTYCRZWtfgs15NCxdO40dziRGeFpUPQ4nZ7ienBifK5wmGvNp6iizGu5I9xv72C5LheyMziYOK5DMZIlH0oSkiAkKuTUFNFAyVNCRDrIRHzASQ3XGOZchmOyrvmfPxbOcjcQtViKT7AW6LgtxKZY6bV5v/aUE8lZOqbLleom5zJzgEdl0OFYchrdMYjJAtPRNHt6j0I4xvZARbNN0moMgTYe/lr3Nw3dNdkNTvPl7t5wkPROewXs2DAHnQgn+aC8RkiUOZcrcqu5xWg4wbnsFHdaOxzLjKEIPhN0VI6w3K5xOJXDcl1u1HY4lR3/zBppL7WjmYY1zKUAnycgMMu0h3Npumaxu+ZX/2zT5vGtQF/5xBRPgtNrZiFPaa/N1Q+esXCiiKnb3PhwhRPnZkCRWNtscOLiHMbAxI0qLCwUqFQ6ZEYTjNgmtXqPQj7JnqFhWg7JeIRq0Dz1PKi1/Ru+XWljd1u4wJ31EolMmJams9VoM1FIcTUAE5+cGOXa6jYRReadhVk+WN0kH49xZmac9UGLZDSEJdik4gqSBLfq2xzLjBMOwWa/SS4UQz0wWW4dcIZ9slPTtenZxrB/NZdIc7/l55lnMrM87PiUD6dT89xtr7E9qHM+c5j1fpn77RUuZhewPZ2avsWJ1DSSICCIBhORXIDyUIiKIXTXIi5HEBDw8F5Ue+E5+WrL6vM4UD/d6D9vGVR0iVi4S9kEVZTJhdNcbT5hJJRkLlbkVmOLpdQYSSXCZr/K+ewsTaNHLhxm1stwt7nLyfQUdaPHer/GRDhNTXMZOBaSIAwBAIZrs6P5J2NZ7xKTQ3Qtg4ftPY4lx3nYDgpVIxPcDCSq/sTZX8d/c/iNj/nEfnN7aR1t41mZP/H7/h7Neo8zl+cZaCbLj3Y5cWkOXA+tozG9WMA2bUKqSDoXp9cZEM/GkRQJx3KIJp7PXgkHemlaV6e07Z8Sm6tVmkG+de+pjhmV8OptBDwS40muPNokGlE5cmyC24+2GR9LMT6V4f7aHicnR0ERsC2HQxM5npXqLEyPoLs2d7f2ODSaYyDYtDSdiKoMdbCBYSVyYNlUO30c12Ov02NkJMZmrw09uLQwNmSFen10hg/L/gbyxclDXKmvclcf8PbEElv9JpudHmcy08iCwMDVGY9kAhoBhYikogpiAN71nSH0TWavBo5J3fSdoWdr7Or+A5egzUZQmMkpGepGj5tWjdFwFtELcbd9n6XkFFlVYEN7yrnMPJbjYjPgYnaS1V6HiUgSx5F51m2wkMxhtW06ls5oOE6fnr8GT6AehNY1o8Ne38HD42m3RCGcoGJ0qRhdFhNZ7gSCG0dT01yv+3jF17KHea+8RkqJ8lZhntVelbgcQhFkIrKMgEDfMXyNcFFitVejEIoPr4fwdeqrE9FPz3x10F5aR9teq9Gs+Re81eiz/tQvLNSqPfae+a9T2RidSofdpyUSmRiJsQzXP1ihuDhOMh3l0d0tjp6ZRlZlqnttTp6bpV7tkC0kiCcjrD7ZY3ZpDKXWpVLuMD6WZs8w0A0LTxBoBxTh2sBka9d3zNJeGzss0B+YPF7eY3Z2hGclvzF+dGmMayv7QobTfPhkE1WWeOf4HLd2dnFNl0szk2iWhe24zGTT5FMxBFEgrMgUU0kSgQ5YSHqRfNU5SL5q28NqXNf0UfgArpfhVnvdX0tynLvNfX7Fcbb1PT6sPeFkahrT07jdesKZ9AIeHqVBg+PJWQzXRBJEpqJ56kaHjBKnbUXoOwMySpLSwC+0hCV1iEaxXYe2FVybQYlGoPb5tPcERZCxAl23pDLC495DZEHiYn6Ox90npMJxzo/M8Kj7jOnwKAk5StfWmI3F2dW6jEeyDCyRG/UtlpJjAFT0LnE5/MLEQTc4sWzPpWZoOB40TI2+YwwhbBdzvqoM+NK7N4Zh9iIfVtdpmH3eGZtns99kq9/ifHYGQfD4JytXWUqOspDMf5LH91fYS+toS6cmOXlxjrXHJXL5BJ1Wn0alS340SWOrhmnYxJMR2uX28O80a/5NLm3W2d2o4Xnw+OYGsax/2u1tNxmbyXH/hr8TLp6d5taDHcJhhfOX5rh1Y53cSIKJ0xNs77VIpCNYEkSDSuSjlT3mF0YRwxK71Q65dPQ5yl9gqN0G0NUDgQ3boT8w6AwMGBjMjKa5H8ylXZgrDkPJS9NFrm7usFJr8LmFGe5rFT5aKfHmwhw9T2e5XeN8vogkChiuwUw8i+d5qIJKXA6hOyZxOYzg+UiPg9JHnkCgmwZde8Ce4TvgtlalZu5LzWrD3EtCJCqH+ajxhLQS53C8wP3OM2ai48TlJCu9EieS82iOgSrKTESyrPW3OJacwnBbbA12mAiP03f6tK0OiiAzCEQtbM+hYrQAaFs96mYd07V8YHSsyIbmb6Lz0UPD8ZvX80t8UF1DwM8/7zZXaFkul3KLNM0epmuzlCiQUCK4HiSUEBPRJAnFH78Jy+oLYfYLAHTPHp5gumsNgc2O5w41sX/y/i/yt9/4XR/30f2G9tI62shoip/8R7+f3/35n+DG+8tEYyGWjo1z7/2njE1lGZ8Z4cntDZbO+0m14wrMJsKsr1SYPT6JqZk8ubXB7NI4hm3T6wwIRxRs+7kz7DMR67pFo97DdTyq5Q7p8SR75TZ75TbHz01zJyBcPXV++rn07ulZrj3aorWu8+bJGTbqbWq1HufmiyBATzeYzKVIJyLIYYmoqhBWZCKKMqQWVQ+gPw4O7xmWTSMohrT7JvcHvmN0TIN13X8QJyIptntd1jptJmMpYmGDr+49Yyk5QSoscau5xZnMLGHZwvCaXMxNsat1KMYiROVR1rUK07E8lufQtvoUwml2B3Vsz0ERZbpB+6Bl9Vjr+5HFhlYiJg/o2H3ud1YphvOs9v1rczw1zsPuE0TgVPoEN5tPiEkRTqdOsKltEJEjqMIoiugAEo9aDpOxAqoosjuoUghniATIfkkQX5g42KcL9/C12zTXBBds12Y5ADafSc/xUYBRPJuZ4Xp9i5VemdcLMzzrl7jZesbb4wt0LY0VbZeLuUlCiovmtFlI5HyeTVkkrUaG9A/7Pc+R0K9xsXiAZtBL0/oGO2t+jrC35e86Ws/gyd0t5o4WWXvsw4+WLs1z92Zwwb9wlFtXVlBUiYufP8Kje1u4Hpy8NMdAM3E8j8nJDJmRBKIoEA4rFMZTRAMhw5AqIx/YCd0DYvG6ZQ97aQPTHuqlTdseNwNRi+Mzo9yq70Edjk8UeFap897jdc7MjtF0DN7f2OTyzCS27LHSbnJ2dsIHTIc9FuUsVa1PNhwh40ZoGgPy4Rhb+r70rjp0Ttt1aQYU3dtak7WB76Q3GxtMJgZB+FYhoyS41y4jInIoMcHd9jIJOcql3CIP2stMx0ZIK2mqepO0mqBlaeTUOKrk8qT7jMX4FJYr0DS7pJX4CzQLhhMM0/Jcu63vDNAcjbbdoW13WIoneRI0lo+lj3KlHvQ8M4e503xKRW9wIX2Ux50qq709zmcXMB2LutHmcHKUmKQiC5BWoqiSQiQYv/E8j9CBAoxwAKJlezadANjcs7Wh4EfH1qjo/qZZCKXZ6Pcpt2EsmkE1FN6vPWExUSCiqPy77duEZYk/eeoHX0CWfBJ7qR1NEAT+7P/vx/hHf+UXCYUV8Dye3Fxj8VgRSRbZ22qQKSRR1G8sPK4F0kuW6aD1DXodHdApzuZYfhywD1+Y486dgIXp3DQ3l0tQ73D+7CzLKxXu3tzk4oUZOpbJ6nqVU4sTSJKIpptMjaZBFFBDMsloiIFhEY+oiPgPXPgA94cgCBiBY3Z1k9VOUIxptdkOwreBZdGWddBBFkXCksxXNzbIRsIcz43z/tY2i+lRxtNh7jX3OJ+bxPYcBMlmQZnhaafMsfQofVfjSWePw4lRJKVKw2wTFtUhd76LS8PwP7Nra9SMOg4Ou3oZVVQoGTVKRo2jiZkhd/6l3CIPO08QEHgzd5yH3cf0nT6Xsks0zRoOJovxGRTBL/ok5Tj5UBZVDCMJImExjPqC9vQBJVbXGQKb+45NOVib6Vrc7wRhfnySB811AA4lxljv73Gl3mIpOUltoPNeZYXz2VkcT+BJu8KF3AyWa2O5HocTY0Nm5qwao2H2GY3EafYkLM8hLkeBfnCfPJpBn7FidOj2dRDgX27c4E+e+sFP8vi+YB+HymAKnxx1FP/0/tue5/3Vr3vP54GfA9aCX/1rz/P+7Kde1QE7/+Zh3v/FB/zCz1wF4PTFee6853M8nv/8Ue588Ixua8D5d5YobdSpr1U5cXISQZHo9wzGJzMkMzGUiEI0FkIJK8Gcmh+qKwdYiQ+idw3TphOElr2ezsNdv32gdXSeVfwTdSyfZLvdZa3ZYjzri2W8f2+dQ8UcobjCzeUdLi1O4Iag3O1zfqZIpd8jnYqyFBZZqdWZyafQmxY1bcB4IoGmm1ieS1iShkOajYFOt+FvGs9aDTqCQtcyuFHf5lAmyWagi30iU+BmIL17KTfP1foqcVnlc2PHeNpbJy5HmFeLGK6NiIAiSoxFsigC7Ok1ipE88SB8UwSJg3u3dQCvaHgDLM8KqDh0SkHOl1MzPAgc80h8nse9VejDydRhtgdr3Gs/5FjyKCXN4HZrh1Mpv+fZtDrMx4p+PiV55NQEA8ckrYRQA6LVhPSi2qi7L1Flm2wHXCg7gyY7AWPV41aJXrCxSIJHRJH4oPaMhBzmRCbHve5jJiMjZNUsd5vbnEpP43kehmtxKZ/haavKydwITcPkfrPCG4WFT32awcc70Wzgf/A876YgCAnghiAIv+R53sOve997nuf9pk+9km9ipmHR7z2nOzuI/jB1a9hLMwfWkOOxaFrcv+eHBYeOF3m07Mfxi0tjrK/X+ejaGsfOztDWTK7d3+LU+Vk8z2Nzq86pIxMYjovnecxO52i0NJLpKOluhFZ3QDYTQ663sB2XWESFYHrC86De8fOaUr1Lp+bf5FvPdvGSArbrsdVok8pHWdvaRgAWp3K8v7tFMhTizZlprmxtMZ1OM5aNs9FucygTpW+ZpKIhRFngZnWHk/kxPNmibmgUwnEkvrGQYcv019KzTbr2gK6t0bU1smqKp13/BD+dXuBBx0d8nEsf5mnvPk0L3hw5ybq2Sclc53J2Ed0d0DYbLMSmCEkqnueSUVI+8kNQ/CluXMLigWHaF+gOnKHCZ98esNzzN62W1WN74N+bfChN2/I3jKSaRLA8brQeMBUdISRGud99wsWRWTw3xK5e4Xx2hpY5IKGEOC5MsNKrsJjM4Lgie4MOU/Esa706umMRlyL0nX5wPQy2BkGYPahRGZgMHIu7rU0mIukhgdHRVJ477WcICPzU+R/lB4q/gmTgE9nHoTIoAaXgdVcQhEf4PI5f72jfdlt9XOJP/f5/QLulcfaNRfp9k7W1OscuLyLKItrAojjvl13lWIh4KoIxsIhlYoiSgOt4Q+pwAEEUsQLH7GnPS/a7e02qFf/iG4ZNN0AYSJKIO6LwwcMNkrEw80ujfLi6zex4htFUnHsbe5yeG8fBxXJdJvJJnm3XODRToGPpPN6qsjRToGprlNs9oqrynCULqAVChh3DYKfTwfE81pstQmGZ7W6H7W6HM8Uxrtb8TeP14hRXyn6J+guTh3hvd51Wz+aNySW29Bod3eVEcgpJ8AUfRpQ4k/EEIUlCEWRichhVeO4MB6WPXJ47qe3ptC3/ejjobGj+KZlSEzzu+k3u6cgEm4NdykaN2WiRjt3jVvsBx5ILeJ7HSn+DE6lFXM/FcDTmYrN0rA4RMUYhZFMzWoyE0lT1OoZnkZJjQ0dTRIl+QJ/esrp0LD+CeNzdwPEkHM+j3u6QVmJsBGRG88kxbrWWCYsqbxZmuNVcZSKaZjwyyeagxGJoHMPxiMoyYVngaW+dY6kJeqbI3dYOxUhqSEwrCSKGu1+A8ZiKZT/hk/sr7RPlaIIgzOLzh3w9gSrA64Ig3AF2gT/qed6Db/D3PxGv48az8rAY0u0MWH4YVN/6JlvBVHV+LEm13me71ic/mkQURK7c2WLm0BixqMK9+1scPzXlC2ZUOpw8M0W91iOdjrEQklnfrDE1mcVxPBr1HvmxFHq1jWU5hEIyzaDJ3enrtPb81+vlJh1NRzMs7j4rMTmRZjMohhyaHeHKhn9iXDg9xYcbW8RUhbeOzHJra5ekrHJ0dISuZSHJAmFZZiKRQBRFtttt5rJZUvvkq9KL4dtBsfieaflU1tholjMcGJ2MpYZQrPO5SZb7yyz34Ux6noedbbb7q1zKLdFz6jzqrHA6dQgBm5ZZYSE2gwt4nkA+lGHgGMTkKKqgYnomMSk6/HzlAF7R9hwawcBo1WhQN/21rPY2sT0//BYQkBAp649RhRBT0VFutx5TCGUoRnLDYosshKnofU6mRinrdcbDOXTH4UFnk6PJaWqGxs6gQUqJ4h7oLbYC9IvumlSMBggee0aThBqiYXZomB2OpSZ5ELB3XRqZ4mFwmn9x7BjXGk9RPJl3Cous9cs4ns3J1AwC8A/XvsQfP/p/IR/+Dsg2CYIQB/4V8Ec8z+t83R/fBGYCfv7fCPwscOjr/41Pyut47OwMS6em2N2sk8rESWdjtBp9siMJSpsNbNvxK4R1/yK7CDQDjGK50kEPaOUe3N1CUSUs06G00ySTT3D31gaCALNHxrh5c4NoVOXM5Tlu3dtibDTJ+GiarZ0GMyMJOqJNIh7GC4vc3dzjyEwB1/VodAcUMnHUoJcmCgLGgV5aKxBO6JsWHV2na5h0DZPxTJKHFb+CenG2yEc7Qctgeor3ypvQg3emZ7lT2eP+XpW3p+ZoOwO2Ox3O5MZRJQnLdRmPJojIChFFIizKPizqAHf+QboDx2OIBexYJruG//lNq0PD9DcG13OpBIWZpBzHcixuNB+QD2UYlULc7zxmMTZNWIqwrm1zPHkIzdaRRYnD8Tm2ByUmIqPIgkzZqFKMjFHRSwxcnbgcpRe0DEzPoKUH5K9GE8fTsT2HZ70t0soYu4M624Mq87EJH7cInE4vcqe1iirKvDGyxI3GKnE5wvnMJFW9iyJIZNQYadXX4a4aHQ4lC8SC3C6phFDF54+cfWDiQHN0XPz8zPKMYZ9vPJLldtDL+4dr/4k/dvS3/mqP7De1j0sJruA72T/1PO9ff/2fH3Q8z/N+XhCEvykIwojneZ+aEhxgtJjhL/3TH+d3vPk/c+NrT4knIxw6McGd66sUZ3LkJzI8frzH0XMzOLaD43qMz42wtlplYaFAXzNYfrLHwuFROu0B1XKHSEQZho+eB82AiEfTTMrVLq7rsVtqE4uEqFS7VKpdlk4XufMk6KWdm+Laqv/6zdOzfLC8Qb0x4I3js6xXm2gDizOzE4iSwMCxGUvGGUsmiKgyIVkiEQ4Pq5GC54vi7Zt9oJs2sK2ho2qGxd2Wn8sUonFuB8y7h9I5NswS21VYShWo6X2+XFrhbHYaT/T4sLzDpcIRwqqPdzyWnKZt9UgpKp4wQtVoMqJm0OwaujsgpSapml08PFRRoWMH0YSl0TT9sG61v4kgyDiew4POMkk5PnzfmDrGreZTFEHmWPIw9zvLZJQkJ5LzrPQ2mYxMoogKA0dEEVQ2tRLT0XEEXJ70nlGMFMDbV8J5ceKgF/D4m65N2+pjuBaGaTEezrEWsCKfyfii9AAXc/PcbfsA9C+MHmZFW6Zstvji6FGadpOes8fx5AyqJGI4OqNhn8k5rkBYlBEFkZTy/N6MhtOf6hnet49TdRTweRsfeZ73l7/Je8aAsud5niAIl/D5H38FU/GnMduyg7K8P6y5sepf1J2NOgPHYzAweXhvm6mZHFsb/kcuLo1z55p/wc9enufWjXXCYYVLbx7i/v1tIlGV+cVR+n0dQRQJRxRGCkkERaRc7TBZzBBLBOFbWEFQvvEgomZZ2J6HbTsMbIvtRiBkWEhxfT1wzLkxbm35Ie/Z6XFuV8u8t7rBazOTlLs9rq9s88b8FBYuG80WZ/NjPvbQ9ZhOpuhZJqmISryn0LMtMuHwsOEdPSB2YbvukIinNOgMS+R36nuEws/RMwnFpd4uo4gSo6ERrtSXyalJlpIzPGivMBOdIK5E2RvUOZpYpG11SCtJwGW5u8piYo6erbGj75FRUsPwTUCg5+yTr9rUgjm0ptUhbcXpOhpdTWM6ssCTbqDqeUB693LuCPfaDxEReT13kifdbbp2l9OpBQzXYeCYfpUwlEBCIiwpZNVEoIzj51XKCxMHz++Tg8Fgv88naOwG/bOxUI4n3XUA5qNF1gdr1C04lZ2ialR51LvNO6OH+eHiD3A5d/ibP6Qfwz7OifYm8LuBe4Ig3A5+9z8C0wCe5/0tfHbiPyAIgo0/RP87vh1MxVe+9Ii/+xd/gaWTkxi6RSzp66M9urfF4rEiKDL1Wo+RfGIoGCgIYJnPw4JuoI+m6xbdnkE/+BkdS/PsacDDfn5mOD196uIs159sQwUuvzbHnVKFuzsVLp2eodXX2dlpcWp2DFmWMEyHiUyC8D7qQ/U5FKMHZuQOykJ5MAQW9w2T9UYLgGq7z9MA+gNQCghqUiEVLWzy5coKo9E443Kc90rrHMsWSIVC3KvvcS43hy0ZOK7LudwUK50qc4kccVVlpVvjUDJP27NoWxppJYYVyMtarsPewP/MutlhUzNwcVnTdhkLj1A1m1TNJvOxCR4GBZCjiQUedVeQBJHTqRNcaywTk8KcSh6jpNeQBZmsmgqUOz3aZpfJ6KgPB/MEkkoM9YXBzAPSuwd6fIZr0AqKMV4EHga9tBOpueEk9/HUHLcbW+zpdS5kF9jS6txqLnMxu4jpmWxpJU4kZ0GAgW0zHs5juzZhKURUDDNwdWLK84mDkHxw1swbUqnrrvaZnQw+XtXxa7xIDvSN3vPXgb/+mVfzdfbvf/ojdoKS/bGz0zwIMIqnLs9zJ+DRv/j5I9y6vk6r1efiG4tsr1fpdAYcPzONIIA+sMgXkowUEoRCMqGwQiwWIhwNbrgA0gFncA+Gb67jYxSBnmXxaNM/TQu5OHf3gunp8SzPyg1Wyw3mx7LUzAHvPlnnxNQoAgI3lre5uDiJJ3pUu33OjY9TNwbEQipz2Qw77Q7jiQRlR6Ot6+RjUcpG1294KzIt1w+ZuqZBWfNDtIeNCqokYroOV/a2GU+HhiMn84ksV2prSAhczM1wrb5BNhTh8ugU9zvrFEIT5MIKlmsSklRKWo25RC6YpO4xHR1DFRX28Ge/vAPXQw9OBcdzaVsatufStjU0x6IU5FwnUgvD8ZsTyUPcDwoOZ9JHeNR5xkrvCRczx9nTW2z29ziZWkARHTSnz0S4gCJEEZCISxFAICSGhvjNg2qjgif4sTdgehY1sw0CdO0ua30f/RG3wuwM/Cgnp8QxaVM1m+RDGeJClJvNR8zFisTkEMvdDY4nF3A9j4Ez4EhinopRJ6umWettMRef+oRP74v2UiNDphcKXH/vKaGw8oKq50G8oq5b2IHcraFblAL68OJUlvu3/BDl6MlJHt7fGb5+vF7loxvrnLowQ60z4OaDLc6cnUEPwVq9zbEj43ienzNNF9J0BwbxeIh4VKWnmSQTYYQ9/4QKqwd2aM+j2Q+EDNs9Kh0/lHu4VqIv+2veaLSQoiIbjRayKFJMJnh/ZZNMLMJrU5NcLW2zmMkxEo2y3mpxKT1Ngz5pNYIgwK36DmcL43Qtk8fNKhOxJIrkn+AiAv1ASMLBo6I/l96tm136tsGaXSGpTrAcCMRfyE7zuOvnMmczS9xrP0JA4FL2OE97a9SNOqdTS/QdDc0ZMBstEpcjeHgk5AhpJUFYUhE8AVmUUISDQhIHQ27bb3ILfjFka+BHE7ZnstL1T6liuMiDACI1HR1ju9/mw/pjlhKTDByXD2urnE0vgCCyodU5kZrDcgfEZJeFeJ6y3mEsEqNpRmlZGvlQgj29geN5xJUwNev5xEHdDoQMtTIO/vV70FkhJErDiYOMkuRG8z53Wo/46+f+J0bD3yE1me+0/f7/129kfDLDP/4r/4GHV1c4++Yhel2DnbUax05PISoyum4xXswgKxKqIhKNhbAs22ciDpKZg3QHnigMHbM/sNgOemnVepdnAXef50G95TtJNKIyUF3ev79OLhllejTBh0+2WCyOkEqHuL9V4dxCEdN2sB2H87NFVioN5gpZkpEwz8p1Dk/k2ei3afQHZKIRWm4w1uG6lDr+Zzb7A1ZaDVzPY7lR9/+s16XU63JkYoRr5QDlPznO9do2oiDwxalZPqg/I2apvD26wGq3hiKKnM6MEwsJuLh07QjziQxZ1UMSRLJqdKj2gvdioGId6B3prkEv0OJ2sFnt+5vWkcT80DEXYvM86GxS0vc4lpxnZ1DhRvMJp1NLGK7Bk84Gx5KLeJ6vTTAZKWK6FiIh0kqcrqWRkP2mu4NDRHquxCogDqcJOtaAzUDIcKVfHQoctsw+EUUDHURE0mqU2+2HJOUY5+ITPOk95VBijKScZlvf4ERqDt2xUESBKTHHcnebI8kpOpbGhrbLVGSMnt2jbXf9iQNnf/zGeYGL5NPYS+1o4FfluvuVwY7O8gN/x8vmk6xs+kWGiaksW6sVtlYrFKdzdDWTjz5YYfHIBJIicuf2BifPTuPJErVmnxMnJmk2NWKxELPTOXZKLcZGU9SrFs2eTj4ToxWozERCCu0AZdHVdKqaf2I926khtyUMy+Hmyg75VIxqMGU9O5nl6vIWoiBwfr7I9c0dEuEQby3OcHNrl+lEmlwySm9gEFEU9vo9JjMpvLBHfaBxODtCVJFZA2KKwkHkzz5XvOt5dJwBLh5d22DgmMPp4bcSRW7vQ7FGZljWHrLXhcu5w9xprXGr2eJS9gg7gzp3GhVOpY9i47DV71EMTxKVZQQPUorPABUWw8Mq4EH0h/gCQY9N29pvMvfYGvj3qaK32B34m1lCjtGydFZpkZCiJJUEV+qPmYqMkVWjPGxvcCI1g+vK1Iwep9LzVAZNRkIZQmKUlV6J+dg4W4MqNaPDWDhN3zGxsZEEkXZQ/ezYfWzNv05bgz0KIY2+0+dxd4XJSIHNgBdlITbFg84ygidwJn2E263HxOUoZ9PHWOtvEJejjIRy/PrRt8gon20A9KV2tCv/6SHv/8d7TM7n6TT6JKIqiVSEbntAKhtF3BaGnPr75noe7cAxq5UO7c4AEHh4fwczUIXZ2WkSjars7DQQRIGJ2RzXb6yTTIQ5f3KSm4+3mZ7IMJJLsFZvcmpqgr5uEAurSIrE3bUSx+fG0ByLR7tVxrOJIcpCEoUhr6PredQD9EdXN6j3B/RNi369SToa5smen9ecny1ydTPopR2Z5mu7fi76+dlZrja3WO3Webs4S1Mf0OwPOJEZJaaEsF2HnBojE/ZPKVkQUUSR2AH2roNjWI7nDEvmmmMO85e2ZfEsOLEUcZQdfR2A8XCBql7nZus+U5FxXM/ldvsRS/EFZFFgs7/LydQCumMhILAQm6JiNMipKTRHo262yCpZanoP07OIy1GaAZIegeEk986gxp7u4uHxuLOGQIK+rbM9qJFVs9xsriEgcDhR5FZrhZgU4lL2MDebK4yGC8zE4tTMBikljmYPSKkxRAQeddZYiE8i4NKwWqSU+Ivkq/v4TcEbbhI9W6PvaHTsHh27x2+e+H5eH/ls8Ct4iR2t29L4f//4PwBAkkVk0+T6L9ZIjSSYm81z+0sPmD40RnpmhCf3dzhxchLb9bAsh5Onp1hfrzI3O0KnZ7C6WmHx8Bjltka93iMeDw2pvz3Xo94IdsKuzvZeCw/Y2G3ihkTKrR7lVo+jMwXurvgn6Jkjk9x85utQv33S76WFFJk3j82wXK8jigKnZ8d9tRTXYSQeYSqXQQlJyKLISDw65HUUBeFXCEnsm+ZadAOBdtN2uF/3d+LR+PiQefd0bpyHnS2edaqcGxmjww63Og94Pb+A7ho86q5xMrWIJDp0rC6HE0V0x0QRFUbUJB1bI6PGCA0UDNciKUdoBQAUWZCwCUaBHJ1agPjYHpQYBKo4y92nmK4yZLLKKHFutx8RFkNMhhe52thkPJzlUDTHg9Y287E5FNFFt11mohNsaCVmo+OYrsFKf4OZ6ARNw6Jv+yqk+yqeHh6NgOKg7/hNZdtz2BnUyYVkSnqNkl7jWNCmADiVWhwWYy5lj3Ov/RjLNTmbPkrNqGG5Jodi06iSgu25pJQ4hVCWqBhGRCAqv4g++Sz20jqaaVhD5ZdIVKHXDpqnjR6dgBRnc3mPhmahayYPbm1SmMxSDvgfZxcL3Lm6hiDA6Uvz3Lm9QTSmcvG1Be492iE3niKfi9NyLUKqTLfSZ2Q8iRuWqHU15iZzhBMqlPHL9QecQQ+o4zwPugNf1EIzLDTbphSscyyT5Pqqf0qdW/DDR4CLc5Pc3Nyh0uzxxuI0m80297b2eGN6Estx2S11OZkfRZElPBvGo4mACEcmLMkYjk1COYj+OHBkCQ6d/fzF6g45Pra0Jn3Xh6xFxBAN02VdqxGVQiQVhRuth4yGsuRCKe631zmenicuK6x1myzFl+jaLeJykrSSYl3bYiY6TcOsUTFqjIXzlI0+A8dAEkS6QfimuwZbmn9il/QGjuvRd3QedbaYjY6xHkxSn0gXh+iPc+mj3Gw9JSQqvJY9wt3WFqokcjY9jxHktaooMRpOIQkCO1qdYjRHTA4HfyYjcjCcPcA36fhzeZZnY7kWJd3ftPLhLA+CKumR+AKPe/5ajiUP8ay7zt9Z+xfUzAb/9cxv+dUf2m9hL62j5UZT/G8/+4f5hz/571i7u8HU+Tm0nkEsG0NSFR7dXOPw6RksQaD7RCc/lkQNRl5EURgS8XgetIPChtY3aXcGaJpPQ50eT/B0zQ+fzhyd5PqjwDHOzPDR000owxunZrm7WmJ1t8Frx2eoawOq3T7HZ0cJqTKm61BIxUhGw0QkCVUSkSSJyIHw7YXhUc/DCQZIB6bFdsvPqzqawcM93xlCisx93XeSYipJyWvzld46c6k0Xsjh3coqp7LjhGWZ+/U9zudncQQD27U5kpimrDfIh1NYns3uoMFkNMum1mHgGqSUBE2zg4eHgDDMa8pGg6rRBMHjQXuHpByjY/epNNrMxtKs9/2cbzY6w5X6OiFR5kz6BNcaK+TUBKdS8zzrNsioEVTJRiCK4Ik86W6xEC8iIFA2WoyoSdSg0S7g53b71rX9sNJwLXqOTtcZ0HUGFKNZngasyGcyczzo+MWY87lD3GktUzbgYvYoa70NnnY2OJteQnMGVI0Gi/EpX5gDh5yaRhUVFFFBDrCaoRcmDl5seJue76j7EwafxV5aRwOYWxpHa/ao7jSp7jRZurjAw6Bkf/LyPPc+8m/+xV93ghvXN5CbGhffXGRztYZp2hw7M4UgiZiOw0ghSWEsiRJWUBSJVCqCGvA6CoKAJB2cyj3AY2jZ9IJemm7bPA7m0kYzcW6s+KfU0nSeR7tVnpXqHJsusN5t896TDc7OjqN7Dtc2trk4WwSg0u1zcnIMzTAJyRJTmRTVbp+ReIyY2qJvWmSiEYSBXxQMSxKWuS/WZ1EJytLLndqwMHJlb5tk3PYp59pwKCtxvbGMIkicTo/zpPeEnJriaHSGh511jiYLSEKEvm2QVMYp62Umo/kAVrXOYnwC03Xo2H2iYugFYqD9wpDh2pT1Hi4eVbNDwshR0tuU9Dan0zPca/t9ztPpRW43A/RH9gjXm09pWX0uZ4+wqVWoDPqcSM4DHgPHZCycJa0kkQWVsKgSlUPD/pmAgHwA/eEdWJfhmHTsfWJYg+Wen+fmQkkefd3EQUmvMhebpGu1uN26z5HEAo7n8bizwvHkIVzPpW9rLMSm6dp9RAT29Bpjv1bL+w9vrBEKBAPDURXpgMStZR7IZfoGruNiOi7GwKIccOePT2W5e89HfBw/PcWDYJL62KVZ7mxUqFxf5+L5GTa7XW6u7nLu9DSG4LLR6HBsfgxJFPzxl5EkpuUQCatEQwqaYZGIPN8J1QMiCo7r0Q0cs94fsN7y17JWa1Lr+Q9pqC1hOA4r1QaqJJIKhXn/4Tr5ZIxDCyPc2Nnl+GiBWFLlWb/GpbFJWoZOQlWZCiW41yxxOjtOVe+z0qkzl0yjif7EgSwI9Kx9KJRD1dhHf7QJSQq6a7KmbVMMT7PaD6bMU5ND8tMLmUPcbj9BFiReyx3lfnuFnu1wIrlEy9JwPJcZaZSkEgdPICyqjIZHhuDdsKgiCy/Oou2b7ppDp9Vdk5Lur22aHA87vmMeScxyp+WfXscS0zzp7vJhfZkz6QXqZpdrjXXOZZZQRJOyXuFYYgoniOsLoRy6YxCRokSkEAPHICHHnqM/pIM9T4eW5RdjGkaTSpB/bmi7w7aGXzgRqBh17rQe8/cv/iQh6SCC5OPbS+to//Gnr/D/+eM/DcD5X3eSJ3c2eXpvm3NvH6bTGlDebXPk3CxyMorhehQm0kQiKmpIJhxR8DxeqEYe5NH3BGHI/6HpJrvVQBNMG/C0XB++f7seyA4lo7QGOu8/WGc8myCXjPLBow2OTBWIRBUebJU5vziJ5Trors2Z6XG2Gi0mkgkEUWCt0WQml8Z0fKTJSDxGqdPB9fzTtNYNqqSdPnXZwAMelqtkpTAVXaNS0phLZbixF7ASFwtcKW8iCQJfmJrmw9oKGTXK903MUDK2iCsZFCHkh7EC2JrFfGIMWZAoDWrkQ5lhL00UxBcSfs193jvS7AGaY4BjYHkeqwHi4njSR9IDnEgucqO5DlS5kD3ESneL281VzmcP07E01nplTqZmfVUZR2MyMuI3tkWFmBzGdmxiUvgA3+SBfpUgDIlh+87znK9mtGlYfjTh4VEOIGtJOcbAsbnSeEIhlCIZyvFBfYWlxAwZVeFZd5PjyUV0x8IDFmPzlPQ9ipE8kihT0qsUIwU2tRIDRyclJ2kFEYTtOZ/ayeAldrTKTnP42tAteu0Ae6aZPHvo3/DcVHaI+JiZz7P+tMz6Wo25xQK1Sper7z3lyMlJXFng7u1NTp2bwY7IlDt9jh+ZoKMbKHGF6bEMe/UO+XSMvW6PjmaQS0bYqfs01OGQgh1MTw9Mm2awlme7NUzRf0hvrGwTiav0Db9QM55O8NHyFrIkcnpmjBvru2RjEd5cnOHG+g4LIzlS0TCt/oBUJMxeq0sxk8IKeVzb3eHYWAFLdSjrfZIHRBwAutY+FMrnt/DweQwtwtTMDjWzw8nU3DB8u5Cd40n3MeDnMjcaT6kbTd4cOc5Gv8SeUeV0ahHbc+hZfSYjBRJyDFn0oVBhyQ/jBABPQBUPPjYvKuHs51m+9K5/bzTHYHPgn1IToTyr/Tqr/QqTkRH6Yp8P6485HC8iCSK3miucTc/jIVI12pxKzdAyNeJSmJlonpLeoBhJYXnN4cR41fBDWFVUaFna8PMrgT7b0+4uSdXG8VwedJ4Rk+J0g1NrNpbkUe8BMjInU3Ms956SVlIcSx5mrb/KocQYCSnHby5+/yd5fH+FvbSO9kO/9222npWplFo4jsvE7AiDvkE0ESGWCNPv6kzO53m22cB1vRc0qR3XoxtQiTfrPcpB+X71WYV68LbdchsrK+O0W8iSSC4V46O7G2RSUc4eKnL72Q4LEzkyySirpTpnF4v0dINwWGFWyvJwfY8Tc+O09AHLe3XmR7N0bIO+YSJLIlrgcLbjUu74n9/oDyi1uuiWzXK5zvHxAisBr//p6XGurQW9tOPTvL+1iSgIfN+ReT6sb1EfaLw9OUPV7mBicyxT8HXQPJekEmYimkIVFMSAkXgklBpejxdlkOznCp/egGoQMtmew4Nh+DbJo67/ejE+xUpvl1rzEUcSM9SMPtcaTzmdXsDxXNZ725xOz2K7LpbnMBMdpWdrJOQwaSVG29KYj4+zo+/ieC5xJQr4nykIzwU3qmaXZlC+f9LdQgvK+juDOhIym4MqIgKHk3HudXz0x8nkIvc7z5iLjZOQE2zrNU6m5mhbGgk5giCIPOmscyI1he712NJKjIVHhrmtiDhsU9jYNIJRoJbVJiZH0ZwBm9oWf3zpRziZWvpUz/G+vbSOlsrG+f1/6of5PW/4HD/RRBjT9rj+3lMyI3F+4p/8YRaPT/KDtzdZeVLiN/zQWX7p397m9tU1fuvvfI3/9PN3uPLVp/zwj17ia+895eH9bU6fn+X2TpVGs08+l6CEjs8J6VJpBFCotoYpeXgerOzUGTct6h2NekdjYTLH3bUgr5kd48ayD4X6oz/yOf7rL56jMzD4Vx/d4wfOLNEZGPyN//gh/8WZw3gi/NTPv8vnj8yRiUb4u+/6oeRkNsXD3QqyKKIcqEweRH/0TWvIa2hi8yQQ67tUmOKjSqDXNj7B7fYGj9vwX0ye4X859yPE5DCXdpcYC2c4kpriH639HHE5xqXcCf7Wyr9GQOD7Ri+ypdUYOCZHktM86W5iew4ZNbFPCoWIMMyrBo7JXpBXVfTmMMfaHZSoGv4pq4oyomdztfGUhBzlb138wywlJ3nafZvHnQ1+w9glvlS+w5X6Y3771Nt8qXKLdyt3+W1Tn+PD+kPutvyw83Fnl6rRJqcmaJn+puniUTN8J+3YfbYGe37PUysN6RFqRovZ6AQPOusAnM9M8qS3jIjI75n5LfxQ8fvo2xq/UHqPz+UvMHD6/B/bP8fl7HkA/vnWv+R06gQJOcHuYI+smmEsPPqZn2fh2zDN8qnswoUL3vXr17/le3Y3avz49/8EtuWQG0tRr/l3PxRR+Nl7f/5X/QzXdRFFEcdx2d1uMDUzQqc74L0rz/ji20tsVdr8zC/e5Ld84RQ75RZ//+c+4gfeOkbbMPinv3SDi0emURSRd++tkYyGKI6mebgZ6J8VR1je8XOG/+0P/DBvn5z/lmvxPA8hOFm2Gi2K6RSiKPAf7j7hxOQYmViEv/mfrnB4bITjU6P86V/8EpOpJG8dmubPXf0KEVnhh5eW+FuPP8D1PH7TzFF+bt2nbXmrOMm1YODxN0+d5C9c/NaTwAfXsn+iJJUYz7o7tKwuF7JH+FL5GhvaHj84/ib/5867PGyv8SOTn+ff7lzhUWeDHyq+wVcqd6gYTU4mF7jb3sF0bbJqgo7lh2yKIPFLX/zJX/0+ee4wV9wZ1JmK5ulaA96t3uMLhdPsDhr8zOZ7/KbiJZpmnX+28Qt8oXCRgaPzr7e/xMn0IWRB5aPGQ2JSmPFwnqc9Pzo4nsqzofkh7P949L/jYvbkt1yL4zlDJZ0tbYfx8Ciy+PHOI0EQbnie9w0V5V9qRwN4dn+br/7bW/zm3/MW966u8vP//EN++Mfe5nM/ePo/6/qa3QGZhA9yff/+GmcX/fL8P/7lG7x2dJpMIspP/cxXOLMwwe/6wlmi4U+fKP9q1jUNorKCJIo8alaIyDKziSz/Zu0BumPzgzNH+BuP36Wq9/gDR95mPvHpy9C/mnmeR9/WiSsR+rbO484m57O+As0v793mt0y+xsP2Jv/n9tf4LZNv8k7h1H+2tQC0zS4pNYHneXzUeMjJ1AIC8NObX+Jc5jDZUJy/s/rTHEks8FuL309EDv+q/+antc/kaB+T11EA/irwGwEN+L2e5938Vv/ux3W0V/bKvlfsWznat4vX8QfwyXgOAZeB/2/w31f2yl4ZvMBm9g3N87zS/unkeV4X2Od1PGg/DPxjz7crQFoQhPFv+2pf2Sv7HrVPxHH8LXgdi8DWgf/f5lc6I4Ig/LeCIFwXBOF6tVr9hEt9Za/se9c+tqP9KryOH8s8z/vbnudd8DzvQj7/2YTdXtkr+16yj+VovxqvI7ADHGQvmQx+98pe2SvjYzjax+F1BP4N8HsE314D2gFn/yt7Za+Mbx+v48/jl/af4Zf3f9+3faWv7JV9D9u3i9fRA/7gt2tRr+yV/VqzT6+s9spe2Sv72PZdg2AJglAFNj7GW0eAzySW8V227/X1w/f+d/hOrX/G87xvWE7/rjnaxzVBEK5/M1jL94J9r68fvve/w8uw/leh4yt7Zd8Be+Vor+yVfQfse8HR/vZ3ewGf0b7X1w/f+9/hu77+lz5He2Wv7NeCfS+caK/slX3P2ytHe2Wv7DtgL5WjCYLwhwVBuC8IwgNBEP5I8Ls/IwjCjiAIt4Of3/hdXua3tG/0HYLf/z8FQXgc/P6nvotL/Jb2Te7BTx+4/usHoHgvpX2T73BGEIQrwXe4Hmitf+fM87yX4gc4AdwHovjQsF8GFoE/A/zR7/b6PuN3+ELwOhS8r/DdXusnWf/XvecvAf/Td3utn+Ie/CLwA8F7fiPwle/kul6mE+0o8JHneZrneTbwVeBHvstr+qT2zb7DHwB+wvM8A8DzvMp3cY3fyr7lPQgmOf5L4J9/l9b3ceybfQcP2FcTTAG738lFvUyOdh94WxCEnCAIUfxdZ3/G7f8hCMJdQRD+viAIme/eEn9V+2bf4XDw+48EQfiqIAgXv6ur/Ob2re4BwNtA2fO85e/K6j6efbPv8EeAvyAIwhbwF4E/8Z1c1EvjaJ7nPQJ+Ev+I/w/AbcDBJ/pZAM4AJfzQ5aW0b/EdZCALvAb8MeBnBEH4lhMR3w37Fuvft/+Kl/s0+1bf4Q8A/73neVPAf48/Y/kds5e2jyYIwp8Htj3P+5sHfjcL/DvP80581xb2CWz/OwA/BPyk53lfDn6/Arzmed5LTZxy8B4IgiDjT82f9zxv+7u8tI9tB+7B/wqkPc/zgk2u7XneZxOm/gT20pxoAIIgFIL/TuPH1f/s69i0fit+aPDS2jf6DsDP4hdEEAThMKDykqLhv8n6Ab4fePy94GTf5DvsAu8Eb/ki8B0Nf1827v1/JQhCDrCAP+h5XksQhL8mCMIZ/GR2Hfjx7+L6Po59o+/w94G/LwjCfcAEfsx7WUOJb7D+4Pe/g5c8bDxg3+ge/H7grwYnsw78t9/JBb20oeMre2W/luylCh1f2Sv7tWqvHO2VvbLvgL1ytFf2yr4D9srRXtkr+w7YK0d7Za/sO2CvHO2VvbLvgL1ytFf2yr4D9v8HiibsZQdH/1QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#get corrected data stadistics\n", + "\n", + "gdf_area_lg_def = get_zonal_stats_correction_factor(raster_path=\"../../datasets/raw/h3_raster_QA_calculations/preprocessed/def_area_kernnel.tif\",\n", + " corrected_area_gdf=area_h3_gdf,\n", + " resolution=6,\n", + " buffer_gdf=gdf_buffer50km,\n", + " formula=1)\n", + "gdf_area_lg_def.to_csv(\"../../datasets/raw/h3_raster_QA_calculations/statistics/lg_def_area_ha_h3.csv\")\n", + "\n", + "gdf_area_lg_def.head()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docker-compose.yml b/docker-compose.yml index 8bc41ff20..73ffecc8c 100644 --- a/docker-compose.yml +++ b/docker-compose.yml @@ -44,8 +44,6 @@ services: container_name: landgriffon-tiler build: context: ./tiler - args: - - TILER_TEST_COG_FILENAME=${TILER_TEST_COG_FILENAME} env_file: ${ENVFILE} environment: diff --git a/infrastructure/base/aws.tf b/infrastructure/base/aws.tf index 16093c670..b46edea8f 100644 --- a/infrastructure/base/aws.tf +++ b/infrastructure/base/aws.tf @@ -17,10 +17,10 @@ module "bootstrap" { # Internal module which defines the VPC module "vpc" { - source = "./modules/aws/vpc" - region = var.aws_region - project = var.project_name - tags = local.tags + source = "./modules/aws/vpc" + region = var.aws_region + project = var.project_name + tags = local.tags private_subnet_tags = { "kubernetes.io/role/internal-elb" : 1 @@ -42,8 +42,8 @@ module "bastion" { } module "dns" { - source = "./modules/aws/dns" - domain = var.domain + source = "./modules/aws/dns" + domain = var.domain site_server_ip_list = [ module.load_balancer.load-balancer-ip ] @@ -69,7 +69,7 @@ module "default-node-group" { desired_size = var.default_node_group_desired_size node_role_arn = module.eks.node_role.arn subnet_ids = module.vpc.private_subnets.*.id - labels = { + labels = { type : "default" } } @@ -85,7 +85,7 @@ module "data-node-group" { desired_size = var.data_node_group_desired_size node_role_arn = module.eks.node_role.arn subnet_ids = [module.vpc.private_subnets[0].id] - labels = { + labels = { type : "data" } } @@ -100,6 +100,11 @@ module "api_container_registry" { name = "api" } +module "tiler_container_registry" { + source = "./modules/aws/container_registry" + name = "tiler" +} + module "client_container_registry" { source = "./modules/aws/container_registry" name = "client" @@ -123,10 +128,10 @@ resource "aws_iam_policy" "raw_s3_rw_access" { Version = "2012-10-17" Statement = [ { - "Action": [ + "Action" : [ "s3:*", ], - Effect = "Allow" + Effect = "Allow" Resource = [ module.s3_bucket.bucket_arn, "${module.s3_bucket.bucket_arn}/*", diff --git a/infrastructure/base/gcp.tf b/infrastructure/base/gcp.tf index b33277067..da2156fd2 100644 --- a/infrastructure/base/gcp.tf +++ b/infrastructure/base/gcp.tf @@ -29,12 +29,12 @@ module "marketing_gcr" { } module "load_balancer" { - source = "./modules/gcp/load-balancer" - region = var.gcp_region - project = var.gcp_project_id - name = var.project_name - frontend_cloud_run_name = module.marketing_cloudrun.name - domain = var.domain + source = "./modules/gcp/load-balancer" + region = var.gcp_region + project = var.gcp_project_id + name = var.project_name + frontend_cloud_run_name = module.marketing_cloudrun.name + domain = var.domain } module "workload_identity" { diff --git a/infrastructure/base/modules/aws/bootstrap/main.tf b/infrastructure/base/modules/aws/bootstrap/main.tf index 0c01748d3..e1ba84969 100644 --- a/infrastructure/base/modules/aws/bootstrap/main.tf +++ b/infrastructure/base/modules/aws/bootstrap/main.tf @@ -20,7 +20,7 @@ resource "aws_s3_bucket_server_side_encryption_configuration" "state_bucket_encr rule { apply_server_side_encryption_by_default { - sse_algorithm = "AES256" + sse_algorithm = "AES256" } } } diff --git a/infrastructure/base/modules/aws/s3_bucket/outputs.tf b/infrastructure/base/modules/aws/s3_bucket/outputs.tf index aa86ee1d1..19af4ad71 100644 --- a/infrastructure/base/modules/aws/s3_bucket/outputs.tf +++ b/infrastructure/base/modules/aws/s3_bucket/outputs.tf @@ -1,3 +1,8 @@ output "bucket_arn" { value = aws_s3_bucket.landgriffon-raw-data.arn } + + +output "science_bucket_name" { + value = aws_s3_bucket.landgriffon-raw-data.bucket +} diff --git a/infrastructure/base/modules/gcp/cloudrun/main.tf b/infrastructure/base/modules/gcp/cloudrun/main.tf index 6348ecb74..ca6501d41 100644 --- a/infrastructure/base/modules/gcp/cloudrun/main.tf +++ b/infrastructure/base/modules/gcp/cloudrun/main.tf @@ -48,13 +48,13 @@ resource "google_cloud_run_service" "cloud_run" { metadata { annotations = { # Limit max scale up to prevent any cost blow outs! - "autoscaling.knative.dev/maxScale" = var.max_scale + "autoscaling.knative.dev/maxScale" = var.max_scale # Limit min scale down to prevent service becoming unavailable - "autoscaling.knative.dev/minScale" = var.min_scale + "autoscaling.knative.dev/minScale" = var.min_scale # Use the VPC Connector "run.googleapis.com/vpc-access-connector" = var.vpc_connector_name # all egress from the service should go through the VPC Connector - "run.googleapis.com/vpc-access-egress" = "all-traffic" + "run.googleapis.com/vpc-access-egress" = "all-traffic" } } } diff --git a/infrastructure/base/modules/gcp/cloudrun/variables.tf b/infrastructure/base/modules/gcp/cloudrun/variables.tf index ac75da4cc..f3130fed3 100644 --- a/infrastructure/base/modules/gcp/cloudrun/variables.tf +++ b/infrastructure/base/modules/gcp/cloudrun/variables.tf @@ -29,41 +29,41 @@ variable "container_port" { variable "env_vars" { type = list(object({ - name = string + name = string value = string })) description = "Key-value pairs of env vars to make available to the container" - default = [] + default = [] } variable "secrets" { type = list(object({ - name = string + name = string secret_name = string })) description = "List of secrets to make available to the container" - default = [] + default = [] } variable "vpc_connector_name" { - type = string + type = string description = "Name of the VPC Access Connector" } variable "min_scale" { - type = number + type = number description = "Minimum number of app instances to deploy" - default = 0 + default = 0 } variable "max_scale" { - type = number + type = number description = "Maximum number of app instances to deploy" - default = 5 + default = 5 } variable "tag" { - type = string + type = string description = "Tag name to use for docker image tagging and deployment" } diff --git a/infrastructure/base/modules/gcp/gcr/main.tf b/infrastructure/base/modules/gcp/gcr/main.tf index c95bd458b..1167184d1 100644 --- a/infrastructure/base/modules/gcp/gcr/main.tf +++ b/infrastructure/base/modules/gcp/gcr/main.tf @@ -1,21 +1,21 @@ resource "google_project_service" "artifact_registry_api" { - service = "artifactregistry.googleapis.com" + service = "artifactregistry.googleapis.com" disable_on_destroy = false } resource "google_artifact_registry_repository" "repository" { - location = var.region - project = var.project_id + location = var.region + project = var.project_id repository_id = var.name - description = "Docker image repository for ${var.name}" - format = "DOCKER" + description = "Docker image repository for ${var.name}" + format = "DOCKER" } resource "google_artifact_registry_repository_iam_binding" "binding" { - project = google_artifact_registry_repository.repository.project - location = google_artifact_registry_repository.repository.location + project = google_artifact_registry_repository.repository.project + location = google_artifact_registry_repository.repository.location repository = google_artifact_registry_repository.repository.name - role = "roles/artifactregistry.writer" + role = "roles/artifactregistry.writer" members = [ "serviceAccount:${var.service_account.email}", ] diff --git a/infrastructure/base/modules/gcp/load-balancer/main.tf b/infrastructure/base/modules/gcp/load-balancer/main.tf index 3e12c29b8..f8fb10d84 100644 --- a/infrastructure/base/modules/gcp/load-balancer/main.tf +++ b/infrastructure/base/modules/gcp/load-balancer/main.tf @@ -42,9 +42,9 @@ resource "google_compute_url_map" "http-redirect" { name = "${var.name}-http-redirect" default_url_redirect { - redirect_response_code = "MOVED_PERMANENTLY_DEFAULT" // 301 redirect + redirect_response_code = "MOVED_PERMANENTLY_DEFAULT" // 301 redirect strip_query = false - https_redirect = true // this is the magic + https_redirect = true // this is the magic } } diff --git a/infrastructure/base/modules/gcp/load-balancer/variables.tf b/infrastructure/base/modules/gcp/load-balancer/variables.tf index 08c4070e6..c3eeeaeaf 100644 --- a/infrastructure/base/modules/gcp/load-balancer/variables.tf +++ b/infrastructure/base/modules/gcp/load-balancer/variables.tf @@ -9,22 +9,22 @@ variable "region" { } variable "name" { - type = string + type = string description = "Name to use on resources" } variable "domain" { - type = string + type = string description = "Base domain for the DNS zone" } variable "frontend_cloud_run_name" { - type = string + type = string description = "Name of the frontend Cloud Run service" } variable "subdomain" { - type = string - default = "" + type = string + default = "" description = "If set, it will be prepended to the domain to form a subdomain." } diff --git a/infrastructure/base/modules/gcp/network/main.tf b/infrastructure/base/modules/gcp/network/main.tf index d88fced24..dfcca07b2 100644 --- a/infrastructure/base/modules/gcp/network/main.tf +++ b/infrastructure/base/modules/gcp/network/main.tf @@ -1,17 +1,17 @@ resource "google_project_service" "vpcaccess_api" { - service = "vpcaccess.googleapis.com" + service = "vpcaccess.googleapis.com" disable_on_destroy = false } resource "google_project_service" "compute_api" { - service = "compute.googleapis.com" + service = "compute.googleapis.com" disable_on_destroy = false depends_on = [google_project_service.vpcaccess_api] } resource "google_project_service" "servicenetwork_api" { - service = "servicenetworking.googleapis.com" + service = "servicenetworking.googleapis.com" disable_on_destroy = false } @@ -23,17 +23,17 @@ resource "google_compute_network" "network" { } resource "google_compute_subnetwork" "private" { - name = "${var.name}-private-subnet" - ip_cidr_range = "10.0.0.0/20" - network = google_compute_network.network.self_link - region = var.region - private_ip_google_access = true + name = "${var.name}-private-subnet" + ip_cidr_range = "10.0.0.0/20" + network = google_compute_network.network.self_link + region = var.region + private_ip_google_access = true } resource "google_compute_router" "router" { - name = "${var.name}-cloud-router" - region = var.region - network = google_compute_network.network.id + name = "${var.name}-cloud-router" + region = var.region + network = google_compute_network.network.id } resource "google_compute_router_nat" "router_nat" { diff --git a/infrastructure/base/modules/gcp/network/variables.tf b/infrastructure/base/modules/gcp/network/variables.tf index 0ac493089..7e8c203bb 100644 --- a/infrastructure/base/modules/gcp/network/variables.tf +++ b/infrastructure/base/modules/gcp/network/variables.tf @@ -10,5 +10,5 @@ variable "project_id" { variable "name" { - type = string + type = string } diff --git a/infrastructure/base/modules/gcp/workload_identity/main.tf b/infrastructure/base/modules/gcp/workload_identity/main.tf index 1dc84d966..d5cede29c 100644 --- a/infrastructure/base/modules/gcp/workload_identity/main.tf +++ b/infrastructure/base/modules/gcp/workload_identity/main.tf @@ -14,7 +14,7 @@ resource "google_iam_workload_identity_pool_provider" "github" { project = var.project_id workload_identity_pool_id = google_iam_workload_identity_pool.github_pool.workload_identity_pool_id workload_identity_pool_provider_id = "github-provider" - attribute_mapping = { + attribute_mapping = { "google.subject" = "assertion.sub" "attribute.actor" = "assertion.actor" "attribute.aud" = "assertion.aud" diff --git a/infrastructure/base/modules/gcp/workload_identity/variables.tf b/infrastructure/base/modules/gcp/workload_identity/variables.tf index b15dacdbd..a55ec4a2f 100644 --- a/infrastructure/base/modules/gcp/workload_identity/variables.tf +++ b/infrastructure/base/modules/gcp/workload_identity/variables.tf @@ -4,7 +4,7 @@ variable "project_id" { } variable "repository_path" { - type = string + type = string description = "Github repo path" - default = "Vizzuality/landgriffon" + default = "Vizzuality/landgriffon" } diff --git a/infrastructure/base/modules/github_secrets/main.tf b/infrastructure/base/modules/github_secrets/main.tf index 9a1624aae..61f5489c6 100644 --- a/infrastructure/base/modules/github_secrets/main.tf +++ b/infrastructure/base/modules/github_secrets/main.tf @@ -1,29 +1,29 @@ resource "github_actions_secret" "gcp_project" { - repository = var.repo_name - secret_name = "GCP_PROJECT" - plaintext_value = var.gcp_project + repository = var.repo_name + secret_name = "GCP_PROJECT" + plaintext_value = var.gcp_project } resource "github_actions_secret" "gcp_region" { - repository = var.repo_name - secret_name = "GCP_REGION" - plaintext_value = var.gcp_region + repository = var.repo_name + secret_name = "GCP_REGION" + plaintext_value = var.gcp_region } resource "github_actions_secret" "sendgrid_api_key_subscription" { - repository = var.repo_name - secret_name = "MARKETING_SENDGRID_API_KEY_SUBSCRIPTION" - plaintext_value = var.sendgrid_api_key_subscription + repository = var.repo_name + secret_name = "MARKETING_SENDGRID_API_KEY_SUBSCRIPTION" + plaintext_value = var.sendgrid_api_key_subscription } resource "github_actions_secret" "sendgrid_api_key_contact" { - repository = var.repo_name - secret_name = "MARKETING_SENDGRID_API_KEY_CONTACT" - plaintext_value = var.sendgrid_api_key_contact + repository = var.repo_name + secret_name = "MARKETING_SENDGRID_API_KEY_CONTACT" + plaintext_value = var.sendgrid_api_key_contact } resource "github_actions_secret" "google_analytics" { - repository = var.repo_name - secret_name = "MARKETING_NEXT_PUBLIC_GOOGLE_ANALYTICS" - plaintext_value = var.google_analytics + repository = var.repo_name + secret_name = "MARKETING_NEXT_PUBLIC_GOOGLE_ANALYTICS" + plaintext_value = var.google_analytics } diff --git a/infrastructure/base/outputs.tf b/infrastructure/base/outputs.tf index 5dc94c6b7..fe05492cd 100644 --- a/infrastructure/base/outputs.tf +++ b/infrastructure/base/outputs.tf @@ -40,6 +40,10 @@ output "api_container_registry_url" { value = module.api_container_registry.container_registry_url } +output "tiler_container_registry_url" { + value = module.tiler_container_registry.container_registry_url +} + output "client_container_registry_url" { value = module.client_container_registry.container_registry_url } @@ -55,3 +59,8 @@ output "gcp_workload_identity_provider" { output "gcp_service_account" { value = module.workload_identity.service_account.email } + +output "science_bucket_name" { + value = module.s3_bucket.science_bucket_name +} + diff --git a/infrastructure/base/variables.tf b/infrastructure/base/variables.tf index a7b2c5afc..4d79ad2c5 100644 --- a/infrastructure/base/variables.tf +++ b/infrastructure/base/variables.tf @@ -124,7 +124,7 @@ variable "data_node_group_desired_size" { } variable "marketing_site_tag" { - type = string + type = string description = "Tag name to use when pulling the marketing site from the image repository" } diff --git a/infrastructure/base/versions.tf b/infrastructure/base/versions.tf index ebe238e6a..692afe22c 100644 --- a/infrastructure/base/versions.tf +++ b/infrastructure/base/versions.tf @@ -31,5 +31,5 @@ provider "google" { # https://github.com/integrations/terraform-provider-github/issues/667#issuecomment-1182340862 provider "github" { -# owner = "Vizzuality" + # owner = "Vizzuality" } diff --git a/infrastructure/kubernetes/main.tf b/infrastructure/kubernetes/main.tf index ce0e3fc1b..b01f231b3 100644 --- a/infrastructure/kubernetes/main.tf +++ b/infrastructure/kubernetes/main.tf @@ -64,7 +64,10 @@ module "environment" { domain = var.domain api_container_registry_url = data.terraform_remote_state.core.outputs.api_container_registry_url client_container_registry_url = data.terraform_remote_state.core.outputs.client_container_registry_url + tiler_container_registry_url = data.terraform_remote_state.core.outputs.tiler_container_registry_url data_import_container_registry_url = data.terraform_remote_state.core.outputs.data_import_container_registry_url api_env_vars = lookup(each.value, "api_env_vars", []) api_secrets = lookup(each.value, "api_secrets", []) + science_bucket_name = data.terraform_remote_state.core.outputs.science_bucket_name + } diff --git a/infrastructure/kubernetes/modules/api/outputs.tf b/infrastructure/kubernetes/modules/api/outputs.tf new file mode 100644 index 000000000..1bf74bfd2 --- /dev/null +++ b/infrastructure/kubernetes/modules/api/outputs.tf @@ -0,0 +1,4 @@ +output "api_service_name" { + value = kubernetes_service.api_service.metadata[0].name + description = "Name for API Service" +} diff --git a/infrastructure/kubernetes/modules/api/variable.tf b/infrastructure/kubernetes/modules/api/variable.tf index 000bfffe0..5f347b09f 100644 --- a/infrastructure/kubernetes/modules/api/variable.tf +++ b/infrastructure/kubernetes/modules/api/variable.tf @@ -20,19 +20,19 @@ variable "namespace" { variable "env_vars" { type = list(object({ - name = string + name = string value = string })) description = "Key-value pairs of env vars to make available to the container" - default = [] + default = [] } variable "secrets" { type = list(object({ - name = string + name = string secret_name = string - secret_key = string + secret_key = string })) description = "List of secrets to make available to the container" - default = [] + default = [] } diff --git a/infrastructure/kubernetes/modules/database/main.tf b/infrastructure/kubernetes/modules/database/main.tf index 299e872f2..547ffdcf0 100644 --- a/infrastructure/kubernetes/modules/database/main.tf +++ b/infrastructure/kubernetes/modules/database/main.tf @@ -72,8 +72,8 @@ resource "helm_release" "postgres" { } set { - name = "primary.affinity" - type = "auto" + name = "primary.affinity" + type = "auto" value = yamlencode({ nodeAffinity = { requiredDuringSchedulingIgnoredDuringExecution = { @@ -94,7 +94,7 @@ resource "helm_release" "postgres" { data "kubernetes_service" "postgresql" { metadata { - name = "postgres-postgresql" + name = "postgres-postgresql" namespace = var.namespace } } diff --git a/infrastructure/kubernetes/modules/env/main.tf b/infrastructure/kubernetes/modules/env/main.tf index 3d079e04b..308fe96ab 100644 --- a/infrastructure/kubernetes/modules/env/main.tf +++ b/infrastructure/kubernetes/modules/env/main.tf @@ -39,35 +39,35 @@ module "k8s_api" { name = "DB_HOST" secret_name = "db" secret_key = "DB_HOST" - }, { + }, { name = "DB_USERNAME" secret_name = "db" secret_key = "DB_USERNAME" - }, { + }, { name = "DB_PASSWORD" secret_name = "db" secret_key = "DB_PASSWORD" - }, { + }, { name = "DB_DATABASE" secret_name = "db" secret_key = "DB_DATABASE" - }, { + }, { name = "QUEUE_HOST" secret_name = "db" secret_key = "REDIS_HOST" - }, { + }, { name = "GEOCODING_CACHE_HOST" secret_name = "db" secret_key = "REDIS_HOST" - }, { + }, { name = "DB_CACHE_HOST" secret_name = "db" secret_key = "REDIS_HOST" - }, { + }, { name = "JWT_SECRET" secret_name = "api" secret_key = "JWT_SECRET" - }, { + }, { name = "GMAPS_API_KEY" secret_name = "api" secret_key = "GMAPS_API_KEY" @@ -96,7 +96,7 @@ module "k8s_api" { value = "true" }, { - name = "USE_NEW_METHODOLOGY" + name = "USE_NEW_METHODOLOGY" value = "true" } ]) @@ -107,6 +107,53 @@ module "k8s_api" { ] } + +module "k8s_tiler" { + source = "../tiler" + cluster_name = var.cluster_name + deployment_name = "tiler" + image = "${var.tiler_container_registry_url}:${var.image_tag}" + namespace = var.environment + + + env_vars = [ + { + name = "API_URL" + value = "${module.k8s_api.api_service_name}.${var.environment}.svc.cluster.local" + }, + { + name = "API_PORT" + // TODO: get port from api k8s service + value = 3000 + }, + { + name = "S3_BUCKET_NAME" + value = var.science_bucket_name + }, + { + name = "ROOT_PATH" + value = "" + }, + { + name = "TITILER_PREFIX" + value = "/tiler/cog" + }, + { + name = "TITILER_ROUTER_PREFIX" + value = "/tiler/cog" + }, + + { + name = "DEFAULT_COG" + value = "biomass.tif" + } + + ] + +} + + + module "k8s_client" { source = "../client" cluster_name = var.cluster_name @@ -176,7 +223,7 @@ module "data-import-group" { desired_size = 1 namespace = var.environment subnet_ids = [var.private_subnet_ids[0]] - labels = { + labels = { type : "data-import-${var.environment}" } } diff --git a/infrastructure/kubernetes/modules/env/variables.tf b/infrastructure/kubernetes/modules/env/variables.tf index 2daa46615..63fdd2141 100644 --- a/infrastructure/kubernetes/modules/env/variables.tf +++ b/infrastructure/kubernetes/modules/env/variables.tf @@ -31,7 +31,7 @@ variable "domain" { } variable "private_subnet_ids" { - type = list(string) + type = list(string) description = "IDs of the subnets used in the EKS cluster" } @@ -73,11 +73,21 @@ variable "api_container_registry_url" { description = "URL for the API container registry" } +variable "tiler_container_registry_url" { + type = string + description = "URL for the Tiler container registry" +} + variable "client_container_registry_url" { type = string description = "URL for the client container registry" } +variable "science_bucket_name" { + type = string + description = "Name of the LG Science S3 Bucket" +} + variable "data_import_container_registry_url" { type = string description = "URL for the data import container registry" @@ -85,20 +95,20 @@ variable "data_import_container_registry_url" { variable "api_env_vars" { type = list(object({ - name = string + name = string value = string })) description = "Key-value pairs of env vars to make available to the api container" - default = [] + default = [] } variable "api_secrets" { type = list(object({ - name = string + name = string secret_name = string - secret_key = string + secret_key = string })) description = "List of secrets to make available to the api container" - default = [] + default = [] } diff --git a/infrastructure/kubernetes/modules/fargate/main.tf b/infrastructure/kubernetes/modules/fargate/main.tf index ef735f98b..02a66dc30 100644 --- a/infrastructure/kubernetes/modules/fargate/main.tf +++ b/infrastructure/kubernetes/modules/fargate/main.tf @@ -24,14 +24,14 @@ resource "aws_iam_policy" "data-import-policy" { Version = "2012-10-17" Statement = [ { - Action: [ + Action : [ "logs:CreateLogGroup", "logs:CreateLogStream", "logs:PutLogEvents" ], - Effect: "Allow", - Resource: "*" - }] + Effect : "Allow", + Resource : "*" + }] }) } @@ -44,7 +44,7 @@ resource "aws_iam_role" "data-import-role" { Principal = { Service = "ecs-tasks.amazonaws.com" } - }] + }] Version = "2012-10-17" }) } @@ -67,19 +67,19 @@ resource "aws_ecs_task_definition" "data-import" { requires_compatibilities = ["FARGATE"] cpu = 4096 memory = 65536 - execution_role_arn = aws_iam_role.data-import-role.arn + execution_role_arn = aws_iam_role.data-import-role.arn ephemeral_storage { size_in_gib = 200 } - container_definitions = jsonencode([ + container_definitions = jsonencode([ { - name = "data-import" - image = "vizzuality/landgriffon-data-import:${var.namespace}" - cpu = 2048 - memory = 8192 - essential = true - command = ["seed-data"] + name = "data-import" + image = "vizzuality/landgriffon-data-import:${var.namespace}" + cpu = 2048 + memory = 8192 + essential = true + command = ["seed-data"] environment = [ { name = "API_POSTGRES_HOST", value = data.aws_instances.k8s_node.private_ips[0] }, { name = "API_POSTGRES_PORT", value = var.postgresql_port }, @@ -87,7 +87,7 @@ resource "aws_ecs_task_definition" "data-import" { { name = "API_POSTGRES_PASSWORD", value = local.postgres_password }, { name = "API_POSTGRES_DATABASE", value = local.postgres_database }, ], - logConfiguration = { + logConfiguration = { logDriver = "awslogs", options = { awslogs-region = "eu-west-3", diff --git a/infrastructure/kubernetes/modules/github_secrets/main.tf b/infrastructure/kubernetes/modules/github_secrets/main.tf index 918c39eec..5a826d06c 100644 --- a/infrastructure/kubernetes/modules/github_secrets/main.tf +++ b/infrastructure/kubernetes/modules/github_secrets/main.tf @@ -1,22 +1,22 @@ resource "github_actions_secret" "next_public_api_url" { - repository = var.repo_name - secret_name = "NEXT_PUBLIC_API_URL_${upper(var.branch)}" - plaintext_value = "https://api.${var.branch != "main" ? ("${var.branch}.") : ""}${var.domain}" + repository = var.repo_name + secret_name = "NEXT_PUBLIC_API_URL_${upper(var.branch)}" + plaintext_value = "https://api.${var.branch != "main" ? ("${var.branch}.") : ""}${var.domain}" } resource "github_actions_secret" "nextauth_url" { - repository = var.repo_name - secret_name = "NEXTAUTH_URL_${upper(var.branch)}" - plaintext_value = "https://client.${var.branch != "main" ? ("${var.branch}.") : ""}${var.domain}" + repository = var.repo_name + secret_name = "NEXTAUTH_URL_${upper(var.branch)}" + plaintext_value = "https://client.${var.branch != "main" ? ("${var.branch}.") : ""}${var.domain}" } resource "random_password" "password" { - length = 32 - special = true + length = 32 + special = true } resource "github_actions_secret" "nextauth_secret" { - repository = var.repo_name - secret_name = "NEXTAUTH_SECRET_${upper(var.branch)}" - plaintext_value = base64encode(random_password.password.result) + repository = var.repo_name + secret_name = "NEXTAUTH_SECRET_${upper(var.branch)}" + plaintext_value = base64encode(random_password.password.result) } diff --git a/infrastructure/kubernetes/modules/ingress/main.tf b/infrastructure/kubernetes/modules/ingress/main.tf index 9db54b6d3..7ecac2d84 100644 --- a/infrastructure/kubernetes/modules/ingress/main.tf +++ b/infrastructure/kubernetes/modules/ingress/main.tf @@ -3,8 +3,8 @@ data "aws_eks_cluster_auth" "cluster" { } locals { - api_domain = "api.${var.namespace != "production" ? ("${var.namespace}.") : ""}${var.domain}" - client_domain = "client.${var.namespace != "production" ? ("${var.namespace}.") : ""}${var.domain}" + api_domain = "api.${var.namespace != "production" ? ("${var.namespace}.") : ""}${var.domain}" + client_domain = "client.${var.namespace != "production" ? ("${var.namespace}.") : ""}${var.domain}" } data "aws_route53_zone" "landgriffon-com" { @@ -19,11 +19,11 @@ resource "aws_acm_certificate" "landgriffon_cert" { resource "aws_route53_record" "landgriffon-com-record" { for_each = { - for dvo in aws_acm_certificate.landgriffon_cert.domain_validation_options : dvo.domain_name => { - name = dvo.resource_record_name - record = dvo.resource_record_value - type = dvo.resource_record_type - } + for dvo in aws_acm_certificate.landgriffon_cert.domain_validation_options : dvo.domain_name => { + name = dvo.resource_record_name + record = dvo.resource_record_value + type = dvo.resource_record_type + } } allow_overwrite = true @@ -59,8 +59,8 @@ resource "kubernetes_ingress_v1" "landgriffon" { wait_for_load_balancer = true metadata { - name = "landgriffon" - namespace = var.namespace + name = "landgriffon" + namespace = var.namespace annotations = { "kubernetes.io/ingress.class" = "alb" "alb.ingress.kubernetes.io/scheme" = "internet-facing" @@ -75,7 +75,7 @@ resource "kubernetes_ingress_v1" "landgriffon" { tls { hosts = [ local.api_domain, - local.client_domain + local.client_domain, ] secret_name = "landgriffon-certificate" } @@ -104,6 +104,24 @@ resource "kubernetes_ingress_v1" "landgriffon" { } } + rule { + host = local.api_domain + http { + path { + path_type = "Prefix" + path = "/tiler" + backend { + service { + name = "tiler" + port { + number = 4000 + } + } + } + } + } + } + rule { host = local.api_domain http { diff --git a/infrastructure/kubernetes/modules/k8s_infrastructure/lb_controller/main.tf b/infrastructure/kubernetes/modules/k8s_infrastructure/lb_controller/main.tf index 48645a76f..d3aa17589 100644 --- a/infrastructure/kubernetes/modules/k8s_infrastructure/lb_controller/main.tf +++ b/infrastructure/kubernetes/modules/k8s_infrastructure/lb_controller/main.tf @@ -33,7 +33,7 @@ data "aws_iam_policy_document" "eks_oidc_assume_role" { condition { test = "StringEquals" variable = "${replace(data.aws_eks_cluster.selected.identity[0].oidc[0].issuer, "https://", "")}:sub" - values = [ + values = [ "system:serviceaccount:${var.k8s_namespace}:aws-load-balancer-controller" ] } @@ -77,8 +77,8 @@ resource "aws_iam_role_policy_attachment" "lb-controller-iam-role-policy-attachm resource "kubernetes_service_account" "this" { automount_service_account_token = true metadata { - name = "aws-load-balancer-controller" - namespace = var.k8s_namespace + name = "aws-load-balancer-controller" + namespace = var.k8s_namespace annotations = { # This annotation is only used when running on EKS which can # use IAM roles for service accounts. diff --git a/infrastructure/kubernetes/modules/redis/main.tf b/infrastructure/kubernetes/modules/redis/main.tf index 0eeb4a189..a24c7c709 100644 --- a/infrastructure/kubernetes/modules/redis/main.tf +++ b/infrastructure/kubernetes/modules/redis/main.tf @@ -44,8 +44,8 @@ resource "helm_release" "redis" { resource "kubernetes_secret" "redis-secret" { metadata { - name = "redis-secret" - namespace = var.namespace + name = "redis-secret" + namespace = var.namespace } data = { diff --git a/infrastructure/kubernetes/modules/secrets/main.tf b/infrastructure/kubernetes/modules/secrets/main.tf index 013d8dc61..1ce1c521b 100644 --- a/infrastructure/kubernetes/modules/secrets/main.tf +++ b/infrastructure/kubernetes/modules/secrets/main.tf @@ -19,20 +19,20 @@ locals { resource "random_password" "jwt_secret_generator" { length = 64 special = true -# lifecycle { -# ignore_changes = [ -# length, -# lower, -# min_lower, -# min_numeric, -# min_special, -# min_upper, -# number, -# special, -# upper, -# -# ] -# } + # lifecycle { + # ignore_changes = [ + # length, + # lower, + # min_lower, + # min_numeric, + # min_special, + # min_upper, + # number, + # special, + # upper, + # + # ] + # } } resource "aws_secretsmanager_secret" "api_secret" { @@ -96,11 +96,11 @@ resource "kubernetes_secret" "db_secret" { } data = { - DB_HOST = "postgres-postgresql.${var.namespace}.svc.cluster.local" - DB_USERNAME = sensitive(local.postgres_secret_json.username) - DB_PASSWORD = sensitive(local.postgres_secret_json.password) - DB_DATABASE = sensitive(local.postgres_secret_json.database) - REDIS_HOST = "redis-master.${var.namespace}.svc.cluster.local" + DB_HOST = "postgres-postgresql.${var.namespace}.svc.cluster.local" + DB_USERNAME = sensitive(local.postgres_secret_json.username) + DB_PASSWORD = sensitive(local.postgres_secret_json.password) + DB_DATABASE = sensitive(local.postgres_secret_json.database) + REDIS_HOST = "redis-master.${var.namespace}.svc.cluster.local" } } diff --git a/infrastructure/kubernetes/modules/tiler/main.tf b/infrastructure/kubernetes/modules/tiler/main.tf new file mode 100644 index 000000000..581477144 --- /dev/null +++ b/infrastructure/kubernetes/modules/tiler/main.tf @@ -0,0 +1,139 @@ +data "aws_eks_cluster_auth" "cluster" { + name = var.cluster_name +} + +resource "kubernetes_service" "tiler_service" { + metadata { + name = kubernetes_deployment.tiler_deployment.metadata[0].name + namespace = var.namespace + } + spec { + selector = { + name = kubernetes_deployment.tiler_deployment.metadata[0].name + } + port { + port = 4000 + } + + type = "NodePort" + } +} + +resource "kubernetes_deployment" "tiler_deployment" { + metadata { + name = var.deployment_name + namespace = var.namespace + } + + spec { + replicas = 1 + + selector { + match_labels = { + name = var.deployment_name + } + } + + template { + metadata { + labels = { + name = var.deployment_name + } + } + + spec { + affinity { + node_affinity { + required_during_scheduling_ignored_during_execution { + node_selector_term { + match_expressions { + key = "type" + operator = "In" + values = ["default"] + } + } + } + } + } + + image_pull_secrets { + name = "regcred" + } + + container { + image = var.image + image_pull_policy = "Always" + name = var.deployment_name + + // TODO: configure tiler's uvicorn to use host and port via env vars + // configure a entrypoint as it is done with other services + + //args = ["uvicorn -h localhost -p 4000"] + + command = ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "4000"] + + dynamic "env" { + for_each = concat(var.env_vars, var.tiler_secrets) + content { + name = env.value["name"] + dynamic "value_from" { + for_each = lookup(env.value, "secret_name", null) != null ? [1] : [] + content { + secret_key_ref { + + name = env.value["secret_name"] + key = env.value["secret_key"] + } + } + + } + value = lookup(env.value, "value", null) != null ? env.value["value"] : null + } + } + + resources { + limits = { + cpu = "1" + memory = "2Gi" + } + requests = { + cpu = "1" + memory = "2Gi" + } + } + + // TODO: This needs to be restored when the auth middleware applies only for the geotiff wrapper + // currently applies as global middleware + +# liveness_probe { +# http_get { +# path = "/health" +# port = 4000 +# scheme = "HTTP" +# } +# +# success_threshold = 1 +# timeout_seconds = 25 +# initial_delay_seconds = 15 +# period_seconds = 25 +# } + +# readiness_probe { +# http_get { +# path = "/health" +# port = 4000 +# scheme = "HTTP" +# } +# +# success_threshold = 1 +# timeout_seconds = 25 +# initial_delay_seconds = 30 +# period_seconds = 25 +# } + } + } + } + } +} + + diff --git a/infrastructure/kubernetes/modules/tiler/variable.tf b/infrastructure/kubernetes/modules/tiler/variable.tf new file mode 100644 index 000000000..c70315eed --- /dev/null +++ b/infrastructure/kubernetes/modules/tiler/variable.tf @@ -0,0 +1,47 @@ +variable "cluster_name" { + type = string + description = "The k8s cluster name" +} + +variable "image" { + type = string + description = "The dockerhub image reference to deploy" +} + +variable "deployment_name" { + type = string + description = "The k8s deployment name" +} + +variable "namespace" { + type = string + description = "The k8s namespace to use" +} + +variable "env_vars" { + type = list(object({ + name = string + value = string + })) + description = "Key-value pairs of env vars to make available to the container" + default = [] +} + +variable "tiler_secrets" { + type = list(object({ + name = string + secret_name = string + secret_key = string + })) + description = "List of secrets to make available to the container" + default = [] +} + +variable "tiler_env_vars" { + type = list(object({ + name = string + value = string + })) + description = "Key-value pairs of env vars to make available to the container" + default = [] +} diff --git a/infrastructure/kubernetes/modules/tiler/versions.tf b/infrastructure/kubernetes/modules/tiler/versions.tf new file mode 100644 index 000000000..94cc74fac --- /dev/null +++ b/infrastructure/kubernetes/modules/tiler/versions.tf @@ -0,0 +1,9 @@ +terraform { + required_providers { + kubernetes = { + source = "hashicorp/kubernetes" + version = "~> 2.14.0" + } + } + required_version = "~> 1.3.2" +} diff --git a/infrastructure/kubernetes/vars/terraform.tfvars b/infrastructure/kubernetes/vars/terraform.tfvars index 8b1dd83c0..b240de717 100644 --- a/infrastructure/kubernetes/vars/terraform.tfvars +++ b/infrastructure/kubernetes/vars/terraform.tfvars @@ -7,7 +7,7 @@ repo_name = "landgriffon" environments = { dev : {}, test : {}, - vcf : {}, - tetrapack : {}, + tetrapack : { + }, demo : {} } diff --git a/infrastructure/kubernetes/versions.tf b/infrastructure/kubernetes/versions.tf index 4f587b33d..57941db43 100644 --- a/infrastructure/kubernetes/versions.tf +++ b/infrastructure/kubernetes/versions.tf @@ -52,7 +52,7 @@ provider "helm" { cluster_ca_certificate = base64decode(data.aws_eks_cluster.cluster.certificate_authority.0.data) exec { api_version = "client.authentication.k8s.io/v1beta1" - args = [ + args = [ "eks", "get-token", "--cluster-name", @@ -65,5 +65,5 @@ provider "helm" { # https://github.com/integrations/terraform-provider-github/issues/667#issuecomment-1182340862 provider "github" { -# owner = "vizzuality" + # owner = "vizzuality" } diff --git a/tiler/.env.default b/tiler/.env.default index 4fa88bad8..d53c3d89b 100644 --- a/tiler/.env.default +++ b/tiler/.env.default @@ -1,4 +1,8 @@ # TILER REQUIRE_AUTH= API_HOST= -S3_BUCKET_URL= +S3_BUCKET_NAME= +ROOT_PATH= +TITILER_PREFIX= +TITILER_ROUTER_PREFIX= + diff --git a/tiler/Dockerfile b/tiler/Dockerfile index 6f110ea86..05493393e 100644 --- a/tiler/Dockerfile +++ b/tiler/Dockerfile @@ -7,9 +7,6 @@ ENV APP_HOME /opt/$NAME ARG TILE_LANDGRIFFON_COG_FILENAME # @todo: The data should be retrieved from a S3 bucket in LG World -#ARG DATA_CORE_COG_SOURCE_URL - -#ARG DATA_CORE_COG_CHECKSUM RUN addgroup $USER && adduser --shell /bin/bash --disabled-password --ingroup $USER $USER @@ -23,8 +20,6 @@ RUN pip install --no-cache-dir --upgrade -r ./requirements.txt COPY --chown=$USER:$USER app ./app -#ADD --chown=$USER:$USER --checksum=${DATA_CORE_COG_CHECKSUM} ${DATA_CORE_COG_SOURCE_URL} ./data/${TILE_LANDGRIFFON_COG_FILENAME} -#RUN find ./data -type f -exec chmod ugo-w '{}' \; EXPOSE 4000 USER $USER diff --git a/tiler/app/config/config.py b/tiler/app/config/config.py index 85b336e1d..e8b05ac06 100644 --- a/tiler/app/config/config.py +++ b/tiler/app/config/config.py @@ -6,9 +6,12 @@ class Settings(BaseSettings): api_url: str = getenv('API_HOST') api_port: str = getenv('API_PORT') - s3_bucket_url: str = getenv('S3_BUCKET_URL') + s3_bucket_name: str = getenv('S3_BUCKET_NAME') require_auth: str = getenv('REQUIRE_AUTH') - + root_path: str = getenv("ROOT_PATH") + titiler_prefix: str = getenv("TITILER_PREFIX") + titiler_router_prefix: str = getenv("TITILER_ROUTER_PREFIX") + default_cog: str = getenv("DEFAULT_COG") @lru_cache() def get_settings(): diff --git a/tiler/app/main.py b/tiler/app/main.py index 90ab98248..9d7fad635 100644 --- a/tiler/app/main.py +++ b/tiler/app/main.py @@ -3,10 +3,16 @@ from titiler.core import TilerFactory from titiler.core.errors import DEFAULT_STATUS_CODES, add_exception_handlers from titiler.core.middleware import TotalTimeMiddleware, LoggerMiddleware + +from .config.config import get_settings from .middlewares.auth_middleware import AuthMiddleware -from .middlewares.url_injector import inject_s3_url +from .middlewares.url_injector import s3_presigned_access + +root_path = get_settings().root_path +titiler_router_prefix = get_settings().titiler_router_prefix +titiler_prefix = get_settings().titiler_prefix -app = FastAPI(title="LandGriffon Tiler! Because why keep life simple?") +app = FastAPI(title="LandGriffon Tiler", docs_url='/tiler/docs', openapi_url='/tiler') app.add_middleware(TotalTimeMiddleware) app.add_middleware(LoggerMiddleware) app.add_middleware(AuthMiddleware) @@ -15,8 +21,8 @@ allow_headers=["*"], ) # single COG tiler. One file can have multiple bands -cog = TilerFactory(router_prefix="/cog", path_dependency=inject_s3_url) -app.include_router(cog.router, tags=["Cloud Optimized GeoTIFF"], prefix="/cog", ) +cog = TilerFactory(router_prefix=titiler_router_prefix, path_dependency=s3_presigned_access) +app.include_router(cog.router, tags=["Cloud Optimized GeoTIFF"], prefix=titiler_prefix) add_exception_handlers(app, DEFAULT_STATUS_CODES) diff --git a/tiler/app/middlewares/auth_middleware.py b/tiler/app/middlewares/auth_middleware.py index 2898b662a..0b9755f8f 100644 --- a/tiler/app/middlewares/auth_middleware.py +++ b/tiler/app/middlewares/auth_middleware.py @@ -6,12 +6,15 @@ api_url = get_settings().api_url api_port = get_settings().api_port +require_auth = get_settings().require_auth class AuthMiddleware(BaseHTTPMiddleware): async def dispatch(self, request: Request, call_next): - env = os.environ.get('PYTHON_ENV') - if env == 'dev': + print('accessing path', request.url.path) + if request.url.path in ("/health", "/tiler/docs", "/tiler"): + return await call_next(request) + if require_auth == "false": return await call_next(request) else: try: diff --git a/tiler/app/middlewares/url_injector.py b/tiler/app/middlewares/url_injector.py index f4fdbf174..7cc2b196b 100644 --- a/tiler/app/middlewares/url_injector.py +++ b/tiler/app/middlewares/url_injector.py @@ -1,8 +1,47 @@ +from botocore.config import Config from fastapi.params import Query - +import boto3 from ..config.config import get_settings +s3 = boto3.client("s3", region_name="eu-west-3", config=Config(signature_version='s3v4')) +bucket_name = get_settings().s3_bucket_name +default_cog = get_settings().default_cog +DATA_PATH_IN_S3 = 'processed/satelligence/' + + +# # TODO: This only allows to access data hosted on owr s3 bucket. At some point we will need to discriminate +# external resources i.e datasets that are publicly available + +def s3_presigned_access(url: str | None = Query(default=None, description="Optional dataset URL")) -> str: + """ + Generate a pre-signed URL for an Amazon S3 object. + + Args: + url (str | None, optional): The URL of the S3 object to generate a pre-signed URL for. If not provided, a default URL is used. Defaults to None. + + Returns: + str: A pre-signed URL that can be used to access the S3 object. + + Raises: + botocore.exceptions.NoCredentialsError: If AWS credentials are not found. + + Note: + This function requires the `boto3` library to be installed, and valid AWS credentials to be configured. + + """ + if not url: + if not default_cog: + raise Exception("DEFAULT_COG env var is not set. It is required if no URL is paased to the tiler") + url = default_cog + presigned_url = s3.generate_presigned_url( + 'get_object', + Params={ + 'Bucket': bucket_name, + 'Key': DATA_PATH_IN_S3 + url + }, + ExpiresIn=3600 + ) + return presigned_url + + -def inject_s3_url(url: str | None = Query(default=None, description="Optional dataset URL")) -> str: - s3_url = get_settings().s3_bucket_url - return s3_url + url diff --git a/tiler/app/test/test_auth_middleware.py b/tiler/app/test/test_auth_middleware.py new file mode 100644 index 000000000..575df045b --- /dev/null +++ b/tiler/app/test/test_auth_middleware.py @@ -0,0 +1,18 @@ +import pytest +from unittest.mock import patch, Mock +from starlette.testclient import TestClient + +from ..main import app + +test_client = TestClient(app) + +@pytest.mark.auth_middleware_test('Tests for Tiler Authentication Middleware') +@patch('app.middlewares.auth_middleware.requests.get') +def test_auth(mock_get): + mock_get.return_value = {"status_code": 100} + response = test_client.get("/cog/info", headers={"Authorization": "Bearer my_token"}) + print(response) + + + + diff --git a/tiler/app/test/test_health.py b/tiler/app/test/test_health.py index 6ea7f23d6..175a14b6d 100644 --- a/tiler/app/test/test_health.py +++ b/tiler/app/test/test_health.py @@ -4,7 +4,7 @@ client = TestClient(app) -def test_auth_middleware(): +def test_health(): """Should throw a Unauthorized Exception if no token has been provided""" response = client.get("/cog/info") assert response.status_code == 400 diff --git a/tiler/requirements.txt b/tiler/requirements.txt index 15d218774..a3d479d48 100644 --- a/tiler/requirements.txt +++ b/tiler/requirements.txt @@ -1,4 +1,5 @@ titiler.application==0.11.0 -uvicorn +boto3==1.26.68 +uvicorn==0.20.0 requests~=2.28.2 pytest~=7.2.1