-
Notifications
You must be signed in to change notification settings - Fork 0
/
0062. Unique Paths
55 lines (44 loc) · 1.38 KB
/
0062. Unique Paths
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
// 简单动归题
1062. Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid
(marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > ans(m, vector<int>(n, 1)); //int[][] f = new int[m][n]需要初始化
for(int i = 1; i < m; i++){
for(int j=1; j < n; j++){
ans[i][j] = ans[i-1][j] + ans[i][j-1];// 其实不需要二维数组
}
}
return ans[m-1][n-1];
}
};
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> ans(n, 1);
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
ans[j] += ans[j-1];
}
}
return ans[n-1];
}
};