layout | title | date | categories | tags | series | series_index | comments | copyrights | mathjax |
---|---|---|---|---|---|---|---|---|---|
post |
排序算法 |
2019-08-02 00:00:00 +0800 |
算法 |
qsort sort |
算法笔记 |
1 |
true |
原创 |
true |
冒泡排序从前往后遍历数组,每次比较相邻的两个元素,如果前一个元素大于后一个元素,则交换两者的位置。
每遍历一轮,最大的元素就会被“冒泡”到最后。
public class Sort {
public static <T extends Comparable<T>> void bubbleSort(T[] arr) {
int n = arr.length;
for (int i = 0; i < n - 1; i++) {
// 遍历的第 i 轮,需要确定第 n - 1 - i 个元素
for (int j = 0; j < n - 1 - i; j++) {
// 最后 i 个元素已经排好序
if (arr[j].compareTo(arr[j + 1]) > 0) {
swap(arr, j, j + 1);
}
}
}
}
public static <T> void swap(T[] arr, int i, int j) {
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
template<std::totally_ordered T>
void bubbleSort(std::vector<T>& arr) {
for (size_t i = 0; i < arr.size() - 1; i++) {
for (size_t j = 0; j < arr.size() - 1 - i; j++) {
if (arr[j] > arr[j + 1]) {
std::swap(arr[j], arr[j + 1]);
}
}
}
}
选择排序从前往后遍历数组,每次找到最小的元素,将其放到当前遍历的位置。
public class Sort {
public static <T extends Comparable<T>> void selectSort(T[] arr) {
int n = arr.length;
for (int i = 0; i < n - 1; i++) {
// 遍历的第 i 轮,需要确定第 i 个元素
int minIndex = i;
for (int j = i + 1; j < n; j++) {
// 在 i 之后寻找最小的元素
if (arr[j].compareTo(arr[minIndex]) < 0) {
minIndex = j;
}
}
swap(arr, i, minIndex);
}
}
public static <T> void swap(T[] arr, int i, int j) {
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
template<std::totally_ordered T>
void selectSort(std::vector<T>& arr) {
for (size_t i = 0; i < arr.size() - 1; i++) {
size_t minIndex = i;
for (size_t j = i + 1; j < arr.size(); j++) {
if (arr[j] < arr[minIndex]) {
minIndex = j;
}
}
std::swap(arr[i], arr[minIndex]);
}
}
插入排序时,对于一个待排序的序列,从第一个元素开始,依次将每个元素插入到前面已经排好序的序列中,直到所有元素都排好序。
插入时,采用从后向前的方式,依次比较当前元素和前一个元素的大小关系,如果当前元素小于前一个元素,则交换两者的位置。
public class Sort {
public static <T extends Comparable<T>> void insertSort(T[] arr) {
for (int i = 1; i < arr.length; i++) {
// 让 0 - i 的元素有序
for (int j = i; j > 0 && arr[j].compareTo(arr[j - 1]) < 0; j--) {
// 向前寻找第一个比当前元素小的元素
swap(arr, j, j - 1);
}
}
}
public static <T> void swap(T[] arr, int i, int j) {
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
template<std::totally_ordered T>
void insertSort(std::vector<T>& arr) {
for (size_t i = 1; i < arr.size(); i++) {
for (size_t j = i; j > 0 && arr[j] < arr[j - 1]; j--) {
std::swap(arr[j], arr[j - 1]);
}
}
}
希尔排序是插入排序的改进版,采用分组的方式,将待排序的序列分成若干个子序列,对每个子序列进行插入排序,最后再对整个序列进行一次插入排序。
public class Sort {
public static <T extends Comparable<T>> void shellSort(T[] arr) {
int gap = arr.length / 2;
while (gap > 0) {
for (int i = gap; i < arr.length; i++) {
for (int j = i; j >= gap && arr[j].compareTo(arr[j - gap]) < 0; j -= gap) {
swap(arr, j, j - gap);
}
}
gap /= 2;
}
}
public static <T> void swap(T[] arr, int i, int j) {
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
template<std::totally_ordered T>
void shellSort(std::vector<T>& arr) {
for (size_t gap = arr.size() / 2; gap > 0; gap /= 2) {
for (size_t i = gap; i < arr.size(); i++) {
for (size_t j = i; j >= gap && arr[j] < arr[j - gap]; j -= gap) {
std::swap(arr[j], arr[j - gap]);
}
}
}
}
堆排序是选择排序的改进版,采用堆的方式,将待排序的序列构建成一个大顶堆或小顶堆,然后依次将堆顶元素取出,放到已排序序列的末尾。
public class Sort {
public static <T extends Comparable<T>> void heapSort(T[] arr) {
int n = arr.length;
// 构建大顶堆
for (int i = n / 2 - 1; i >= 0; i--) {
heapify(arr, n, i);
}
// 依次取出堆顶元素
for (int i = n - 1; i > 0; i--) {
swap(arr, 0, i);
heapify(arr, i, 0);
}
}
public static <T> void heapify(T[] arr, int n, int i) {
int largest = i;
int left = 2 * i + 1;
int right = 2 * i + 2;
if (left < n && arr[left].compareTo(arr[largest]) > 0) {
largest = left;
}
if (right < n && arr[right].compareTo(arr[largest]) > 0) {
largest = right;
}
if (largest != i) {
swap(arr, i, largest);
heapify(arr, n, largest);
}
}
public static <T> void swap(T[] arr, int i, int j) {
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
template<std::totally_ordered T>
void heapify(std::vector<T>& arr, size_t n, size_t i) {
size_t largest = i;
size_t left = 2 * i + 1;
size_t right = 2 * i + 2;
if (left < n && arr[left] > arr[largest]) {
largest = left;
}
if (right < n && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
std::swap(arr[i], arr[largest]);
heapify(arr, n, largest);
}
}
template<std::totally_ordered T>
void heapSort(std::vector<T>& arr) {
for (size_t i = arr.size() / 2 - 1; i < arr.size(); i--) {
heapify(arr, arr.size(), i);
}
for (size_t i = arr.size() - 1; i > 0; i--) {
std::swap(arr[0], arr[i]);
heapify(arr, i, 0);
}
}
快速排序是分治法的经典应用,采用递归的方式,将待排序的序列分成两个子序列,对每个子序列进行快速排序,最后将两个子序列合并。
public class Sort {
public static <T extends Comparable<T>> void quickSort(T[] arr) {
quickSort(arr, 0, arr.length - 1);
}
public static <T> void quickSort(T[] arr, int low, int high) {
if (low < high) {
int pivotIndex = partition(arr, low, high);
quickSort(arr, low, pivotIndex - 1);
quickSort(arr, pivotIndex + 1, high);
}
}
public static <T> int partition(T[] arr, int low, int high) {
T pivot = arr[high];
int i = low - 1;
for (int j = low; j < high; j++) {
if (arr[j].compareTo(pivot) <= 0) {
i++;
swap(arr, i, j);
}
}
swap(arr, i + 1, high);
return i + 1;
}
public static <T> void swap(T[] arr, int i, int j) {
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
template<std::totally_ordered T>
size_t partition(std::vector<T>& arr, size_t low, size_t high) {
T pivot = arr[high];
size_t i = low - 1;
for (size_t j = low; j < high; j++) {
if (arr[j] <= pivot) {
i++;
std::swap(arr[i], arr[j]);
}
}
std::swap(arr[i + 1], arr[high]);
return i + 1;
}
template<std::totally_ordered T>
void quickSort(std::vector<T>& arr, size_t low, size_t high) {
if (low < high) {
size_t pivotIndex = partition(arr, low, high);
quickSort(arr, low, pivotIndex - 1);
quickSort(arr, pivotIndex + 1, high);
}
}
template<std::totally_ordered T>
void quickSort(std::vector<T>& arr) {
quickSort(arr, 0, arr.size() - 1);
}
归并排序是分治法的经典应用,采用递归的方式,将待排序的序列分成两个子序列,对每个子序列进行归并排序,最后将两个子序列合并。
public class Sort {
public static <T extends Comparable<T>> void mergeSort(T[] arr) {
mergeSort(arr, 0, arr.length - 1);
}
public static <T> void mergeSort(T[] arr, int low, int high) {
if (low < high) {
int mid = (low + high) / 2;
mergeSort(arr, low, mid);
mergeSort(arr, mid + 1, high);
merge(arr, low, mid, high);
}
}
public static <T> void merge(T[] arr, int low, int mid, int high) {
T[] temp = Arrays.copyOfRange(arr, low, high + 1);
int i = low;
int j = mid + 1;
for (int k = low; k <= high; k++) {
if (i > mid) {
arr[k] = temp[j++];
} else if (j > high) {
arr[k] = temp[i++];
} else if (temp[i].compareTo(temp[j]) <= 0) {
arr[k] = temp[i++];
} else {
arr[k] = temp[j++];
}
}
}
}
template<std::totally_ordered T>
void merge(std::vector<T>& arr, size_t low, size_t mid, size_t high) {
std::vector<T> temp(arr.begin() + low, arr.begin() + high + 1);
size_t i = low;
size_t j = mid + 1;
for (size_t k = low; k <= high; k++) {
if (i > mid) {
arr[k] = temp[j++];
} else if (j > high) {
arr[k] = temp[i++];
} else if (temp[i] <= temp[j]) {
arr[k] = temp[i++];
} else {
arr[k] = temp[j++];
}
}
}
template<std::totally_ordered T>
void mergeSort(std::vector<T>& arr, size_t low, size_t high) {
if (low < high) {
size_t mid = (low + high) / 2;
mergeSort(arr, low, mid);
mergeSort(arr, mid + 1, high);
merge(arr, low, mid, high);
}
}
template<std::totally_ordered T>
void mergeSort(std::vector<T>& arr) {
mergeSort(arr, 0, arr.size() - 1);
}
基数排序是非比较排序的一种,采用分组的方式,将待排序的序列分成若干个子序列,对每个子序列进行计数排序,最后将所有子序列合并。
public class Sort {
public static void radixSort(int[] arr) {
int max = Arrays.stream(arr).max().getAsInt();
for (int exp = 1; max / exp > 0; exp *= 10) {
countingSort(arr, exp);
}
}
public static void countingSort(int[] arr, int exp) {
int n = arr.length;
int[] output = new int[n];
int[] count = new int[10];
Arrays.fill(count, 0);
for (int i = 0; i < n; i++) {
count[(arr[i] / exp) % 10]++;
}
for (int i = 1; i < 10; i++) {
count[i] += count[i - 1];
}
for (int i = n - 1; i >= 0; i--) {
output[count[(arr[i] / exp) % 10] - 1] = arr[i];
count[(arr[i] / exp) % 10]--;
}
System.arraycopy(output, 0, arr, 0, n);
}
}
void countingSort(std::vector<int>& arr, size_t exp) {
std::vector<int> output(arr.size());
std::vector<int> count(10);
std::fill(count.begin(), count.end(), 0);
for (size_t i = 0; i < arr.size(); i++) {
count[(arr[i] / exp) % 10]++;
}
for (size_t i = 1; i < 10; i++) {
count[i] += count[i - 1];
}
for (size_t i = arr.size() - 1; i < arr.size(); i--) {
output[count[(arr[i] / exp) % 10] - 1] = arr[i];
count[(arr[i] / exp) % 10]--;
}
std::copy(output.begin(), output.end(), arr.begin());
}
void radixSort(std::vector<int>& arr) {
int max = *std::max_element(arr.begin(), arr.end());
for (size_t exp = 1; max / exp > 0; exp *= 10) {
countingSort(arr, exp);
}
}