forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
census_dataset.py
204 lines (161 loc) · 6.86 KB
/
census_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Download and clean the Census Income Dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# pylint: disable=wrong-import-order
from absl import app as absl_app
from absl import flags
from six.moves import urllib
import tensorflow as tf
# pylint: enable=wrong-import-order
from official.utils.flags import core as flags_core
DATA_URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult'
TRAINING_FILE = 'adult.data'
TRAINING_URL = '%s/%s' % (DATA_URL, TRAINING_FILE)
EVAL_FILE = 'adult.test'
EVAL_URL = '%s/%s' % (DATA_URL, EVAL_FILE)
_CSV_COLUMNS = [
'age', 'workclass', 'fnlwgt', 'education', 'education_num',
'marital_status', 'occupation', 'relationship', 'race', 'gender',
'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
'income_bracket'
]
_CSV_COLUMN_DEFAULTS = [[0], [''], [0], [''], [0], [''], [''], [''], [''], [''],
[0], [0], [0], [''], ['']]
_HASH_BUCKET_SIZE = 1000
_NUM_EXAMPLES = {
'train': 32561,
'validation': 16281,
}
def _download_and_clean_file(filename, url):
"""Downloads data from url, and makes changes to match the CSV format."""
temp_file, _ = urllib.request.urlretrieve(url)
with tf.gfile.Open(temp_file, 'r') as temp_eval_file:
with tf.gfile.Open(filename, 'w') as eval_file:
for line in temp_eval_file:
line = line.strip()
line = line.replace(', ', ',')
if not line or ',' not in line:
continue
if line[-1] == '.':
line = line[:-1]
line += '\n'
eval_file.write(line)
tf.gfile.Remove(temp_file)
def download(data_dir):
"""Download census data if it is not already present."""
tf.gfile.MakeDirs(data_dir)
training_file_path = os.path.join(data_dir, TRAINING_FILE)
if not tf.gfile.Exists(training_file_path):
_download_and_clean_file(training_file_path, TRAINING_URL)
eval_file_path = os.path.join(data_dir, EVAL_FILE)
if not tf.gfile.Exists(eval_file_path):
_download_and_clean_file(eval_file_path, EVAL_URL)
def build_model_columns():
"""Builds a set of wide and deep feature columns."""
# Continuous variable columns
age = tf.feature_column.numeric_column('age')
education_num = tf.feature_column.numeric_column('education_num')
capital_gain = tf.feature_column.numeric_column('capital_gain')
capital_loss = tf.feature_column.numeric_column('capital_loss')
hours_per_week = tf.feature_column.numeric_column('hours_per_week')
education = tf.feature_column.categorical_column_with_vocabulary_list(
'education', [
'Bachelors', 'HS-grad', '11th', 'Masters', '9th', 'Some-college',
'Assoc-acdm', 'Assoc-voc', '7th-8th', 'Doctorate', 'Prof-school',
'5th-6th', '10th', '1st-4th', 'Preschool', '12th'])
marital_status = tf.feature_column.categorical_column_with_vocabulary_list(
'marital_status', [
'Married-civ-spouse', 'Divorced', 'Married-spouse-absent',
'Never-married', 'Separated', 'Married-AF-spouse', 'Widowed'])
relationship = tf.feature_column.categorical_column_with_vocabulary_list(
'relationship', [
'Husband', 'Not-in-family', 'Wife', 'Own-child', 'Unmarried',
'Other-relative'])
workclass = tf.feature_column.categorical_column_with_vocabulary_list(
'workclass', [
'Self-emp-not-inc', 'Private', 'State-gov', 'Federal-gov',
'Local-gov', '?', 'Self-emp-inc', 'Without-pay', 'Never-worked'])
# To show an example of hashing:
occupation = tf.feature_column.categorical_column_with_hash_bucket(
'occupation', hash_bucket_size=_HASH_BUCKET_SIZE)
# Transformations.
age_buckets = tf.feature_column.bucketized_column(
age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
# Wide columns and deep columns.
base_columns = [
education, marital_status, relationship, workclass, occupation,
age_buckets,
]
crossed_columns = [
tf.feature_column.crossed_column(
['education', 'occupation'], hash_bucket_size=_HASH_BUCKET_SIZE),
tf.feature_column.crossed_column(
[age_buckets, 'education', 'occupation'],
hash_bucket_size=_HASH_BUCKET_SIZE),
]
wide_columns = base_columns + crossed_columns
deep_columns = [
age,
education_num,
capital_gain,
capital_loss,
hours_per_week,
tf.feature_column.indicator_column(workclass),
tf.feature_column.indicator_column(education),
tf.feature_column.indicator_column(marital_status),
tf.feature_column.indicator_column(relationship),
# To show an example of embedding
tf.feature_column.embedding_column(occupation, dimension=8),
]
return wide_columns, deep_columns
def input_fn(data_file, num_epochs, shuffle, batch_size):
"""Generate an input function for the Estimator."""
assert tf.gfile.Exists(data_file), (
'%s not found. Please make sure you have run census_dataset.py and '
'set the --data_dir argument to the correct path.' % data_file)
def parse_csv(value):
tf.logging.info('Parsing {}'.format(data_file))
columns = tf.decode_csv(value, record_defaults=_CSV_COLUMN_DEFAULTS)
features = dict(zip(_CSV_COLUMNS, columns))
labels = features.pop('income_bracket')
classes = tf.equal(labels, '>50K') # binary classification
return features, classes
# Extract lines from input files using the Dataset API.
dataset = tf.data.TextLineDataset(data_file)
if shuffle:
dataset = dataset.shuffle(buffer_size=_NUM_EXAMPLES['train'])
dataset = dataset.map(parse_csv, num_parallel_calls=5)
# We call repeat after shuffling, rather than before, to prevent separate
# epochs from blending together.
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size)
return dataset
def define_data_download_flags():
"""Add flags specifying data download arguments."""
flags.DEFINE_string(
name="data_dir", default="/tmp/census_data/",
help=flags_core.help_wrap(
"Directory to download and extract data."))
def main(_):
download(flags.FLAGS.data_dir)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
define_data_download_flags()
absl_app.run(main)