-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun_bert.py
248 lines (217 loc) · 12.4 KB
/
run_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import numpy as np
import torch
import torch.nn as nn
import warnings
from pathlib import Path
from argparse import ArgumentParser
from pybert.train.losses import BCEWithLogLoss
from pybert.train.trainer import Trainer
from torch.utils.data import DataLoader
from pybert.io.bert_processor import BertProcessor
from pybert.common.tools import init_logger, logger
from pybert.common.tools import seed_everything
from pybert.configs.basic_config import config
from pybert.model.nn.bert_for_multi_label import BertForMultiLable
from pybert.preprocessing.preprocessor import EnglishPreProcessor
from pybert.callback.modelcheckpoint import ModelCheckpoint
from pybert.callback.trainingmonitor import TrainingMonitor
from pybert.train.metrics import AUC, AccuracyThresh, MultiLabelReport,Accuracy,F1Score
from pytorch_transformers import AdamW, WarmupLinearSchedule
from torch.utils.data import RandomSampler, SequentialSampler
from torch.utils.tensorboard import SummaryWriter
warnings.filterwarnings("ignore")
def run_train(args):
# --------- data ---------
processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
idx2word = {}
for (w,i) in processor.tokenizer.vocab.items():
idx2word[i] = w
label_list = processor.get_labels(label_path=config['data_label_path'])
idx2label = {i: label for i, label in enumerate(label_list)}
train_data = processor.get_train(config['data_dir'] / f"{args.data_name}.train.pkl")
train_examples = processor.create_examples(lines=train_data,
example_type='train',
cached_examples_file=config[
'data_dir'] / f"cached_train_examples_{args.arch}")
train_features = processor.create_features(examples=train_examples,
max_seq_len=args.train_max_seq_len,
cached_features_file=config[
'data_dir'] / "cached_train_features_{}_{}".format(
args.train_max_seq_len, args.arch
))
train_dataset = processor.create_dataset(train_features, is_sorted=args.sorted)
if args.sorted:
train_sampler = SequentialSampler(train_dataset)
else:
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
valid_data = processor.get_dev(config['data_dir'] / f"{args.data_name}.valid.pkl")
valid_examples = processor.create_examples(lines=valid_data,
example_type='valid',
cached_examples_file=config[
'data_dir'] / f"cached_valid_examples_{args.arch}")
valid_features = processor.create_features(examples=valid_examples,
max_seq_len=args.eval_max_seq_len,
cached_features_file=config[
'data_dir'] / "cached_valid_features_{}_{}".format(
args.eval_max_seq_len, args.arch
))
valid_dataset = processor.create_dataset(valid_features)
valid_sampler = SequentialSampler(valid_dataset)
valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size)
# ------- model -------
logger.info("initializing model")
if args.resume_path:
args.resume_path = Path(args.resume_path)
model = BertForMultiLable.from_pretrained(args.resume_path, num_labels=len(label_list))
else:
model = BertForMultiLable.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))
for p in model.parameters():
p.requires_grad=False
# training last 2 fc layers
model.classifier.weight.requires_grad = True
model.classifier_1.weight.requires_grad = True
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
t_total = int(len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)
warmup_steps = int(t_total * args.warmup_proportion)
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
lr_scheduler = WarmupLinearSchedule(optimizer, warmup_steps=warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# ---- callbacks ----
logger.info("initializing callbacks")
train_monitor = TrainingMonitor(file_dir=config['figure_dir'], arch=args.arch)
model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'],mode=args.mode,
monitor=args.monitor,arch=args.arch,
save_best_only=args.save_best)
# **************************** training model ***********************
writer = SummaryWriter()
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Num Epochs = %d", args.epochs)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
trainer = Trainer(n_gpu=args.n_gpu,i2w=idx2word,i2l=idx2label,
model=model,
epochs=args.epochs,
logger=logger,
criterion=BCEWithLogLoss(),
optimizer=optimizer,
lr_scheduler=lr_scheduler,
early_stopping=None,
training_monitor=train_monitor,
fp16=args.fp16,
resume_path=args.resume_path,
grad_clip=args.grad_clip,
model_checkpoint=model_checkpoint,
gradient_accumulation_steps=args.gradient_accumulation_steps,
batch_metrics=[AccuracyThresh(thresh=0.5)],
epoch_metrics = [],
writer = writer,
)
trainer.train(train_data=train_dataloader, valid_data=valid_dataloader, seed=args.seed)
def run_test(args):
from pybert.test.predictor import Predictor
processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
test_data = processor.get_test(config['test_path'])
test_examples = processor.create_examples(lines=test_data, example_type='test', cached_examples_file=config[
'data_dir'] / f"cached_test_examples_{args.arch}")
test_features = processor.create_features(examples=test_examples, max_seq_len=args.eval_max_seq_len, cached_features_file=config[
'data_dir'] / "cached_test_features_{}_{}".format(
args.eval_max_seq_len, args.arch
))
test_dataset = processor.create_dataset(test_features)
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.eval_batch_size)
idx2word = {}
for (w,i) in processor.tokenizer.vocab.items():
idx2word[i] = w
label_list = processor.get_labels(label_path=config['data_label_path'])
idx2label = {i: label for i, label in enumerate(label_list)}
if args.test_path:
args.test_path = Path(args.test_path)
model = BertForMultiLable.from_pretrained(args.test_path, num_labels=len(label_list))
else:
model = BertForMultiLable.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))
for p in model.bert.parameters():
p.require_grad = False
# ----------- predicting -----------
writer = SummaryWriter()
logger.info('model predicting....')
predictor = Predictor(model=model,
logger=logger,
n_gpu=args.n_gpu,
i2w = idx2word,
i2l = idx2label)
result = predictor.predict(data=test_dataloader)
if args.predict_labels:
predictor.labels(result,args.predict_idx)
def main():
parser = ArgumentParser()
parser.add_argument("--arch", default='bert', type=str)
parser.add_argument("--do_data", action='store_true')
parser.add_argument("--train", action='store_true')
parser.add_argument("--test", action='store_true')
parser.add_argument("--save_best", action='store_true')
parser.add_argument("--do_lower_case", action='store_true')
parser.add_argument('--data_name', default='job_dataset', type=str)
parser.add_argument("--epochs", default=10, type=int)
parser.add_argument("--resume_path", default='', type=str)
parser.add_argument("--test_path", default='', type=str)
parser.add_argument("--mode", default='min', type=str)
parser.add_argument("--monitor", default='valid_loss', type=str)
parser.add_argument("--valid_size", default=0.05, type=float)
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--sorted", default=1, type=int, help='1 : True 0:False ')
parser.add_argument("--n_gpu", type=str, default='0', help='"0,1,.." or "0" or "" ')
parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
parser.add_argument("--train_batch_size", default=4, type=int)
parser.add_argument('--eval_batch_size', default=4, type=int)
parser.add_argument("--train_max_seq_len", default=256, type=int)
parser.add_argument("--eval_max_seq_len", default=256, type=int)
parser.add_argument('--loss_scale', type=float, default=0)
parser.add_argument("--warmup_proportion", default=0.1, type=int, )
parser.add_argument("--weight_decay", default=0.01, type=float)
parser.add_argument("--adam_epsilon", default=1e-8, type=float)
parser.add_argument("--grad_clip", default=1.0, type=float)
parser.add_argument("--learning_rate", default=1.0e-4, type=float)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--fp16', action='store_true')
parser.add_argument('--fp16_opt_level', type=str, default='O1')
parser.add_argument('--predict_labels', type=bool, default=False)
parser.add_argument('--predict_idx', type=str, default="0", help=' "idx" or "start-end" or "all" ')
args = parser.parse_args()
config['checkpoint_dir'] = config['checkpoint_dir'] / args.arch
config['checkpoint_dir'].mkdir(exist_ok=True)
torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
seed_everything(args.seed)
init_logger(log_file=config['log_dir'] / f"{args.arch}.log")
logger.info("Training/evaluation parameters %s", args)
if args.do_data:
from pybert.io.task_data import TaskData
data = TaskData()
targets, sentences = data.read_data(raw_data_path=config['raw_data_path'],
preprocessor=EnglishPreProcessor(),
is_train=True)
data.train_val_split(X=sentences, y=targets, shuffle=False, stratify=False,
valid_size=args.valid_size, data_dir=config['data_dir'],
data_name=args.data_name)
if args.train:
run_train(args)
if args.test:
run_test(args)
if __name__ == '__main__':
main()