forked from graphdeeplearning/benchmarking-gnns
-
Notifications
You must be signed in to change notification settings - Fork 0
/
molecules.py
285 lines (214 loc) · 11.1 KB
/
molecules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import torch
import pickle
import torch.utils.data
import time
import os
import numpy as np
import csv
import dgl
from scipy import sparse as sp
import numpy as np
# *NOTE
# The dataset pickle and index files are in ./zinc_molecules/ dir
# [<split>.pickle and <split>.index; for split 'train', 'val' and 'test']
class MoleculeDGL(torch.utils.data.Dataset):
def __init__(self, data_dir, split, num_graphs=None):
self.data_dir = data_dir
self.split = split
self.num_graphs = num_graphs
with open(data_dir + "/%s.pickle" % self.split,"rb") as f:
self.data = pickle.load(f)
if self.num_graphs in [10000, 1000]:
# loading the sampled indices from file ./zinc_molecules/<split>.index
with open(data_dir + "/%s.index" % self.split,"r") as f:
data_idx = [list(map(int, idx)) for idx in csv.reader(f)]
self.data = [ self.data[i] for i in data_idx[0] ]
assert len(self.data)==num_graphs, "Sample num_graphs again; available idx: train/val/test => 10k/1k/1k"
"""
data is a list of Molecule dict objects with following attributes
molecule = data[idx]
; molecule['num_atom'] : nb of atoms, an integer (N)
; molecule['atom_type'] : tensor of size N, each element is an atom type, an integer between 0 and num_atom_type
; molecule['bond_type'] : tensor of size N x N, each element is a bond type, an integer between 0 and num_bond_type
; molecule['logP_SA_cycle_normalized'] : the chemical property to regress, a float variable
"""
self.graph_lists = []
self.graph_labels = []
self.n_samples = len(self.data)
self._prepare()
def _prepare(self):
print("preparing %d graphs for the %s set..." % (self.num_graphs, self.split.upper()))
for molecule in self.data:
node_features = molecule['atom_type'].long()
adj = molecule['bond_type']
edge_list = (adj != 0).nonzero() # converting adj matrix to edge_list
edge_idxs_in_adj = edge_list.split(1, dim=1)
edge_features = adj[edge_idxs_in_adj].reshape(-1).long()
# Create the DGL Graph
g = dgl.DGLGraph()
g.add_nodes(molecule['num_atom'])
g.ndata['feat'] = node_features
for src, dst in edge_list:
g.add_edges(src.item(), dst.item())
g.edata['feat'] = edge_features
self.graph_lists.append(g)
self.graph_labels.append(molecule['logP_SA_cycle_normalized'])
def __len__(self):
"""Return the number of graphs in the dataset."""
return self.n_samples
def __getitem__(self, idx):
"""
Get the idx^th sample.
Parameters
---------
idx : int
The sample index.
Returns
-------
(dgl.DGLGraph, int)
DGLGraph with node feature stored in `feat` field
And its label.
"""
return self.graph_lists[idx], self.graph_labels[idx]
class MoleculeDatasetDGL(torch.utils.data.Dataset):
def __init__(self, name='Zinc'):
t0 = time.time()
self.name = name
self.num_atom_type = 28 # known meta-info about the zinc dataset; can be calculated as well
self.num_bond_type = 4 # known meta-info about the zinc dataset; can be calculated as well
data_dir='./data/molecules'
if self.name == 'ZINC-full':
data_dir='./data/molecules/zinc_full'
self.train = MoleculeDGL(data_dir, 'train', num_graphs=220011)
self.val = MoleculeDGL(data_dir, 'val', num_graphs=24445)
self.test = MoleculeDGL(data_dir, 'test', num_graphs=5000)
else:
self.train = MoleculeDGL(data_dir, 'train', num_graphs=10000)
self.val = MoleculeDGL(data_dir, 'val', num_graphs=1000)
self.test = MoleculeDGL(data_dir, 'test', num_graphs=1000)
print("Time taken: {:.4f}s".format(time.time()-t0))
def self_loop(g):
"""
Utility function only, to be used only when necessary as per user self_loop flag
: Overwriting the function dgl.transform.add_self_loop() to not miss ndata['feat'] and edata['feat']
This function is called inside a function in MoleculeDataset class.
"""
new_g = dgl.DGLGraph()
new_g.add_nodes(g.number_of_nodes())
new_g.ndata['feat'] = g.ndata['feat']
src, dst = g.all_edges(order="eid")
src = dgl.backend.zerocopy_to_numpy(src)
dst = dgl.backend.zerocopy_to_numpy(dst)
non_self_edges_idx = src != dst
nodes = np.arange(g.number_of_nodes())
new_g.add_edges(src[non_self_edges_idx], dst[non_self_edges_idx])
new_g.add_edges(nodes, nodes)
# This new edata is not used since this function gets called only for GCN, GAT
# However, we need this for the generic requirement of ndata and edata
new_g.edata['feat'] = torch.zeros(new_g.number_of_edges())
return new_g
def positional_encoding(g, pos_enc_dim):
"""
Graph positional encoding v/ Laplacian eigenvectors
"""
# Laplacian
A = g.adjacency_matrix_scipy(return_edge_ids=False).astype(float)
N = sp.diags(dgl.backend.asnumpy(g.in_degrees()).clip(1) ** -0.5, dtype=float)
L = sp.eye(g.number_of_nodes()) - N * A * N
# Eigenvectors with numpy
EigVal, EigVec = np.linalg.eig(L.toarray())
idx = EigVal.argsort() # increasing order
EigVal, EigVec = EigVal[idx], np.real(EigVec[:,idx])
g.ndata['pos_enc'] = torch.from_numpy(EigVec[:,1:pos_enc_dim+1]).float()
# # Eigenvectors with scipy
# EigVal, EigVec = sp.linalg.eigs(L, k=pos_enc_dim+1, which='SR')
# EigVec = EigVec[:, EigVal.argsort()] # increasing order
# g.ndata['pos_enc'] = torch.from_numpy(np.abs(EigVec[:,1:pos_enc_dim+1])).float()
return g
class MoleculeDataset(torch.utils.data.Dataset):
def __init__(self, name):
"""
Loading SBM datasets
"""
start = time.time()
print("[I] Loading dataset %s..." % (name))
self.name = name
data_dir = 'data/molecules/'
with open(data_dir+name+'.pkl',"rb") as f:
f = pickle.load(f)
self.train = f[0]
self.val = f[1]
self.test = f[2]
self.num_atom_type = f[3]
self.num_bond_type = f[4]
print('train, test, val sizes :',len(self.train),len(self.test),len(self.val))
print("[I] Finished loading.")
print("[I] Data load time: {:.4f}s".format(time.time()-start))
# form a mini batch from a given list of samples = [(graph, label) pairs]
def collate(self, samples):
# The input samples is a list of pairs (graph, label).
graphs, labels = map(list, zip(*samples))
labels = torch.tensor(np.array(labels)).unsqueeze(1)
#tab_sizes_n = [ graphs[i].number_of_nodes() for i in range(len(graphs))]
#tab_snorm_n = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_n ]
#snorm_n = torch.cat(tab_snorm_n).sqrt()
#tab_sizes_e = [ graphs[i].number_of_edges() for i in range(len(graphs))]
#tab_snorm_e = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_e ]
#snorm_e = torch.cat(tab_snorm_e).sqrt()
batched_graph = dgl.batch(graphs)
return batched_graph, labels
# prepare dense tensors for GNNs using them; such as RingGNN, 3WLGNN
def collate_dense_gnn(self, samples, edge_feat):
# The input samples is a list of pairs (graph, label).
graphs, labels = map(list, zip(*samples))
labels = torch.tensor(np.array(labels)).unsqueeze(1)
#tab_sizes_n = [ graphs[i].number_of_nodes() for i in range(len(graphs))]
#tab_snorm_n = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_n ]
#snorm_n = tab_snorm_n[0][0].sqrt()
#batched_graph = dgl.batch(graphs)
g = graphs[0]
adj = self._sym_normalize_adj(g.adjacency_matrix().to_dense())
"""
Adapted from https://github.com/leichen2018/Ring-GNN/
Assigning node and edge feats::
we have the adjacency matrix in R^{n x n}, the node features in R^{d_n} and edge features R^{d_e}.
Then we build a zero-initialized tensor, say T, in R^{(1 + d_n + d_e) x n x n}. T[0, :, :] is the adjacency matrix.
The diagonal T[1:1+d_n, i, i], i = 0 to n-1, store the node feature of node i.
The off diagonal T[1+d_n:, i, j] store edge features of edge(i, j).
"""
zero_adj = torch.zeros_like(adj)
if edge_feat:
# use edge feats also to prepare adj
adj_with_edge_feat = torch.stack([zero_adj for j in range(self.num_atom_type + self.num_bond_type)])
adj_with_edge_feat = torch.cat([adj.unsqueeze(0), adj_with_edge_feat], dim=0)
us, vs = g.edges()
for idx, edge_label in enumerate(g.edata['feat']):
adj_with_edge_feat[edge_label.item()+1+self.num_atom_type][us[idx]][vs[idx]] = 1
for node, node_label in enumerate(g.ndata['feat']):
adj_with_edge_feat[node_label.item()+1][node][node] = 1
x_with_edge_feat = adj_with_edge_feat.unsqueeze(0)
return None, x_with_edge_feat, labels
else:
# use only node feats to prepare adj
adj_no_edge_feat = torch.stack([zero_adj for j in range(self.num_atom_type)])
adj_no_edge_feat = torch.cat([adj.unsqueeze(0), adj_no_edge_feat], dim=0)
for node, node_label in enumerate(g.ndata['feat']):
adj_no_edge_feat[node_label.item()+1][node][node] = 1
x_no_edge_feat = adj_no_edge_feat.unsqueeze(0)
return x_no_edge_feat, None, labels
def _sym_normalize_adj(self, adj):
deg = torch.sum(adj, dim = 0)#.squeeze()
deg_inv = torch.where(deg>0, 1./torch.sqrt(deg), torch.zeros(deg.size()))
deg_inv = torch.diag(deg_inv)
return torch.mm(deg_inv, torch.mm(adj, deg_inv))
def _add_self_loops(self):
# function for adding self loops
# this function will be called only if self_loop flag is True
self.train.graph_lists = [self_loop(g) for g in self.train.graph_lists]
self.val.graph_lists = [self_loop(g) for g in self.val.graph_lists]
self.test.graph_lists = [self_loop(g) for g in self.test.graph_lists]
def _add_positional_encodings(self, pos_enc_dim):
# Graph positional encoding v/ Laplacian eigenvectors
self.train.graph_lists = [positional_encoding(g, pos_enc_dim) for g in self.train.graph_lists]
self.val.graph_lists = [positional_encoding(g, pos_enc_dim) for g in self.val.graph_lists]
self.test.graph_lists = [positional_encoding(g, pos_enc_dim) for g in self.test.graph_lists]