-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
45 lines (39 loc) · 1.56 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
from torch.utils.data import Dataset
import pickle
from PIL import Image
import os
class MyData(Dataset):
def __init__(self, image_dir, label_dir, transform = None):
self.image_dir = image_dir
self.label_dir = label_dir
self.img_path = os.listdir(self.image_dir)
self.transform = transform
self.labels = {}
with open("data\map.pkl",'rb') as f:
self.map = pickle.load(f)
labels_ = open(os.path.join(self.label_dir))
next(labels_)
for label in labels_.readlines():
self.labels[label.split(',')[0]] = label.split(',')[1].split('n')[1].split('\n')[0]
# labels_ = open(os.path.join(self.label_dir, 'test.csv'))
# next(labels_)
# for label in labels_.readlines():
# self.labels[label.split(',')[0]] = label.split(',')[1].split('n')[1].split('\n')[0]
#
# labels_ = open(os.path.join(self.label_dir, 'val.csv'))
# next(labels_)
# for label in labels_.readlines():
# self.labels[label.split(',')[0]] = label.split(',')[1].split('n')[1].split('\n')[0]
return
def __getitem__(self,index):
lab_tensor = torch.zeros(100)
img_name = self.img_path[index]
label = self.labels[img_name]
img = Image.open(os.path.join(self.image_dir, img_name ))
if self.transform is not None:
img = self.transform(img)
lab_tensor[self.map['n'+label]-1:self.map['n'+label]] = 1
return img, lab_tensor
def __len__(self):
return len(self.img_path)