-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
44 lines (36 loc) · 1.34 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
import model
import data
import torch
import torch.nn as nn
model_path = "./model/model.pth" #
save_info = torch.load(model_path)
model = model.ResNet()
criterion = nn.CrossEntropyLoss()
model.load_state_dict(save_info["model"])
model.eval()
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
train_set = data.MyData(r'data\test',r'data\normal_data\test.csv', transform=transform)
data_test_loader = DataLoader(train_set, batch_size=256, shuffle=False, num_workers=0, drop_last=True)
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(data_test_loader):
pass
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predict = outputs.max(1)
total += targets.size(0)
_, realtag = targets.max(1)
correct += predict.eq(realtag).sum().item()
print(batch_idx, len(data_test_loader), 'Loss: %.3f | (Acc: %.3f %%(%d/%d' % (test_loss / (batch_idx + 1), 100. * correct / total, correct, total))