-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
76 lines (63 loc) · 2.51 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torch.nn as nn
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
""" 3x3 convolution with padding """
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups,
bias=False, dilation=dilation)
"""basic block"""
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64,
dilation=1, norm_layer=None):
super(BasicBlock,self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
#first layer
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
#second layer
out = self.conv2(out)
out = self.bn2(out)
#
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self):
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64,kernel_size=7, stride=2, padding=3)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = BasicBlock(inplanes=64, planes=64)
self.layer2 = BasicBlock(inplanes=64, planes=128, stride=2, downsample=nn.Conv2d(64,128, kernel_size=1, stride=2))
self.layer3 = BasicBlock(inplanes=128, planes=256, stride=2, downsample=nn.Conv2d(128, 256, kernel_size=1, stride=2))
self.layer4 = BasicBlock(inplanes=256, planes=256, stride=2, downsample=nn.Conv2d(256, 256, kernel_size=1, stride=2))
self.pool5 = nn.MaxPool2d(kernel_size=7)
self.fc6 = nn.Linear(256, 100)
self.res = nn.Softmax()
def forward(self, x):
out = self.conv1(x)
out = self.relu1(out)
out = self.pool1(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.pool5(out)
out = out.view(-1, out.size(0))
out = self.fc6(out)
out = self.res(out)
return out